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ABSTRACT
Buffer insertionis a fundamentaltechnologyfor VLSI intercon-
nectoptimization.Severalexistingbuffer insertionalgorithmshave
evolved from van Ginneken’s classicalgorithm. In this work, we
extendvan Ginneken’s algorithmto handleblockagesin the lay-
out. Givena Steinertreecontaininga Steinerpoint thatoverlapsa
blockage,a local adjustmentis madeto the treetopologythaten-
ablesadditionalbuffer insertioncandidatesto beconsidered.This
adjustmentis adaptive to thedemandon buffer insertionandis in-
curredonly when it facilitatesthe maximal slack solution. This
approachcan be combinedwith any performance-driven Steiner
treeconstruction.The overall time complexity haslinear depen-
denceonthenumberof blockagesandquadraticdependenceonthe
numberof potentialbuffer locations.Experimentson several large
netsconfirm that high-quality solutionscan be obtainedthrough
this techniquewith little CPUcost.

Categories and Subject Descriptors
B.7.2[Hardware]: IntegratedCircuits—DesignAids

General Terms
Algorithms,Performance

1. INTRODUCTION
Buffer insertionis now widely recognizedasa key technology

for improving VLSI interconnectperformance.Cong[5] projects
that as many as 800,000buffers will be requiredfor designsin
50-nm technologies. As designcomplexity increases,designers
are relying on an increasingnumberof IP cores,large memory
arrays,and hierarchicalcomponents,i.e., designsare becoming
“chunkier”. For a buffer insertion techniqueto be effective, it
mustbe fully awareof its surroundingblockageconstraintswhile
alsobeingefficient enoughto quickly processthousandsof nets.
Buffer insertionimprovesthe timing performanceof the intercon-
nectthroughtwo ways: (i) it regeneratesthesignalto increasethe
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Figure 1: Steiner tree and buffer solutions on a 3-pin net with
one buffer blockage.

driving capabilityfor long wires,and(ii) it canshieldtheloadca-
pacitanceof non-critical sinks from the most critical source-sink
path. In the buffer insertion literature,van Ginneken’s dynamic
programmingbasedalgorithm[20]hasestablisheditself asa clas-
sic in thefield. Givena fixedSteinertreetopologyandtheElmore
delaymodel,thisalgorithmcancomputetheoptimalslacksolution
in polynomialtime.

Prior to buffer insertion,several large areachunksmay be al-
ready occupiedby macro or IP blocks for which wires can be
routedover the blocks, but buffers cannotbe insertedinside the
blocks. We call theseregions “buffer blockages”. For example,
Figure 1(a) shows a Steinertreewith 3-pins and a buffer block-
age.Let therequiredarrival timesfor thesinksbe ���������
	���
������
and ��������������
������ . If the blockageis ignored,one can obtain
a goodsolutionasshown in Figure1(b). Here the buffer actsto
decouplethe load from the � 	 branchto themorecritical sink ��� .
Of course,in practice,onecannotignorethe buffer blockageand



a solutionotherthanthat in Figure1(b) mustbesought.If onere-
stricts� the solutionspaceto the existing Steinertopology, the two
bestsolutionsareshown in (c) and(d), but neithersolutionmeets
therequiredtiming constraints.

SeveralworkshaveextendedvanGinneken’salgorithmto handle
moregeneralformulations. In [14], Lillis et al. proposedseveral
extensionsincludingemploying a buffer library, handlingboth in-
vertingandnon-invertingbuffersand,tradingoff power consump-
tion andperformance.Alpert andDevgandevelopa wire segment-
ing technique[2]to includebuffer insertionpointsalonga pathbe-
tweentwo nodes.Alpert etal. showedhow to extendthealgorithm
to handlehigher-orderdelaymodels[3]. Theseextensionsall re-
strict candidatebuffer locationsto afixedSteinertreetopology.

Other works have combinedbuffer insertion and Steinertree
routing into a simultaneousapproach. Okamotoand Cong pro-
posedmerging A-treeandvanGinneken’s algorithminto theBA-
tree algorithm[16]. BA-tree is a relatively fast simultaneousap-
proachsincethetreetopologyit generatesis limited to beaSteiner
arborescence1. Lillis etal. [15] integratedtheP-treealgorithm[13]
with buffer insertionsincethey shareacommondynamicprogram-
ming framework. Saleket al. [17] embeddedP-treeinto a fanout
tree optimizationalgorithm. Thesemethodsserve to extend van
Ginneken’s algorithmby exploringthecandidatesolutionsover the
entireHanangrid[10], which has � ��� � � grid nodesfor a netwith� pins,ratherthana singletreeandthereforebecomeprohibitively
expensive in termsof run time.

Due to theseruntimeinefficiencies,Saleket al. [18] proposed
extending [17] by limiting the numberof potential buffer loca-
tions.They concludedthatreducingthenumberof buffer locations
from � ��� � � to � ����� doesnotsignificantlyreducesolutionquality.
Nevertheless,the tree topology itself still is constructedover the
Hanangrid simultaneouslywith generatingcandidatebuffer solu-
tions.Evenwhenrestrictedto � ����� buffer locations,thecomplex-
ity of all theworks in [15, 17, 18] have at least � ������� time com-
plexity.

Zhou et al. [21] proposedan optimal algorithm on simulta-
neousbuffer insertionand Steinertree constructionswith buffer
blockagesfor two-pin nets.This algorithmis basedon a dynamic
programmingframework similar to vanGinneken’s algorithm,but
the entiregrid graphis searchedinsteadof a fixed topology. The
authorsof [11] and[12] alsoconsideredblockageavoidancewith
buffer insertionusinggraphbasedapproachesfor two-pin nets. It
is not clearhow to extend thesemethods[21, 11, 12] directly to
multi-pin nets.

In [7], CongandYuanproposeda dynamicprogrammingalgo-
rithm,calledRMP, tohandlethemulti-sinknetbuffer insertionwith
locationrestrictions.RMPis designedfor thebuffer blockmethod-
ology[6] for which the numberof legal buffer locationsis quite
limited. It worksona grid graphthatis constructedby addinghor-
izontalandvertical linesthrougheachpotentialbuffer locationsto
theHanangrid. It not only exploresalmostevery nodeon thegrid
in treeconstructionbut alsoconsidersmany sink combinationsin
subsolutions. Consequently, RMP tendsto be slow when either
thenumberof netpinsor legal buffer locationsis large. Neverthe-
less,RMPgenerallyyieldsnearoptimalsolutionsin termof timing
performance.More recently, Tanget al. suggesteda graph-based
algorithm [19] on a similar problem. While more efficient than
RMP, it canoptimizeonly themaximumsink delayratherthanthe
minimumslack.

The simultaneousrouting and buffer insertionapproaches[15,
17, 18] canalsobemodifiedto handlebuffer blockages.Onecan	
A Steinerarborescenceis a Steinertreewhereevery source-sink

pathhasto bea shortestpath.

extendthebordersof theblockagesover theHanangrid sothatthe
algorithmsareperformedon theextendedHanangrid asshown by
thedashedgrid in Figure1(a).Theneachnodein thegrid graphis
labeledaseitherblocked or free to disallow insertingbuffersover
blockages. If thereare � sinks and  blockages,a simultaneous
approachover this grid impliesthatcandidatesolutionswill beex-
ploredfor � �!����"  � � � locations.When � or  is large,suchan
extensive searchwill inevitably beslow; a moredirectionalsearch
is preferredto relieve theheavy computationburden.

Difficult buffering problemsoccur not just with large netsbut
alsowhensink polarity constraintsarepresent.Alpert et al. de-
velopedthe C-treeheuristic[1]to handlethesetypesof instances.
Thebuffer insertionsolutionsthatuseC-treetopologieshave simi-
lar timing performanceto solutionsfrom simultaneousapproaches,
thougharegeneratedmorequickly. However, C-treedoesnot con-
siderbuffer blockages.Onecould incorporatethe methodof [4],
which first re-routespartsof a Steinertree to make the wires to
avoid theblockageswithoutaddingmuchwiring. Then,thismodi-
fied treeis passedto thevanGinneken’s buffer insertionalgorithm.
For example,this approachwould obtainthe bufferedsolutionin
Figure1(e). However, a carefullyconstructedtiming-driventopol-
ogy canbedestroyedby this independenttopologychangesothat
thefinal slackcouldbesignificantlyworseeventhoughblockages
areavoidedandbuffer insertionsareenabled.

Despiteall thework in thisfield, thereis still nofastandeffective
solutionfor multi-sinknets.Weseekanalgorithmthatcanfind the
solutionin Figure1(f) for our example. This optimal solutionfor
maximizingtheminimumslackmaybeobtainedby simplysliding
thebuffer insertionsolutionin Figure1(b) to its closestlegal loca-
tion. While an approachlike this works for this example,it fails
for a larger-sizedtreewith multiple branchingnodesbecausethe
properbuffer insertionsolution for onebranchingnoderelies on
thebuffer solutionfor anotherbranchingnode.Therefore,moving
eachbuffer out of blockageindividually canruin the integrity of
thebuffer insertionsolution.Moreover, if a buffer is movedtoo far
away from its original location,the solutionquality may degrade
beyondrepair.

Consequently, we proposeto handleblockagesduringbuffer in-
sertiondirectly within van Ginneken’s algorithm. Our technique
adjustsa given tree topology accordingto the demandon buffer
insertion,andsuchadjustmentsonly occurwhenit facilitatesthe
maximal slack solution. This techniquecan be usedwith any
performance-driven Steinertree algorithm. Moreover, this tech-
niquedoesnot increasethecomputationalcomplexity of vanGin-
neken’s algorithm. Experimentalresultsshow that we canobtain
greaterefficiency thanmethodsthatusetheentireHanangrid.

2. PRELIMINARIES
For theSteinertreeconstruction,let #%$'&�(*),+-&�.0/ representtheset

of nodesin the tree other than the sourceand sinks. Our basic
problemis givenby2:
Problem formulation:Givena net 1 
320��4�5!� 	 5�67676 � &98 withsource� 4 , sinks �:	�50676;6 � & , load capacitances< ��� $ � and required arrival
time = ��� $ � for each sink � $?> 1 , a setof rectangles@ 
A2�� 	 5�6;676 �CB 8
representingblockages,anda buffer library D 
E20F�	05�67676 F�G 8 , find
a bufferedSteinertree H � # 5-IJ� where # 
 1LKM#%$;&�(*)N+�&C.0/ and I
spansevery nodein # such that the required arrival time at the
sourceis maximized.
�
Althoughnotexplicitly statedin theformulation,onecantrade-off

performancewith bufferingandwiring resources.In ourapproach,
wecanachievethisby generatingasetof non-dominatingsolutions
usingthetechniqueof [14].



Theformulationis similar to theformulationfor RMP[7] except
that aO set of legal buffer locationsis given in RMP insteadof a
set of buffer blockages. To make our formulation equivalent to
that in [7], we canextendthe bordersof blockagesover a Hanan
grid andlabeleachnodeon thenew grid graphaseithera feasible
or infeasiblebuffer location.However, this transformationimplies
that thereareup to � �!���P"  � � � legal buffer locationswhile the
numberof legalbuffer locationscouldbeeithervery smallor very
large in theRMP formulation. If we remove therestrictionof the
extendedHanangrid, we may considerany point out of blockage
for buffer insertion.For example,in Figure2(a),thebuffer sitesin
RMP formulationarerestrictedto a few isolatedpointswhile our
formulationcanexploit amuchlargerbuffer sitespaceasin Figure
2(b) or canbereducedto (a) easily. Thus,our formulationis more
generalandflexible.

Candidate buffer sites

(b)

Candidate buffer sites

(a)

Figure 2: The candidate buffer sites in RMP formulation (a)
and the potential candidate buffer sites in our formulation (b).

WeadopttheElmoredelaymodel[9]for interconnectandanRC
switch model for gatedelays. We assumethat the given a rout-
ing tree H � # 5-IJ� is a binary tree, i.e., every internalnodehasno
morethantwo childrenandthat every sink hasdegreeone. Any
routingtreecanbeeasilytransformedto satisfybothconditionsby
insertingzero-lengthdummyedges.For simplicity of discussion,
candidatebuffer sitesarelimited to only branch(internal)nodes;it
is straightforward to extendthebuffer sitesto includesegmenting
pointsalonga path.

Since we are extending van Ginneken’s algorithm to directly
handlebuffer blockages,wefirst overview it to form abasisfor the
remainderof the discussion.Van Ginneken’s algorithmproceeds
bottom-upfrom theleaf nodesalonga given treetopologytoward
thesourcenode.A setof candidatesolutionsis computedfor each
nodeduringthis process.A candidatesolutionat a node � is char-
acterizedby theloadcapacitance< ���
� seendownstream� andthe
requiredarrival = ���
� at node � . We let Q 
R� < ���
��5 = ���
�!� denotea
buffering candidatesolutionat � . For any two candidatesolutions
Q 	S
T� < 	0���
��5 = 	����
�!� and Q � 
T� < � ���
��5 = � ���
�!� , we say Q 	 is dom-
inated by (inferior to) Q � if < 	 ���
�MU < �����
� and = 	 ���
�MV = �C���
� .
A candidatesolutionset W ���
�X
Y2 Q 	05 Q � 5067676 8 is a non-dominating
setif no candidatein this setis dominatedby any othercandidate
in this set. During the bottom-upprocessof van Ginneken’s al-
gorithm, the candidatesolutionsat leaf nodeevolve throughthe
following operations:

Z\[ �C]�^J� W ���
��5!^_� : propagatecandidateset W ���
� from node� to node ^ to get W ��^_� . If the wire between � and ^
hasresistance@ and capacitancè , we can get < $ ��^a�b

< $ ���
�c" ` and = $ ��^_�X
 = $ ���
�ed @ � `Xf �a" < $ ���
�!� for each� < $ ���
��5 = $ ���
�!� > W ���
� , andobtain W ��^a� from the solution
pairs � < $ ��^a��5 = $ ��^a�!�hgji .

ZlkXm�m Don9pjp%q �r� W ���
�!� : insert buffer at � and add the new
candidate into W ���
� . If a buffer F has input capaci-
tance <�s , output resistance� s and intrinsic delay � s , we
can obtain < $ut swv�x ���
�T
 < s and = $�t shv�x ���
�R
 = $ ���
�yd� s-< $ ���
�9dM� s for each� < $ ���
��5 = $ ���
�!� > W ���
� andaddthepair� <�$�t swv�x ���
��5 =0$�t shv�x ���
�!�hg%i with themaximum=0$�t swv�x into W ���
� .

Z\z q ��{ q � W9/ ���
��5 W + ���
�!� : mergesolutionsetfrom left child of� to the solution set from the right child of � to obtain a
mergedsolutionset W ���
� . For asolution � <�/|)!x0( ���
��5 =0/|)!x0( ���
�!�
from theleft child andasolution � <�+-$;}�~0( ���
��5 =�+�$7}�~�( ���
�!� from
theright child, themergedsolution � < $ ���
��5 = $ ���
�!� is obtained
throughletting < $ ���
��
 <�/|)!x0( ���
�?" <�+-$;}�~0( ���
� and = $ ���
��
���;��� = /|)!x0( ���
��5 = +-$;}�~0( ���
�!� . Thesetsaremergedsuchthatthe
numberof candidatesgeneratedis no greaterthan � W9/ ���
� � "
� W + ���
� � .

Zl� � n � qCW ]�� n �,iu]C� Q � W ���
�!� : remove any solution Q 	 > W ���
�
thatis dominatedby any othersolution Q � > W ���
� .

After a setof candidatesolutionsarepropagatedto the source,
thesolutionwith themaximumrequiredarrival time is selectedfor
thefinal solution. For a fixedrouting tree,this algorithmcanfind
theoptimal solutionin � ��� � � where � is thenumberof potential
buffer insertionlocationsin theroutingtree.

3. THE RIATA ALGORITHM
A commonstrategy to solve a sophisticatedproblemis divide-

and-conquer, e.g., partitioning a complex problem into a set of
subproblemsin manageablescales.Suchpartitioningcanbe per-
formed on either physicalor designflow aspects. For example,
a large net canbe physicallyclusteredinto smallernetsas in C-
tree.Suchpartitioningnotonly speedsuptheproblemsolvingpro-
cess,butalsoisolatessubproblemsaccordingto theirnaturessothat
scatteredtargetscanbe avoidedandthe optimizationcanbe well
focused.SeparatingtheSteinertreeconstructionfrom buffer inser-
tion procedureis an exampleof partitioningthe designflow. An
initial Steinertreeconstructioncanlimit thebuffer solutionsearch
alongan anticipatedlygooddirection. A directionalsearchis ob-
viously moreefficient thanthesimultaneousroutingandbuffer in-
sertionwhich is an implicitly brute-forcesearch,even thoughthe
searchmay intelligently prunesomeunnecessarycandidatesolu-
tions. This designflow partitioningis shown to beeffective in the
C-treework[1].

Whenconsideringhow to incorporateblockageconstraints,we
needto partitionit into theright phasein thedesignflow. Blockage
avoidanceis moreclosely tied to the requeston buffering candi-
datesthanto theSteinertreeconstruction,i.e.,it is difficult to know
whenit is worthwhileto make a Steinertreeavoid blockageswith-
outknowing wherebuffersarerequired.A full-blown simultaneous
approachis not efficient, while theseparateroutingandbuffer in-
sertionapproachas in [4] cannotadequatelyplan for blockages.
However, we canfind an approachsomewherein betweento the
middleof thesetwo approaches,by allowing thegivenSteinertree
to be dynamicallyadjustedduring van Ginneken’s algorithm ac-
cordingto requestsfor buffer blockageavoidance.Unlike the si-
multaneousapproaches[15,21] that explore the entiregrid graph
andresultin largecomplexity overhead,weseekasolutionthathas
time complexity no worsethanthatof theoriginal vanGinneken’s
algorithmsinceourgoalis to efficiently optimizethousandsof nets
in a design.

Our key ideais to explorejust a handfulof alternative buffer in-
sertionlocationsfor which the treetopologycanbe modified(as
opposedto an approachlike bufferedP-tree[15] which explores



a much larger space). Theselocationscorrespondto moving a
Steiner� nodeoutsideof a blockagewhich enablesadditionalop-
portunitiesfor decouplingandefficientdriving of long paths.

Buffer blockagesalong pathsthat do not containany Steiner
nodescanbemitigatedrelatively easilyby are-routingsubpathsto
avoid blockageswithout increasingwirelengthbeforecalling van
Ginneken’s algorithm.For example,Figure3 shows a threepin net
(a) beforeand(b) after this pre-processingstep. Observe thatone
canalwaysfix a givenSteinertopologyto avoid asmuchblockage
aspossiblewithout changingthetree’s delayor wirelengthproper-
ties(assumingzerodelay/resistanceviasandthesametechnology
parasiticsfor both thehorizontalandvertical layers).This typeof
solutioncanbe achieved by applying the work in [4] to obtaina
Steinertreethat hasL-shapesandZ-bendsthat minimize overlap
with blockagesbut no additionalwirelengthor tree topologyad-
justment.

(b)(a)

Figure 3: The path between the source and the Steiner node in
(a) can be rerouted to avoid buffer blockages as in (b).

Thedifficult buffer blockageproblemsoccurwhenaSteinernode
lies on top of blockagewhich eliminatesopportunitiesfor decou-
pling non-criticalpathsandfor driving long wiresdirectly. Hence,
our key idea is to considergeneratingalternative candidatesolu-
tionswithin van Ginneken’s algorithmby trying analternative lo-
cationoutsideof blockagefor thebranchingSteinernode.
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Figure 4: For a Steiner point � within a buffer blockage as in
(a), the three buffer locations closest to � can be found as in (b).

Givena Steinertree,weextendthevanGinneken’s algorithmso
that the treetopologyis adaptively adjustedduring thebottom-up
candidatesolutionpropagationprocess,i.e., buffer insertionis no
longerrestrictedto a fixedtopology. On theotherhand,thesetree
adjustmentsare basedon the requestfor buffer insertions. Dur-
ing thebottom-uppropagationprocess,if a Steinerpoint doesnot
overlapabuffer blockage,ouralgorithmproceedsjustlikevanGin-

neken’salgorithm.ThedifferenceoccurswhenaSteinerpointis lo-
catedwithin abuffer blockage,asdepictedin Figure4(a).To com-
pensatefor the inability to insertbuffers nearthe blocked Steiner
point, we seekanalternative unblocked locationnearbyto usein-
stead,in effect moving the Steinerpoint out of the blockage. In
our example,Figure4(b) shows theresultof searchingfor theun-
blocked point ��� closestto � on thepathbetween� andits parent
node �0� . The exact searchareais definedby the boundingbox
between� and � � .

Procedure: � iu� m ` �:� m i m ��� qCQ ���
�
Input: Currentnode� to beprocessed
Output: Candidatesolutionset W ���
� at �
Global: Steinertree H � # 5!IS�

Buffer library D 
A2�FC	05!F � 5�6;676 8
Rectangles@ 
A20� 	 5!�C�C5067676 8

1. If � is a sink
W ���
����2:� H�� 5 < ���
��5 = ���
�!� 8 , Return W ���
�

2. � / � left child nodeof �
W ��� / ��� � iu� m ` �:� m i m ��� qCQ ��� / �

3. W�/ � [ �C]C^S� W ��� / ��5!�
�
4. If � hasonly onechild

If � is not in � > @ , W9/ � k�m�m DJn9pjp%q �
� W�/ �� � n � q�W ]�� n �Nih]C� Q � W�/ � , Return W9/
5. � + � right child nodeof �
W ��� + �?� � iu� m ` �:� m i m ��� qCQ ��� + �

6. W + � [ �C]C^S� W ��� + ��5!�
�
7. W�vC&�shv�x � z q �C{ q � W9/ 5 W + �

If � is not in � > @
W9/ � kXm�m Don9pjp%q �
� W�/ � , W + � kXm�m Don9pjp%q �r� W + �
W9swv�x � z q ��{ q � W�/ 5 W + �

r1.Else
r2. �0�J� parent node of �
r3. If � � 
A�X��F���] <� 
q m 1 ] m q ���%5-� � 5 @ � is found
r4. W9/�t swv�x � k�m�m DJn9pjp%q �
� [ ��]C^J� W ��� / ��5!� � �!�
r5. W9+-t shv�x � kXm�m Don9pjp%q �r� [ �C]�^J� W ��� + ��5!� � �!�
r6. W9swv�x � z q ��{ q � W�/�t swv�x 5 W9+-t swv�x �
8. W ���
��� W9v�&�swv�x�K�W9swv�x
9. � � n � qCW ]�� n �Niu]�� Q � W ���
�!� , Return W ���
�

Figure 5: Core algorithm of RIATA.

Otheralternative candidatebuffer sites ���/ and ���+ canbealsobe
generatedby segmentingthepathbetween� andits two childnodes� / and � + . Thecandidatesolutionsetat � �/ is propagatedto both �
and � � , asarethe candidatesfrom � �+ . Then,oncethe candidates
for � and � � aregenerated,the candidatesareboth grown to their
potentialparentat ��� andthesetsof candidatesarereconvergedto
a singleset. We cantreat ��� asa phantomnodeof � in seekingof
unblockedpoints.Sincethepotentiallocationsfor � � arelimited to
alocal range,it is possiblethatnopossiblelocationexists.Thema-
jor reasonto limit thesearchrangeis to disallow theSteinerpoint
from moving sosignificantlythat it disruptsthegivenSteinertree
topology. For example,themoveof � doesnot forceanadjustment
on thelocationof �0� .

Notethatwestill considertheoriginalSteinerlocationandprop-
agatecandidatesup the treeaccordingto thegiventopology. This
schemeallows us to generatea setof additionalcandidatescorre-
spondingto thepossibility thattheSteinerpoint bemovedoutside
of the buffer blockage.Thus,our algorithmis guaranteedto per-
form at leastaswell astheoriginal vanGinnekenalgorithm.

To implementthisheuristicweneedto efficiently find analterna-



tive location ��� for anode� . Giventwo nodes� and ��� , andasetof
rectangles� @ 
A2���	�5-� � 5�67676 �CB 8 representingthebuffer blockages,if
node� is within a blockage� $?> @ , we needto find theunblocked
point which is theclosestto � within theboundingbox definedby� and ��� . If thereis no overlapbetweenany two buffer blockages,
all we needto do is to locatethe rectangle� $ that overlaps � ; the
unblocked point closestto � mustlie on the intersectionof � $ and
theboundingbox of � and �0� . If thesetof rectangles@ is stored
asaninterval tree[8],thedesiredrectangle� $ canbefoundin � �  �
time in theworst case.We let �X�9F���] <� 
q m 1 ] m q ���%5-�0�r5 @ � denote
theprocedurethatfindssuchanunblocked � � if oneexists.

We call our heuristicRIATA for RepeaterInsertionwith Adap-
tive Tree Adjustment(seeFigure 5). The enhancementsto van
Ginneken’s algorithm are shown in boldface; deleting the bold-
facestepsfrom thefigureleavesvanGinneken’soriginalalgorithm.
Note that this techniqueis only for theSteinerpointsthatoverlap
blockages.It is easyto modify any pointtopointconnectionamong
Steinernodesto overlap the minimum amountof blockagewith-
out increasingwirelengthbefore evercalling vanGinneken’s algo-
rithm (as in Figure3). Additional runtimeresultingfrom RIATA
versusvanGinneken’s algorithmcomesfrom searchingfor anun-
blockedpointbetweentwo nodesandadditionalcandidates.Given
a netwith � pins,a buffer library D and  rectanglesrepresenting
blockages,thenthecomplexity of RIATA is � � � D�� � � "��  � . Thus,
comparedto conventionalbuffer insertionalgorithm,only � ���  �
additionaloperationsareneededin our algorithmto avoid block-
ages.

4. EXPERIMENTAL RESULTS
Weimplementedall codein C++ andperformedexperimentson

a SUN Ultra-10 workstationwith 2GB memory. Without lossof
generality, we useonly onebuffer type in our buffer library and
sink polarity is not considered.For all experiments,we useC-tree
to generatethe initial timing-driven Steinertree,whenever oneis
required.

4.1 Experiments on large nets

Table 1: Slack comparison between RIATA and van Gin-
neken’s algorithm.

Net #pins #blk Slack(�9Q )
NoBf VG RIATA VGNB

n873 21 6 -867 110 325 542
n189 30 15 -1419 344 442 540
n786 33 15 -848 -479 6 75
n870 44 16 -2835 -98 80 144
big1 64 7 -214 733 879 1044
big2 80 7 -1560 -567 -198 -41
big3 89 21 -798 1070 1329 1575

We obtainedseven large netsfrom industrial designsandgen-
eratebuffer blockagesarbitrarily. The numberof pins andbuffer
blockagesfor eachnetarelisted in column2 and3 in Table1, re-
spectively. In our experiments,we comparethetreeperformances
of thefollowing approachestogetherwith RMP:

Z NoBf: C-treewithout any buffer insertion, which gives a
baselinefor comparison.

Z VG: van Ginneken’s algorithm whereblockageconstraints
areobeyed by labelingnodesthat overlapblockagesas in-
feasible. For every wire segmentpartially containedwithin

a blockage,anadditionalbuffer insertionlocationis consid-
eredon thepointwherethewire andblockageintersect.

Z RIATA: ouralgorithmthatadaptively adjustsVG to consider
alternative buffer insertionlocations.

Z VGNB: vanGinneken’s algorithmon C-treeignoringbuffer
blockagescompletely. This servesasa typeof crudeupper
boundonhow well theotherapproachesarehandlingblock-
ages.

Table 2: Resource comparisons. The number of inserted
buffers is denoted as b.

Net VG RIATA VGNB
b CPU b wire CPU b wire CPU

n873 3 0.16 3 5034 0.24 4 4750 0.60
n189 5 0.54 5 5846 0.87 6 5843 10.94
n786 1 0.41 3 5319 0.70 4 5318 1.79
n870 3 0.85 4 4992 1.10 9 4764 2.67
big1 7 0.87 8 9431 1.26 6 9407 4.92
big2 6 0.99 6 12576 1.55 13 12448 20.46
big3 6 2.84 9 20266 6.57 7 19669 63.45

Table 1 presentsresultsfrom theseexperiments. We observe
the following from the maximumslack results. First, buffer in-
sertionproves to be a worthwhile operation,asall threemethods
significantly improve on the solutionNoBf, which hasno buffer-
ing. Second,in all cases,RIATA alsoobtainsa significantlybetter
resultthanVG which shows thatconsideringtheadditionalcandi-
datesolutionsdo make a significantdifference.Finally, mostRI-
ATA solutionsarealmostasgoodasVGNB for which blockages
areignored.

In additionto timing performance,we show majorresourceuti-
lization (total buffers,wirelengthandCPUtime in seconds)in Ta-
ble 2. RIATA usesslightly morebuffersthanVG, but slightly less
thanVGNB. Also, RIATA doesnotsignificantlyincreasethewire-
lengthof thelow wirelengthVG solutions.Not unexpectedly, there
is anincreasein CPUtime of RIATA versusVG. However, VGNB
usesquiteabit moreCPUtime thanevenRIATA sinceit hasmany
morepotentialbuffer insertionlocationsto exploresinceblockages
areignored. This shows that indeed,RIATA is only examininga
“handful” of alternative locations.

4.2 Comparisons with RMP
Our next setof experimentscomparesRIATA with theRMP al-

gorithm[7], sincethetwo approachessharesimilarproblemformu-
lations.Weobtainedtheexecutableof RMPfrom theauthorsof [7].
As RMP is designedfor relatively smallnets,we performcompar-
isonson setsof industrialnetswith fewer sinksthanthoseconsid-
eredin thepreviousexperiments.Werandomlygenerateblockages
andthenconstructthecorrespondingextendedHanangrid for each
testcase.In orderto compareto RMP’s formulation,we intention-
ally marked somelegal candidatebuffer siteson the Hanangrid
asillegal to reducethesolutionspacesinceotherwiseRMPcannot
completein a reasonableamountof time. Comparisonsfor RIATA
andRMP bothusethesamesetof possiblebuffer locations.Com-
parisonsgiving slackandresourceutilization areshown in Table
3.

Not surprisingly, we observe that RMP typically gives better
slackresultsthanthatof RIATA thoughnever by morethan72 ps.
RIATA actuallyoutperformsRMPby 223psfor thecasen730and
even outperformsVGNB for this instance.We speculatethe rea-
sonis thatby finding analternative insertionpoint RIATA actually



Table 3: Comparison between C-tree+RIATA and RMP. The number of pins for each net is #p and the number of legal buffer sites
is #s.

Net #p #s Slack(�9Q ) # buf wirelength CPU(sec)
NoBf RIATA VGNB RMP RIATA RMP RIATA RMP RIATA RMP

n071 8 19 183 467 574 539 3 5 5868 6422 0.06 10.49
m0s5 8 13 22 357 416 365 3 5 7043 10207 0.03 8.07
n313 9 33 188 469 513 529 3 5 5860 10876 0.09 0.79
n730 9 15 673 961 855 738 3 3 2348 2491 0.04 19.60
pnt3 10 19 687 939 1004 1011 5 6 7250 15093 0.09 11.72

m1s9 10 17 369 747 790 818 3 6 4608 6554 0.05 283.07
n905 11 12 284 783 851 843 3 4 3026 3379 0.09 109.35
n702 11 17 -1095 151 164 202 2 3 3583 4294 0.07 2645.26
n866 12 26 -17 477 575 523 4 7 7730 10587 0.09 1083.04

improvestheoriginalperformance-drivenSteinertreeconstruction.
SinceRIATA searchesa muchsmallerspacethanRMP it usesor-
dersof magnitudelessCPUtime. Clearly, RMP cannotbeapplied
to thousandsof netsin a physicalsynthesistype of optimization.
In addition,RMPactuallyusesmorebuffersandsignificantlymore
overall wirelengthaswell.

5. CONCLUSION
We proposeRIATA, an adaptive treeadjustmenttechniquethat

is integrateddirectly into van Ginneken’s classicbuffer insertion
algorithmto handlebuffer blockageconstraints.Our experiments
show thatthis fairly simpletechniquecangivesignificantimprove-
mentsover vanGinneken’s original algorithmwith marginal CPU
cost. Further, it is muchfasterandnearlyaseffective astheRMP
approach,whichsearchesamuchlargersolutionspace.Oneof the
keys to RIATA is that it doesnot significantlyperturbtheexisting
Steinertopology while generatingalternative Steinerpoints. We
believe thatotherschemesfor carefullyfindingadditionalpotential
locationsfor buffers may be ableto further improve performance
without significantlyimpactingruntime. Our futurework seeksto
identify suchtechniques.
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