
An Effective Congestion Driven Placement Framework

Ulrich Brenner
Research Institute for Discrete Mathematics

University of Bonn
Germany

brenner@or.uni-bonn.de

André Rohe
Research Institute for Discrete Mathematics

University of Bonn
Germany

rohe@or.uni-bonn.de

ABSTRACT
We present a fast but reliable way to detect routing criticalities in
VLSI chips. In addition, we show how this congestion estima-
tion can be incorporated into a partitioning based placement algo-
rithm. Different to previous approaches, we do not rerun parts of
the placement algorithm or apply a post-placement optimization,
but we use our congestion estimator for a dynamic avoidance of
routability problems in one single run of the placement algorithm.
Computational experiments on chips with up to 1,300,000 cells are
presented: The framework reduces the usage of the most critical
routing edges by 9.0% on average, the running time increase for
the placement is about 8.7%. However, due to the smaller conges-
tion, the running time of routing tools can be decreased drastically,
so the total time for placement and (global) routing is decreased by
47% on average.

1. INTRODUCTION
During the solution of placement problems, two main goals have

to be considered: First, we have to insure the routability of the nets.
Second, we want to minimize the cycle time of the chip, so sets of
cells that are connected by timing critical nets have to be placed
near to each other.

Most of the placement algorithms try to incorporate these dif-
ferent goals in one optimization function which estimates the to-
tal wire-length that is necessary to route all nets. In such an ap-
proach, timing can be reflected by introducing net-weights, i.e. the
minimization function is the weighted sum of the (estimated) wire-
lengths where timing critical nets get a high weight.

By the minimization of the weighted wire-length it is typically
possible to get good results in terms of timing; short connections
are in general also advantageous for routing. However, placements
with short net-lengths will often be quite dense, which can cause lo-
cal routing problems. If such congested regions are detected, a new
placement of the cells in these (and maybe other) regions is neces-
sary. This can lead to several iterations of the placement phase to
get a routable placement. For small designs, such iterations may be
acceptable, but with the growing complexity of chips (state-of-the-
art chips have several millions of movable objects) routing prob-
lems cannot be handled with this iterative method in reasonable
time. Therefore, it is desirable to detect and to reduce congested
regions during the placement process.

In the last couple of years several new approaches have been
developed in order to take congestion during the placement into
consideration. Many algorithms use a very simple version of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’02, April 7-10, 2002, San Diego, California, USA.
Copyright 2002 ACM 1-58113-460-6/02/0004 ...$5.00.

probabilistic global router to estimate the congestion in a region:
The chip area is divided into small tiles, for each tile border the
expected number of wires routed through this border is compared
to the number of free routing tracks that cross the border. For ex-
ample, the approaches in [3], [5], [7], [8], and [23] follow this idea.
The algorithms differ mainly in the way they handle multi-terminal
nets and blockages and in their probabilistic distributions for the
interconnections. A probabilistic routing estimator of this type will
also be an important part of our congestion estimation. Other meth-
ods to detect congestion are described in [22], where Rent’s Rule is
used to estimate the peak congestion value and regional congestions
on a chip, and in [18], where a normal distribution of the number
of nets per tile is assumed.

Most authors describe not only ideas to detect congestion, but
also propose ways to reduce it. Often congestion reduction is done
in detailed placement or in a post-placement-optimization (see [16],
[17], [18], [19], and [23]). Other authors incorporate the goal of
congestion reduction into the global placement: In [10], it is shown
how quadratic placement can be modified in order to avoid routing
problems; in [9], the authors describe a partitioning approach that
works similar to Min-Cut partitioning, but has minimization of con-
gestion as a goal. The partitioning based algorithm in [5] increases
the estimated area consumption after a global placement for cells in
congested regions and then repeats the last levels of the partitioning
while considering these modified cell sizes. There have also been
experiments where congestion is used as an optimization function
for simulated annealing (see [3], [16], and [19]), but in [16] and
[19] it is shown that this approach does not lead to an improvement
of routability. The best congestion results with simulated annealing
are achieved by using the netlength as the optimization function.

In this paper, we will introduce a congestion driven placement
framework that avoids routing congestion during placement. We
present the first complete framework which includes congestion is-
sues into placement on industry designs with more than one million
circuits. We achieved this by using of a fast, but reliable way to
estimate the routing criticality of a region. Since this estimation is
quite accurrate even in early stages of the placement process, we do
not have to use a (local) post-placement optimization and we do not
have to repeat the placement run or parts of it to reduce congestion.
Therefore, our approach is able to improve routability significantly
without a large increase of running time.

The rest of the paper is organised as follows: In Section 2, we
give an introduction to the placement problem. Section 3 contains
a description of our method to detect congested areas. In Section 4,
we describe how our congestion estimator can be incorporated into
a placement tool and how we can avoid routing criticalities during
the placement. Experimental tests with our algorithm are described
in Section 5.

2. PRELIMINARIES

2.1 Notations and Description of the Problem
We will now give a short introduction into our terminology for

placement and routing. A very good overview over the field of
VLSI physical design is given in the books of Sait and Youssef [11],

Sarrafzadeh and Wong [12], and Sherwani [14].
A chip consists of a set

�
of cells, a set � of nets and a rectan-

gular chip area � . Each cell ��� �
is given as a rectangular box of

certain size ���	��

� �����	��
������	��
 , and each net connects a subset of
the cells. The connection points for nets to the cells are called pins.
Some of the cells may be preplaced, and some parts of � may be
blocked for the placement.

The task in placement is to find a location for each cell such that
all cells are completely contained in � and no two cells intersect.
Since the total size of cells in state-of-the-art application specific
integrated circuits (ASICs) is typically less than 80% of the place-
ment area, it is quite easy to find a valid placement solution. The
main problem is to find a placement that is routable and meets the
timing constraints. (timing critical nets have to be short).

In the routing, the pins of each net have to be connected in a
three-dimensional routing grid graph. Since this graph is extremely
large (it can contain several billions of nodes, see Section 5), most
routers work in two steps. First, the nets are connected in a very
coarse version of the routing grid. The result of this global routing
gives a quite accurate estimation of the routability of the chip; it
also serves a guideline for the local router which generates a de-
tailed list of wires for each net.

Both the placement and the routing problem include further con-
straints in practice. For example, in placement, the cells have to be
placed in cell rows (to match the power grid). In routing, minimum
distance constraints for wires and vias have to be considered. Other
rules exist, we will not go into further detail on them.

2.2 Basic Structure of Placement Algorithms
Many placement algorithms (e.g. [6], [15], [20]) work with a re-

cursive partitioning approach: Given a rectangular area � and a set� ����
 of cells, the area � is divided by a horizontal and a vertical
cutline into four parts ������������� �"! of (approximately) equal size,
and

� ���#
 is divided into four parts
� �����$
$��������� � ���"!%
 such that

the cells in
� ���"&'
 fit into the area ��& (for ()�+*,���������.-). The idea

is to place the cells of the set
� ����&/
 in the region ��& with respect

to certain size constraints given by the circuits �0� � ����
 and the
regions � � ��������� � ! . For a region � let �1���#
2�435���#
7698:����
 , where35����
 is the free area in � (i.e. the size of � minus the total size of
all blockages and preplaced cells in �) and 8:���#
 is a factor (with;4< 8:���#
>=?*) that specifies the maximum placement density
we allow in region � (often 8:���#
 is identical for all regions of the
chip). So, �1���#
 is an upper bound for the total size of movable cells
that can be placed within � . Based on this, the input and output of
the placement partitioning problem are defined as follows:

Input: A set of cells
� ���#
 with a size �1�	��
 for each ��� � ���#
 and

a set of four numbers �1�����@
$���������@�1����!�
 with A !&CB � �1��� &

DA�E$F1GIH9JLK �1�	��
 .
Output: A partition of

� ����
 into disjoint sets
� ��� �
$��������� � ��� !

such that AME@F�G�HNJ:O/KP���	��

=��1��� &
 for each ()�RQ�*S���������.-�T .

Note that a solution of this problem does not necessarily exist and
that it is an NP-complete problem to decide if a solution exists.
So, if necessary, we relax the problem by scaling the values �1��� &

linearly by a factor UWV4* . Here,

UW� � XIYE$F1G �1�	��
LZ\[^]W_%`E@F�G�HNJ�K �1�	��
'acb X !Y &CB � �1���ed7
'a
is sufficient to guarantee that a solution exists and can be found in
linear time.

The basic idea of our placement algorithm is to call the parti-
tioning routine in a recursive way, i.e. to start with �f� �g� and� ����
e� � �

and call the routine again for the instances ��� & � � ��� &
.

with (e�h*,���������.- . The recursion stops when the number of cells
in a region is small enough. Other authors (e.g. [2]) follow a sim-
ilar approach, but just bipartition the set of cells recursively. After
this global placement, the cells are legalised in the so-called de-
tailed placement phase. In this paper, we just consider the global
placement step.

Solving this problem for all regions and all sets of cells is called
a level of the placement algorithm. Some partitioning based place-
ment algorithms use local optimization steps after each level that
allow circuits to leave the region they are currently assigned to. We
will describe an example of such a local optimization (the reparti-
tioning) later.

2.3 Goals
For quite a long time, minimizing the total wire-length of a chip

has been the most important goal for placement algorithms. Here,
the wire-length is typically measured as the sum of the lengths of
a Steiner tree approximation for each net. As mentioned above,
placements that are optimized with this goal tend to be quite dense
and therefore to have routing problems. It might also happen that
the placement is routable, but some nets have to be routed with
large detours, which may affect the timing. If possible, lowering
the maximum allowed placement density for the whole chip area
(i.e. spreading all cells) could reduce the routability problems, but
will normally lead to worse timing results. One wants to lower the
maximum density 8:���#
 for routing critical regions � only, but, of
course, these regions are in general not known in advance.

The main goal of this work is to describe a fast framework for the
dynamic location and removal of routing problems during place-
ment. We will see that routing problems often have a very local
structure and can be avoided by a loosening of the placement in
congested regions.

The only requirement for the method we describe is a partition-
ing algorithm as described above, but it should be noted that the
ideas of our framework can be applied to other placement ideas
(e.g. force directed placement [4] or simulated annealing [13],[21])
as well. The running time of the underlying placement algorithm
will hardly increase with our framework; the extra work we need is
a (very fast) congestion estimation and a few additional repartition-
ing steps (as described later).

3. CONGESTION ANALYSIS
In this section we will describe a measurement for the congestion

of a placement as it appears during the placement algorithm. Given
a chip which is partitioned into ij�ki regions (forming a ��ilZm*%
����ilZn*%
 -placement-grid), we calculate a pin density for each region
and a congestion estimation for each edge in the dual graph of the
placement grid.

The core part of our algorithm is an estimation for the global
routing of the current placement. Global routing tools divide the
chip into a number of tiles (bins) and calculate a congestion esti-
mation for the chip as well as a rough topology for each net. The
main drawback of existing global routing tools is the running time.
A global router using sophisticated methods based on multicom-
modity flows [1] might take 24h or more on a chip with 500,000
nets. Though just a congestion estimation with a global router does
not take that long, it is in general too slow because we have to call
such an estimator several times during the placement as a subrou-
tine. Our simplified probabilistic global router tries to imitate a real
router in the following way:

(a) The current status of the placement grid is used as the global
routing partition. The global routing grid is defined as the
dual of this partition (See, for example, Figure 1(a) that shows
the placement grid, the dotted segments in Figure 1(b) show
the routing grid).

(b) Multi-terminal nets are split into a set of two-terminal nets:
We calculate a Steiner tree for all nets om�R� , each connec-
tion between two pins or Steiner points in this Steiner tree is
treated as a separate two-point connection (see Figure 1(b)).

(c) For the two-point connections in the Steiner tree of net o , we
calculate a probability p:qL��r7
 of each edge r in the dual graph
of the placement grid. This method is similar to the algo-
rithms proposed in [7] and [8]. We calculate the set s of all
length-optimal paths with at most two bends (vias) between
the points. In [7], also shortest connections with arbitrarily

0.2, 0.4, 0.6

0.2, 0.4, 0.6
1

1

1

0.2

0.40.2

0.20.2

0.2

0.4

0.2

vertical edges

horizontal edges

0.6 0.4 0.2

0.2

0.60.40.2

0.2 0.2

1

(b) Steiner tree and routing grid(a) placement grid (c) probabilistic weights

Figure 1: A chip with the placement grid and its dual graph and the expectation values for the routing of a net.

many vias are examined (where larger numbers of vias get
lower probabilities), but the restriction to two bends models
quite well what a real router does. Based on this, p�qL��r7
 is set
to the number of paths in s that use r divided by the cardi-
nality of s . In Figure 1(c), three two-point connections are
considered. The connections from the Steiner point to the
right and the bottom terminal are uniquely optimal, we getp:q���r7
 �g* for these edges. The connection of the left ter-
minal with the Steiner point can be realised by five different
paths with at most two vias. The usage probabilities for the
vertical routing edges are shown in bold, the other probabili-
ties with the normal font.

(d) For each edge r�� � ���#
 in the dual of the placement grid, we
calculate its expected usage p���r7
k� � A q F�� p q ��rS
 and the

capacity value ���%p���r7
 . The fraction ���7o	����rS
 � �

H��.KE�

H��.K is

our estimated congestion on r . Note that ���%p���r7
 depends (via
a user parameter) on the number of routing channels of the
three-dimensional routing grid that cross r , but not on rout-
ing blockages due to preplaced cells. Such preplaced macro
cells may block some routing layers, but in our experiments
the areas covered by such macros were not routing critical
and our estimation was accurrate enough without consider-
ing blockages. Of course, if it turns out to be useful, it would
be possible to consider routing obstacles in our capacity es-
timation.

The measurement described above just considers the congestion
on the edges of the (quite coarse) placement grid that is used as a
global routing grid. Nets that are completely contained in one tile
of the placement partition are not considered at all. In order to take
also routability problems inside the tiles into account, we use the
pin density p (�o - 8Pr�o5�1���#
 inside a region � as a second measure-
ment. The number p (/o - 8Pr�o �1���#
 is calculated straight-forward:
Given the cells

� ���#
 inside the region, we divide the total num-
ber of pins in

� ���#
 by the number of routing grid nodes in � .

4. USAGE OF CONGESTION DATA

4.1 Calculation of Inflation Values
Once we have found a congested (i.e. routing critical) region dur-

ing the placement process, we have to use this knowledge to remove
or at least reduce the congestion in this region. We will show how
our estimation can be used in the placement tool BonnPlace. Bonn-
Place is a partitioning based algorithm which, during a run, always
stores cell positions that are computed by minimizing a quadratic
function which models the wire-length. These current cell posi-
tions are also used to compute the solution in the partitioning steps.
For a description of the BonnPlace algorithm, see [15]. In our ap-
proach, we follow the strategy of many chip designers and try to
use a lowered density for groups of cells that tend to create rout-
ing problems. We handle such groups of cells by inflating them,
i.e. increasing their estimated area usage in the partitioning step.
This means that we do not use �1�	��
 (� ���	��
)6,���	��
) as the size of
the cell � in this step, but a higher value � *�Z��,�	��
.
 6 �1�	��
 (with

�,�	��
jD ;
). When partitioning the set

� ���#
 (for a region �) into
subsets

� �����$
$��������� � ����!%
 , we have to insure that the conditionA E$F1GIH9J O K � *)Z��,�	��
.
 6��1�	��

= �1��� &
 is fulfilled (for (I� *,���������.-).
The numbers �,�	��
 depend on an input parameter �hD ;

that
specifies how much we want to allow the algorithm to increase the
cell sizes. Before the placement starts, each cell � gets an initial
value �S�	��
 that is proportional to the number of pins of � divided
by �1�	��
 . This is motivated by the observation that small cells with
many pins often cause routing problems if they are placed densely.
The initial numbers �S�	��
 are scaled with the parameter � such thatA�E$F1G �,�	��
�6 �1�	��
2��� ! A�E@F�G �1�	��
 . This insures that the total size of
the cells grows initially by a factor of � *7Z � !
 . During the placement
run, the number �S�	��
 is updated according to the congestion estima-
tion of the region � the cell � is currently placed in. Let r � ���������.r !
be the four edges of the global routing grid that are incident to � .
If ���7o�����r &

D * we increase �,�	��
 by]���� Q�*S��� �	���So	����r &
��n*%
 T
6 �
(for (n� *S��������� -). This way, each of the edges can cause an
increment of �S�	��
 by at most � . This maximum is attained for���7o	����r &
�D+*S� ! . The number �,�	��
 is also increased by a adding a
number proportional to p (�o - 8Pr�o � (but at most �), if p (�o - 8Pr�o5� is
bigger than some fixed threshold value. Therefore, it is insured that
� is an upper bound for the total increment of �,�	��
 in each level,
and that the increment due to congested global routing edges is the
dominating factor. A typical value for � is

; � � , all our experiments
were made with this value.

Additionally, we also decrease the numbers �S�	��
 if both the con-
gestion estimation on the routing grid edges and the pin density are
far away from critical numbers. In this case, the number subtracted
from �S�	��
 is also proportional to � . This insures that unnecessar-
liy high values �S�	��
 (especially the initial values) can be corrected
during the placement run.

4.2 Spreading inflated cells
Changing the estimated area usage for cells during the placement

run would not be useful if we could not find a placement that re-
spects these larger cell sizes. One way to find such a placement is
to calculate (but not use) the inflating numbers during a first place-
ment run and then use them in a post-placement optimization or in
a new placement run (that may consist only of the last partitioning
steps, see [5]). The new feature of our approach is that we do not
have to repeat parts of the placement, but we use the repartitioning
method to move cells out of regions that are too full (with respect
to the sizes � *�Z"�S�	��
.
 6P���	��
). Repartitioning is a subroutine of
BonnPlace that is called after a partitioning level and tries to find
local improvements of the placement. It considers � �#� -windows,
i.e. sets of four pairwise adjacent regions � � ��������� � ! that form a
rectangle � � � �%$ 6�6�6 $ � ! . The subroutine computes a new
partitioning for this region and new positions for the cells in the re-
gion. It accepts the new partitioning if the weighted netlength has
decreased. This is done for all �j�&� -windows. We repeatedly call
this routine (with different orders of the ���'� -windows) as long as
it yields a reasonable improvement of the wire-length. Repartition-
ing enables the cells to leave the region they are currently placed
in. While this method was invented to improve the netlength of a
placement, we use it in addition to reduce crowded regions. In our

Chip
�
Cells

� �
Nets

�
Density Grid-size Rel.

ibm1 72496 73273 86.0% ���������
	��
��	��
� 2000
ibm2 72940 73822 30.9% ���
�����
���
�����
� 1998
ibm3 412505 426689 57.5% �
�����
���
�����
�����
� 2001
ibm4 681987 706499 57.7% �������
������	��
�����
� 1999
ibm5 1336370 1390333 53.6% �
	��������
��	��������
� 2001

Table 1: The chips used for benchmarking.

repartitioning step, we consider regions that are too full, but have
neighbour regions with some free capacity. The new partitioning
is accepted if the balance of the regions is improved (i.e. the over-
crowding is reduced), even if the netlength gets slightly worse. So
the optimization function is a weighted sum of the maximum over-
crowding of a region and the netlength. We repeat this until there is
no crowded region with a neighbour region that contains a certain
amount of free space.

Since we decrease the estimated area usage for cells in non-
critical regions and we increase the maximal allowed density 8:���#

for every region � in each placement level a little bit (about 1% per
level), we normally have enough free capacity to move cells away
from crowded regions.

5. COMPUTATIONAL RESULTS
The congestion framework we introduced in the previous sec-

tions was implemented using the placement program BonnPlace as
a basis. In this section, we will evaluate the quality of the con-
gestion estimation and the performance of the congestion driven
BonnPlace. We will compare the results of standard and conges-
tion driven BonnPlace on five different recent designs from IBM
Microelectronics. The sizes of the designs are between 70,000 and
1,300,000 cells, an overview can be found in Table 1. The column
”Density” shows the fraction of the total size of all cells divided by
the size of the chip area. In the column ”Rel.” the year the chip was
released is given.

In order to test the accuracy of our congestion estimation and
to analyse the routability of the placements, we used the programs
HDP and BonnGlobal. HDP is a tool developed by IBM to get
a fast rough estimation of the routing criticality of a placement,
while BonnGlobal is a global router based on a multicommodity
flow algorithm [1]. All of our runs were performed on an IBM 680
with 600Mhz RS-IV processors.

5.1 Congestion analysis vs. Global Routing
As a first step, we will evaluate the quality of our congestion

estimation routine on the ibm1 design by comparing the output of
different global routers with our congestion estimator. In Figure 2,
we show a placement produced by congestion driven BonnPlace
(colored by the inflation values) and three different congestion es-
timations. It can be seen nicely that the very fast congestion es-
timation used by BonnPlace matches the output of the two global
routers quite well: The main congestion problem is in the middle of
the chip. All other chips of the test suite show a similar behaviour:
The important congested spots are identified by our congestion es-
timator, sometimes the tool is a little bit too pessimistic. While the
results are quite similar, the running times of the tools differ a lot:
For our largest test-case ibm5, the BonnGlobal router runs nearly
30 hours, the HDP router three hours and our internal congestion
estimator needs less than a minute.

5.2 Congestion Driven Placement
Finally, we will analyse the behaviour of congestion driven Bonn-

Place compared to standard BonnPlace.
In Table 2, we give an overview over the placement results we

get on our five test-cases. Each chip was placed without and with
the congestion driven framework. Despite the change to congestion
driven BonnPlace, the parameters used for BonnPlace (and for the
routers) were the same for the two placements on each chip. The
first two columns of Table 2 show the running time (CPU) and the
bounding box netlength (Length) of the standard BonnPlace runs.

Std. BonnPlace Cong. Driven BonnPlaceChip
CPU Length CPU Length Blow

ibm1 0:23 h 7.2 m 0:26 h 7.4 m 10.2%
ibm2 0:26 h 7.9 m 0:27 h 9.0 m 6.6%
ibm3 3:50 h 134 m 4:39 h 142 m 20.1%
ibm4 7:08 h 241 m 7:24 h 270 m 20.2%
ibm5 16:10 h 375 m 16:37 h 406 m 57.8%

Mean diff +8.7% +8.5%

Table 2: Results of the different placement runs.

The next two columns give the same numbers for the congestion
driven BonnPlace, and the last column (Blow) the increase of the
cell size, i.e. the fraction of A E$F1G �,�	��
267�1�	��
 and A E@F�Gk�1�	��
 . We
see that the value varies quite a bit on the different chips. The
main reason for this is that the congestion parameters on all chips
were the same although the routing criticalities of the chips differed
a lot. The last row of the table contains the average differences
between the standard and congestion driven runs (computed by the
geometric mean): In the congestion driven version the CPU-time
increases by about 8.7% and the bounding box netlength by about
8.5% on average.

Table 3 contains the results of the routing runs based on the
placements of Table 2. The numbers in the columns ”HDP” are
the average congestions of the most congested 20% of the nets,
computed by HDP. Experience shows that a value below 80 cor-
responds to a routable placement, values above 85 are seldomly
routable. The other numbers we give are calculated with Bonn-
Global. In the columns labeled with ”Ov”, we show the total num-
ber of overloads, ”CPU” gives the running time of BonnGlobal and
”Length” the sum of the Steiner trees for all nets that were calcu-
lated by BonnGlobal. Again, the last row of the table contains the
average differences between the results for standard and conges-
tion driven BonnPlace. The table shows the effect of the congestion
framework:

(a) The HDP congestion value can be reduced significantly on each
chip. This number is not only important for routability: With
uncongested placements, it is a lot easier to achieve a routing
without timing violations. It is also possible to spread the
wires and increase the yield in production.

(b) All placements produce BonnGlobal overloads without the con-
gestion framework. Figure 3 shows a comparison of the Bon-
nGlobal congestion map on ibm1. We see a black, unroutable
region in Figure 3(a) which is changed in the congestion
driven run to a dark grey region in (b).

(c) The running time of BonnGlobal is reduced significantly. It
should be noted that on highly congested designs, the run-
ning time of BonnGlobal explodes (see ibm3), but even with-
out considering this test-case we see a huge CPU-time im-
provement in routing critical designs.

(d) Although the BonnPlace bounding box net-length increases us-
ing the congestion driven BonnPlace, the length of the Steiner
trees decreases on average. This is due to the fact that in con-
gested designs more detours are needed to reduce overloads.

To summarize, we can see that the routability of a placement can
be significantly improved using the congestion driven framework.
Note that, although the time for placement is increased by 8.7%, the
total CPU-time for placement and global routing is decreased by
about 47% on average. Additional experiments indicate that also
the running time of local routing decreases using the congestion
driven BonnPlace.

Finally, Table 4 shows that it is quite hard to achieve routable
placements by just changing the parameter 8:���#
 (which is con-
stant for all regions of the chip in our tests). On our two smallest
test-cases (ibm1 and ibm2), we show the effect of a change of this
parameter.

(c) HDP global router

(a) placement with blow up values (b) BonnPlace congestion estimation

(d) BonnGlobal router

Figure 2: Comparison of global routings on a placement produced by congestion driven BonnPlace. (a) is the placement, where cells with high
values of

�������
are colored darker (black means

�������	��

). (b) shows the estimation of BonnPlace, (c) and (d) the global routing calculated with HDP

and BonnGlobal. Dark colors correspond here to bigger congestion. The differences between our congestion estimation and the HDP router in the
upper part of the chip are due to a big preplaced cell. There, the HDP router is (because of a too conservative estimation of the routing capacities on
this cell) too pessimistic, as the comparison to the more accurate BonnGlobal router shows.

Standard BonnPlace Congestion Driven BonnPlace
Chip BonnGlobal BonnGlobalHDP

Ov CPU Length
HDP

Ov CPU Length

ibm1 81.7 8374 0:15 h 9.0 m 75.4 0 0:05 h 7.5 m
ibm2 82.7 7000 0:19 h 11.5 m 75.4 0 0:05 h 10.1 m
ibm3 88.8 78111 47:36 h 162 m 77.3 0 4:51 h 164 m
ibm4 82.8 972 7:18 h 324 m 75.2 0 2:48 h 326 m
ibm5 89.9 14382 70:57 h 512 m 84.2 0 29:48 h 527 m

Mean diff -9.0% -73.0% -5.2%

Table 3: Routing results for the different placements.

Standard BonnPlace Congestion Driven BonnPlace
Chip d(R) BonnGlobal BonnGlobalHDP

Ov CPU Length
HDP

Ov CPU Length

-10% 78.9 4463 0:19 h 8.4 m 75.5 0 0:05 h 7.5 m
ibm1 normal 81.7 8374 0:15 h 9.0 m 75.4 0 0:05 h 7.5 m

+10% 84.1 17329 0:12 h 9.1 m 75.8 7 0:06 h 7.4 m

-20% 75.5 0 0:05 h 10.3 m 72.6 0 0:05 h 11.8 m
ibm2 -10% 80.3 1235 0:13 h 10.9 m 73.8 0 0:04 h 10.9 m

normal 82.7 7000 0:19 h 11.5 m 75.4 0 0:05 h 10.1 m
+10% 87.4 19929 0:25 h 11.9 m 81.2 3358 0:15 h 11.5 m

Table 4: Effect of � ��
�� on the chips ibm1 and ibm2.

(a) normal BonnPlace (b) congestion driven BonnPlace

Figure 3: Comparison of BonnGlobal congestion estimations on ibm1:
the normal BonnPlace placement (a) is not routable (the black regions
are unroutable), the congestion driven BonnPlace creates a routable
placement.

The chip ibm1 has a very high density, it is impossible to achieve
a routable design by just changing 8:���#
 . On the other hand, the
congestion driven BonnPlace either produces a routable or an al-
most routable placement (seven overloads remain if the 8:���#
 is
increased by 10%). On ibm2, the behaviour is slightly different:
Again, all congestion driven versions show a better routability than
the corresponding normal BonnPlace versions. The density of ibm2
is very low, so it is possible to reduce 8:���#
 by 20%. With a 20%
reduction of 8:���#
 , we are able to achieve a routable design with
the standard BonnPlace, but the netlength increases.

In general, one can see that with congestion driven BonnPlace it
is much easier to produce a routable placement. It is hardly neces-
sary to try different values of 8:����
 . This helps to avoid unnecessary
placement runs in the early design stage.

The authors would like to thank Jürgen Koehl and Jens Vygen for
their helpful comments during the development of this algorithm.

6. REFERENCES
[1] C. Albrecht. Global routing by new approximation algorithms for

multicommodity flow. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20:622–632, 2001.

[2] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can recursive
bisection alone produce routable placements? In DAC-00, pages
477–482, 2000.

[3] C.-L. E. Cheng. RISA: Accurate and efficient placement routability
modeling. In ICCAD-94, pages 690–697. IEEE Computer Society
Press, 1994.

[4] H. Eisenmann and F. Johannes. Generic global placement and
floorplanning. In DAC-98, pages 269–274, 1998.

[5] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu, and W. H. Kao. A
new congestion-driven placement algorithm based on cell inflation.
In Proceedings on the 2001 conference on Asia and South Pacific
design automation, pages 605–608. ACMPress, 2001.

[6] D. Huang and A. Kahng. Partitioning-based standard-cell global
placement with an exact objective, 1997.

[7] P. Hung and M. J. Flynn. Stochastic congestion model for VLSI
systems. Technical Report CSL-TR-97-737, Stanford University.

[8] J. Lou, S. Krishnamoorthy, and H. S. Sheng. Estimating routing
congestion using probabilistic analysis. In ISPD-01, pages 112–117.
ACMPress, 2001.

[9] S. Mayrhofer and U. Lauther. Congestion-driven placement using a
new multi-partitioning heuristic. In ICCAD-90, pages 332–335. IEEE
Computer Society Press, 1990.

[10] Phiroze N. Parakh, Richard B. Brown, and Karem A. Sakallah.
Congestion driven quadratic placement. In DAC-98, pages 275–278.
ACM/IEEE, 1998.

[11] S.M. Sait and H. Youssef. VLSI Physical Design Automation. World
Scientific, 1999.

[12] M. Sarrafzadeh and C.K. Wong. An Introduction to VLSI Physical
Design. McGraw-Hill, 1996.

[13] C. Sechen. VLSI Placement and Global Routing Using Simulated
Annealing. Kluwer, 1988.

[14] N. Sherwani. Algorithms for VLSI Physical Design Automation - 3rd
Edition. Kluwer Academic Publishers, 1998.

[15] J. Vygen. Algorithms for large-scale flat placement. In DAC-97,
pages 746–751. ACM Press, 1997.

[16] M. Wang and M. Sarrafzadeh. On the behavior of congestion
minimization during placement. In ISPD-99, pages 145–150. ACM
Press, 1999.

[17] M. Wang and M. Sarrafzadeh. Modeling and minimization of routing
congestion. In Proceedings on the 2000 conference on Asia and
South Pacific design automation, pages 185–190. ACMPress, 2000.

[18] M. Wang, X. Yang, K. Eguro, and M. Sarrafzadeh. Multi-center
congestion estimation and minimization during placement. In
ISPD-00, pages 147–152. ACM Press, 2000.

[19] M. Wang, X. Yang, and M. Sarrafzadeh. Congestion minimization
during placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19, 2000.

[20] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000: Standard-cell
placement tool for large industry designs, 2000.

[21] D.F. Wong, H.W. Leong, and C.L. Liu. Simulated Annealing for VLSI
Design. Kluwer, 1988.

[22] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion estimation
during top-down placement. In ISPD-01, pages 164–170. ACMPress,
2001.

[23] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion reduction
during placement with provably good approximation bound. In
ICCAD-01, 2001.

	Main Page
	ISPD'02
	Front Matter
	Table of Contents
	Author Index

