
Low-Power VLSI Decoder Architectures for LDPC Codes ∗

Mohammad M. Mansour and Naresh R.Shanbhag
iCIMS Research Center, ECE Dept.

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1308 W. Main Street, Urbana, IL 61801
(mmansour,shanbhag)@uiuc.edu

ABSTRACT
Iterative decoding of low-density parity check codes (LDPC)
using the message-passing algorithm have proved to be ex-
traordinarily effective compared to conventional maximum-
likelihood decoding. However, the lack of any structural reg-
ularity in these essentially random codes is a major challenge
for building a practical low-power LDPC decoder. In this
paper, we jointly design the code and the decoder to induce
the structural regularity needed for a reduced-complexity
parallel decoder architecture. This interconnect-driven code
design approach eliminates the need for a complex intercon-
nection network while still retaining the algorithmic perfor-
mance promised by random codes. Moreover, we propose a
new approach for computing reliability metrics based on the
BCJR algorithm that reduces the message switching activ-
ity in the decoder compared to existing approaches. Sim-
ulations show that the proposed approach results in power
savings of up to 85.64% over conventional implementations.

Categories and Subject Descriptors
B.7.1 [Types and Design Styles]: VLSI; E.4 [Coding
and Information Theory]: Error control codes

General Terms
Design

Keywords
LDPC codes, lower power architectures, BCJR algorithm.

1. INTRODUCTION
Turbo codes [1] and LDPC codes [2] are the two best

known codes that are capable of achieving low bit error rates
(BER) at code rates approaching Shannon’s capacity limit.

∗This work was supported with funds from NSF under
grants CCR 99-79381 and CCR 00-73490.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008 ...$5.00.

However, in order to achieve desired power and throughputs
for current applications (e.g., > 1Mbps in 3G wireless sys-
tems, > 1Gbps in magnetic recording systems), fully parallel
and pipelined iterative decoder architectures are needed.
Compared to turbo codes, LDPC codes enjoy a significant

advantage in terms of computational complexity and are
known to have a large amount of inherent parallelism [3].
However, the randomness of LDPC codes results in stringent
memory requirements that amount to an order of magnitude
increase in complexity compared to those for turbo codes.
A direct approach to implementing a parallel decoder ar-

chitecture would be to allocate, for each node or cluster of
nodes in the graph defining the LDPC code, a function unit
for computing the reliability messages, and employ an in-
terconnection network to route messages between function
nodes (see Fig.1). A major problem with this approach is
that the interconnection networks require complex wiring
to perform global routing of messages and hence must be
deeply pipelined (e.g., bidirectional multilayered networks
in [4] and 4096-input multiplexers per function unit in [5]).
Moreover, the randomness in the pattern of communicating
messages leads to routing and congestion problems on the
networks which require extensive buffering to resolve.

Figure 1: Fully parallel decoder architecture.

It is well known that global interconnects primarily deter-
mine the system performance in modern semiconductor pro-
cesses. This suggests exploiting data locality to reduce com-
munication overhead in a parallel VLSI implementation, and

motivates a joint code-decoder design approach to construct
a class of LDPC codes having the structural regularity and
locality properties favorable for a practical parallel archi-
tecture. Previous LDPC decoder architectures [3]-[6] have
not addressed the interconnection network problem in ran-
dom LDPC codes. Issues related to routing conflicts on the
network and scheduling in the function units significantly in-
crease power consumption and degrade system performance
and hence need to be accounted for explicitly.
All current implementations of the message-passing algo-

rithm employ Gallager’s original algorithm [2] for computing
reliability messages. However, due to quantization effects,
this algorithm suffers from performance loss and requires
large number of iterations to converge, which increases the
switching activity, power consumption and decoding latency.
The contributions of this paper are twofold. First, we

propose a new interconnect-driven LDPC code design ap-
proach that eliminates the power problem in the intercon-
nection network by inducing desired regularity characteris-
tics in the code. Second, we propose an optimized version
of the BCJR algorithm [7] to compute reliability messages,
which minimizes the effect of quantization noise on algo-
rithmic performance and improves the power consumption.
Thus, a low-power VLSI architecture for the decoder is ob-
tained by optimizing both the interconnection network and
the function units.
The rest of the paper is organized as follows. Section 2

presents a joint code-decoder design approach for the de-
sign of low-power decoder architectures for LDPC codes.
Section 3 proposes a new optimized version of the BCJR
algorithm for reducing power in the function units. Sec-
tion 4 presents some simulations results and Section 5 pro-
vides some concluding remarks.

2. LOW-POWER LDPC DECODER ARCHI-
TECTURES

After briefly introducing LDPC codes, the interconnect-
driven LDPC code design approach is proposed in section 2.1.
The resulting decoder architecture and its memory synchro-
nization scheme are presented in sections 2.2 and 2.3.
An LDPC code is described by a bipartite graph (see

Fig. 2) whose reduced adjacency matrix is H = [hij]m×n
havingm check nodes {c1, c2, · · · , cm} and n bit nodes {b1, b2,
· · · , bn} corresponding to the m rows and n columns of H,
respectively. A bit node bj is connected to a check node ci
if the entry hij of H is 1. In a regular (r, c)-LDPC code,
bit nodes have degree c and check nodes have degree r in
the graph. Typically, regular codes are easier to encode and
have a simpler decoder architecture than irregular codes,
however the latter achieve higher coding gain.

111000000
110100000
001110000
000011010
000001101
000000111

Figure 2: Bipartite graph and parity check matrix
H of a regular (2,3)-LDPC code of length 9.

LDPC codes are decoded iteratively using Gallager’s mes-
sage passing (MP) algorithm [2]. It is based on evaluating
extrinsic reliability values associated with each bit using dis-
joint parity check equations that the bit participates in [2].
Each iteration is composed of a two-phase schedule in which
updates of all check nodes are done in phase 1 by sending
messages (µc→b) to neighboring bit nodes, and then updates
of all bit nodes are done in phase 2 by sending messages
(µb→c) to neighboring check nodes (see Fig. 2). Updates in
each phase are independent and can be parallelized.
For randomly constructed LDPC codes, the non-zero en-

tries in H are randomly distributed across the rows and
columns (while still satisfying the regularity constraints),
which makes the interconnection networks in Fig 1 for com-
municating messages from check nodes to bit nodes, and
vice versa, very complex. In Section 2.1, we propose an ap-
proach for designing the codes, i.e., the matrix H, such that
this interconnection complexity is minimized.

2.1 Interconnect-Driven LDPC Code Design
We propose to construct short length LDPC codes (<

2K bits) having simple graph connectivity properties while
still maintaining the performance of randomly constructed
codes. One easy way to achieve the desired structural prop-
erties is to partition the parity check matrix H into blocks
of p×p matrices, for some appropriately chosen p, such that
each bit in a block participates in only one check equation
in the block, and each check equation in the block involves
only one bit from the block. If H contains r blocks per col-
umn and c > r blocks per row, this construction defines a
regular (r, c)-LDPC code of length n = cp and dimension
k ≥ (c− r)p. For example, Fig. 3 shows the partitioning of
H into r = 3 rows and c = 5 columns of p× p matrices.

Figure 3: Partitioning of H into r = 3 rows and
c = 5 columns of p × p block matrices. Dotted lines
represent entries of 1 in H, other entries are 0.

The easiest way to define the p × p block matrices is
by suitable permutations of the rows of the identity ma-
trix Ip×p in an analogous fashion to the construction of
BCH codes. Let Bi

j,k be an Ip×p identity matrix located
at the jth block row and kth block column of the parity
check matrix having its rows shifted to the right i mod p
positions for i ∈ S = {0, 1, 2, · · · , p − 1}. Assume there
exists a q such that qc ≡ 1 (mod p). Then the opera-
tion of multiplying by q mod p divides S into cyclotomic
cosets mod p. A cyclotomic coset containing the integer

s is the set {s, sq, sq2, · · · , sqms−1} where ms is the small-
est positive integer satisfying sqms ≡ s (mod p). For ex-
ample, if p = 31 and c = 5, then q = 2 and the cosets
are C0 = {0}, C1 = {1, 2, 4, 8, 16}, C3 = {3, 6, 12, 24, 27},
C5 = {5, 10, 20, 9, 18}, · · · , C15 = {15, 30, 29, 27, 23}. The
elements of r of these sets are then used to set i in blocks
Bi
j,k for j = 1, · · · , r, k = 1, · · · , c. The matrix shown in

Fig. 3 defines a regular (3, 5)-LDPC code constructed for
p = 31 using the cosets C1,C3,C5. Note that the locations
of 1’s in H can be determined using the sets C1, · · · ,Cr and
the parameter p.
Figure 4 compares the performance over an AWGN chan-

nel of two codes constructed from cyclotomic cosets, a (3, 5)-
LDPC code of length 1055, rate 0.4 and a (3, 5)-LDPC code
of length 305, rate 0.4, versus two randomly constructed
codes of similar complexity. As shown the codes compare
well and even outperform randomly constructed codes.

1.5 2 2.5 3 3.5 4 4.5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
b
/N

0
 [dB]

B
E

R

Cyclotomic, n=1055, p=211
Random, n=1055
Cyclotomic, n=305, p=61
Random, n=305

(code rates = 0.4)

Figure 4: BER vs. SNR performance curves.

2.2 Interconnect-Driven Low-Power Decoder
Architecture

This subsection presents a parallel decoder architecture
for the LDPC codes designed via the interconnect-driven
code construction method described in Section 2.1. The
codes have length n = cp and their bipartite graph has cp
bit nodes and rp check nodes.
The proposed decoder in Fig. 5 is composed of two main

blocks, BLOCK1, the bit-node processing block and BLOCK2,
the check-node processing block. Two frames are processed
simultaneously by the decoder: phase 2 of the first frame is
performed in the check node processing block while phase 1
of the second frame is performed in the bit-node processing
block. BLOCK1 contains c Bit Function Units (BFU’s) and c
memory banks for storing the check-to-bit messages (µc→b)
obtained from BLOCK2 during the previous iteration. Each
memory bank consists of r memory blocks and a set of
r counters for address generation in one-to-one correspon-
dence with a single column of p×p blocks in the parity check
matrix. In addition, there are 2 memory blocks for storing
the intrinsic reliability metrics (IRM) of the two frames ob-
tained from the channel. The ith memory block in the jth
bank containing the bit messages is denoted by MemBi,j ,
the block containing the intrinsic messages by IRMj , and
the corresponding counters for memory access are denoted
by RD1i,j . One BFU operates on a single memory bank by

fetching r + 1 operands in parallel from the r + 1 memory
blocks every cycle and storing the results in the appropriate
memory bank in BLOCK2.
Similarly, BLOCK2 is composed of r Check Function Units

(CFU’s) and r memory banks for storing the bit-to-check
messages (µb→c) obtained from BLOCK1 during the previous
iteration. Each memory bank consists of c memory blocks
and c counters in one-to-one correspondence with a single
row of p × p blocks in the parity check matrix. The ith
memory block in the jth bank containing the check messages
is denoted by MemCi,j and the corresponding counters by
RD2i,j . One CFU is allocated to each memory bank with c
operands fetched in parallel from the c memory blocks every
cycle and the results are stored in the appropriate memory
banks in BLOCK1.

2.3 Memory Synchronization
The operations of BLOCK1 and BLOCK2 on the two frames

simultaneously are synchronized dynamically through the
set of counters RD1i,j and RD2i,j in the memory banks.
RD1i,j runs over the column indices of the block matrix
Bi,j in H and RD2i,j runs over its row indices. At startup,
BLOCK1 is initialized with intrinsic reliability messages from
the channel corresponding to frame 1 and frame 2 and the
counters in BLOCK1 are initialized as RD1i,j = C1,j for all
i, j, and in BLOCK2 as

RD2i,j =

{

1 if i = 1,

C1,1 − Ci,1 (mod p) 2 ≤ i ≤ r,

for j = 1, · · · , c. The function units in BLOCK1 process the
messages for frame 1 and store the results in the memory
blocks MemCi,j in BLOCK2. Then, BLOCK1 and BLOCK2

alternate their operations between frame 1 and frame 2
in each processing phase. The function units BFUi and
CFUj first read their operands from their respective mem-
ory banks according to RD1 and RD2. The messages in
these locations are not needed anymore so they can be over-
written with new results from the opposite BLOCK. For this
to be possible, the messages for both frames in BLOCK1

and BLOCK2 must be consumed and produced in a coher-
ent manner to avoid new messages overwriting unprocessed
messages. It can be shown that the misalignment of the
messages in both BLOCKs can be adjusted by incrementing
counters RD1i,j and RD2i,j by

(C1,j − Ci,j)− (C1,1 − Ci,1) (mod p)

for 2 ≤ i ≤ r and 2 ≤ j ≤ c, at the end of every iteration.
Since the first row and column of blocks of the parity check
matrix can be taken as references, counters RD1i,1, RD11,j ,
RD2i,1, RD21,j are not updated.
As an example, the middle block in Fig. 3 shows the mis-

alignment of data between the frames (with reference to the
vertical and horizontal lines) as a result of BLOCK2 overwrit-
ing messages from frame 1 still unprocessed by BLOCK1.
Thus, BLOCK2 instead overwrites the locations already pro-
cessed by BLOCK1 with updated messages for frame 2, and
the counters for read access are updated to account for the
new positions of the messages in the memory at the end
of every iteration. Note that this addressing scheme com-

pletely eliminates the need for a multilayered interconnection

for accessing messages from the memory banks such as the

one proposed in [4].

Figure 5: Decoder architecture for a regular (r = 3, c = 5)-LDPC code. It is composed of 2 blocks, the bit-node
processing block and check-node processing block that perform the two phases of Gallager’s message-passing
algorithm. The decoder processes 2 frames simultaneously by alternating between each phase of both frames
in BLOCK1 and BLOCK2. The dynamic addressing scheme eliminates the need for an interconnection network.

The decoder completes one decoding iteration for 2 frames
in 2p clock cycles. For I iterations per frame and clock fre-
quency f , the throughput is cf/I bps. The throughput can
be scaled up by a factor of ν by dividing the memory blocks
in each memory bank in BLOCK1 and BLOCK2 into ν sub-
blocks such that every c sub-blocks in BLOCK1 (respectively
r sub-blocks in BLOCK2) form a sub-bank on which a BFU
(CFU) operates as shown on the right side of Fig. 5. Note
however that the interconnection complexity also increases.

3. LOW-POWER BCJR-BASED CFU ARCHI-
TECTURE

In this section, we present a low-power approach based on
the BCJR algorithm [7] to generate the check-to-bit mes-
sages performed by the CFU blocks in Fig. 5. The original
algorithm for computing the messages is summarized by the
following two log-domain equations [2]:

µcj→bi
= ψ−1

[

∑

i′∈R[j]\i

ψ(µbi′→cj
)
]

· δ(i, j) (1)

µbi→cj
=

∑

j′∈C[i]\j

µcj′→bi
+ Λin(i) (2)

where µcj→bi
is the message from check j to bit i, µbi→cj

is
the message from bit i to check j, ψ(x) = − log(|tanh(x/2)|)
is the Gallager function with inverse ψ−1(x) = 2 tanh−1(e−x)
= ψ(x), R[j] is the set of bits involved in check j, C[i] is the
set of checks involving bit i, δ(i, j) is ±1 depending on the
terms in the summation of (1) and |R[j]|, and Λ(i) is the
intrinsic reliability metric of bit i.
Typically ψ(x) is implemented as a small look-up table

(LUT). Equation (1) however is prone to quantization noise
due to the non-linear function ψ(x) and its inverse. Fig-

ure 6(a) compares the composite function ψ−1(ψ(x)) using
floating point values with a fixed-point version quantized to
5 bits. As shown the function ψ(x) is not invariant under
its inverse and the representable dynamic range is limited.
If the argument of ψ(x) is scaled to increase the dynamic
range, the quantization levels become coarser and deviate
from the ideal line. These disadvantages translate to algo-
rithmic performance loss where for a given SNR more iter-
ations are needed for convergence increasing the decoding
latency, switching activity and hence the power consump-
tion of the decoder. This problem has been overlooked in
all current implementations which solely resort to scaling
the input to mitigate quantization effects.

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

ψ
−1

(ψ
(x

))

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

ln
(e

x +e
y)

unrepresentable
 dynamic range

(a) (b)

y=−2

y=−1.3

y=−0.4

y=0.3

y=0.8

y=1.9

Figure 6: Quantization effects on the (a) Gallager
function (b) BCJR recursion functions.

We employ the BCJR algorithm [7], typically used in

turbo codes, to compute the check-to-bit messages by tailor-
ing it to the trellis of a single parity check equation shown
in Fig 7. The BCJR algorithm computes a posteriori reli-
ability metrics (check-to-bit messages) on the trellis using
the bit-to-check messages according to eqs. (3)-(5):

α′1 = ln (e
α1+λ1 + eα2+λ2) α′2 = ln (e

α1+λ2 + eα2+λ1) (3)

β′1 = ln (e
β1+λ1 + eβ2+λ2) β′2 = ln (e

β1+λ2 + eβ2+λ1) (4)

Λ = ln (eα1+β2 + eα2+β1) − ln (eα1+β1 + eα2+β2) (5)

where λ2−λ1 = µb→c and Λ = µc→b. Equations (3) and (4) are
called the forward and backward state metric recursions, respec-
tively. Referring to Fig. 7, the forward recursion is first performed
on all trellis states from left to right and the results are stored.
Next, the backward recursion is performed from right to left in
parallel with the output metric computation given by (5) using
the stored forward state metrics.

Figure 7: Trellis of a parity check equation.

In the context of LDPC codes, the length of the trellis is the
number of bits per check node, or c for regular (r, c)-LDPC codes,
which is typically very small (5 ∼ 15). To minimize the effects of
quantization noise on the computations, eqs. (3)-(5) can be trans-

formed so that metric differences ∆α , α2 − α1, ∆β , β2 − β1,

and ∆λ , λ2 − λ1 rather than absolute metrics are involved.
Such a transformation maximizes the effectiveness of the limited
dynamic range of the metrics and eliminates the need for nor-
malization to avoid overflow. Moreover, only one set of forward
state metrics instead of two needs to be stored. The transformed
equation for (3) can be written in the following simple form:

∆α′ =

−∆λ+Q(−∆λ) if ∆α ≥ |∆λ| ,

∆α+Q(∆α) if −∆λ ≤ ∆α ≤ ∆λ,

−∆α+Q(−∆α) if ∆λ ≤ ∆α ≤ −∆λ,

∆λ+Q(∆λ) if ∆α ≤ − |∆λ|

(6)

where Q(x) = [α′2 − α′1 − x]b is a correction factor, [·]b denotes
quantization to b bits, and ∆λ = µb→c are the appropriate bit-
to-check messages. Similar equations for (4) can be derived by
replacing ∆α by ∆β in (6), and for (5) by replacing ∆λ by ∆β
in (6). Note that (6) can be implemented simply as a Compare-
Select (CS) block using two comparators, two 2’s complementers,
a multiplexer and a LUT which stores the sum [x + Q(x)]b as
shown in Fig. 8(a), assuming comparators are implemented using
adders. A similar argument holds for ∆β and Λ. Figure 8(b)
shows the structure of the Check Function Node (CFU) con-
structed from the 3 CS blocks implementing the ∆α, ∆β, and
Λ equations. Note that 2 simple FIFO buffers are used to store
the forward state metric differences ∆α and the messages µb→c.
This CFU block has comparable complexity to a CFU block im-
plementing (1) using a tree-adder, sign correction logic and a pair
of LUT’s.
Figure 9 shows the Bit Function Unit implementing (2). Note

that the only difference among the messages computed in (2)
is the effect of the check node under consideration. Hence, the
equation can be implemented using the Save-Add-Subtract (SAS)
structure where the operands are first saved and then the sum-
mation is computed serially (Fig. 9(a)) or using a tree-adder
(Fig. 9(b)), and then the appropriate operands are subtracted
to generate all the messages.
In Fig. 6(b) we compare the quantization effects on the compu-

tation of the check-to-bit messages using the transformed equa-
tions of the BCJR algorithm. The entire dynamic range can

now be represented, and the LUT provides quantized values that
closely track the desired output compared to the quantized Gal-
lager equations in Fig. 6(a). It is worth mentioning the absence
of adders required to compute the metrics needed in (1) which
are subject to quantization noise under ψ−1 (ψ(·)).

Figure 8: (a) Compare-Select unit implementing the
forward state metric differences ∆α of (6) (b) The
check function unit.

Figure 9: Bit function unit: (a) serial implementa-
tion (b) parallel implementation.

To compare the effect of quantization on the algorithmic perfor-
mance of the message-passing algorithm using Gallager’s method
and the proposed method, a low-level simulator was developed
for both algorithms, and the results are shown in Fig. 10. Fig-
ures 10(a)-(b) show the percentage of valid frames decoded and
the number of iterations required for convergence, respectively,
using the unquantized Gallager algorithm, a 6-bit quantized Gal-
lager algorithm, and a 6-bit quantized BCJR algorithm. Fig-
ures 10(c)-(f) show the results for 5-bit and 4-bit quantization,
respectively. The results demonstrate that the optimized BCJR
algorithm is superior to the original algorithm particularly for 4-
bit quantization where it attains more than 1 dB of improvement
in coding gain. Moreover, the BCJR algorithm quantized to 5 bits
achieves even better performance than a 6-bit quantized Gallager
algorithm. The average improvement in coding gain achieved at
4-bit, 5-bit, and 6-bit quantization levels is 5.2%, 11.98%, and
119.19%, respectively. Note also the reduction in switching ac-
tivity due to the decrease in the number iterations.

4. SIMULATION RESULTS
To simulate the power savings of the decoder architecture re-

sulting from applying the interconnect-driven design approach
and the calculation of the reliability messages via the proposed
BCJR approach, the architecture (A1) for a regular (3, 5)-LDPC
code of length n = 1055 and rate 0.4 constructed from cyclotomic
cosets is used as an example. The results are compared with the
decoder architecture (A2) for a random LDPC code of similar
complexity constructed using interconnection networks like the
ones shown in Fig. 1 and utilizing Gallager’s original algorithm
for computing reliability messages. Architecture A2 has twice
the memory requirements of A1 and operates on a single frame,
while A2 decodes two frames simultaneously. Note that due to
the irregularity of the code matrix in A2, the two phases of com-
putations, bit-to-check and check-to-bit, cannot be overlapped
which necessitates two copies of each memory bank that alter-
nate between read/write. The algorithmic performance of both
codes over an AWGN channel is shown in Fig. 4.

The memory blocks for A1 were designed as circular buffers,
while those for A2 were built as FIFO buffers and stacks similar
to [5]. The interconnection networks for A2 were built using
631-input multiplexers and 210-output demultiplexers that serve
as read and write ports for the CFU blocks, and similarly for
the BFU blocks using 1055-input multiplexers and 1055-output
demultiplexers as read/write ports.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

50

100

%
 V

al
id

 fr
am

es

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

50

100

(b)

A
ct

iv
ity

UQ. Gal
6BQ BCJR
6BQ Gal

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

50

100

(c)

%
 V

al
id

 fr
am

es

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

50

100

(d)

A
ct

iv
ity

UQ. Gal
5BQ BCJR
5BQ Gal

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

50

100

E
b
/N

0
 [dB]

%
 V

al
id

 fr
am

es

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

50

100

150

E
b
/N

0
 [dB]

A
ct

iv
ity

UQ. Gal
4BQ BCJR
4BQ Gal

(a)

(e) (f)

Figure 10: Comparison of quantization effects on the
performance of Gallager’s algorithm vs. the BCJR
algorithm 6-bit (a)-(b), 5-bit (c)-(d), and 4-bit (e)-
(f) quantization levels.

Power estimates for the CFU and BFU blocks used in both ar-
chitectures were obtained by synthesizing the blocks in Figs. 8
and 9(b) (for A1) and their counterparts for A2 using 3.3V
0.35 µm standard CMOS technology. Similarly, power estimates
for the circular and FIFO buffers, stacks and (de)multiplexers
were obtained through synthesis. The switching activity for the
logic was estimated through simulations for different SNR.
Figure 11 shows the power consumed by A1 and A2 as a func-

tion of SNR for the same algorithmic performance. At the same
SNR,A1 implemented using 5-bit datapaths achieves comparable
and even better performance than A2 implemented using 6-bit
datapaths mainly due to quantization effects in the CFU blocks
as seen in Fig. 10, and partly due to the better performance of
the cyclotomic code itself over the random one as shown in Fig. 4.
As seen from the figure, the power savings range between 82.42%
and 85.64%. The power consumed by A2 at SNR of 4 dB is al-
most the same as that consumed by A1 at SNR of 1.5 dB which
reflects the reduction in switching activity in the decoder due to
faster convergence as a function of SNR.
Figure 12 shows a breakdown of the power distribution as a

function of SNR inA1 andA2 in terms of message computations,
communication, and memory accesses. The figure demonstrates
the effectiveness of the interconnect-driven code design approach
in eliminating the effect of the interconnection network, and the
efficiency of the dynamic memory addressing scheme in reducing
the power consumption in the memory units by approximately
80%. The power savings due to computations demonstrates that,
contrary to common perception, the optimized BCJR when tai-
lored to the trellis of a single parity check equation is a viable
alternative to the Gallager algorithm.

5. CONCLUSIONS
The LDPC decoding algorithm achieves significant coding gain

but at the expense of large power consumption in the decoder due
to the lack of structural regularity and the inefficiency of the al-
gorithm employed for computing reliabilities. We have shown

that through an interconnect-driven code design approach, cou-
pled with a dynamic addressing scheme and an optimized version
of the BCJR algorithm for computing reliabilities, power savings
of up to 85.64% can be achieved.

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

45

E
b
/N

0
 [dB]

P
ow

er
 m

W
 /

M
H

z

A1
A2

Proposed

Conventional

Figure 11: Power consumption for A1 and A2 at
same algorithmic performance as a function of SNR.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

10

20

30

40

50

60

70

80

90

100

E
b
/N

0
 [dB]

P
ow

er
 m

W
 /

M
H

z

Computation
Memory
Communication

Figure 12: Breakdown of power savings in terms
computations, communication and memory opera-
tions for A1 and A2 as a function of SNR.

6. ACKNOWLEDGEMENTS
The authors would like to thank Makram M. Mansour for pro-

viding the 3.3V 0.35 µm CMOS parameterized-cell library.

7. REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near
Shannon Limit Error-Correcting Coding and Decoding:
Turbo Codes,” in IEEE ICC, 1993, pp. 1064–1070.

[2] R. G. Gallager, Low-Density Parity-Check Codes, MIT
Press, Cambridge, MA, 1963.

[3] G. Al-Rawi and J. Cioffi, “A highly efficient
domain-programmable parallel architecture for LDPCC
decoding,” in ITCC 2001, April 2001, pp. 569–577.

[4] T. Zhang and K. K. Parhi, “VLSI implementation-oriented
(3,k)-regular low-density parity-check codes,” in SiPS 2001,
Antwerp, Belgium, Sept. 2001, pp. 25–36.

[5] E. Yeo et al., “VLSI architectures for iterative decoders in
magnetic recording channels,” IEEE Trans. on Magnetics,
vol. 37, no. 2, pp. 748–755, March 2001.

[6] C. Howland and A. Blanksby, “Parallel decoding
architectures for low density parity check codes,” in Proc. of
2001 IEEE ISCS, Sydney, May 2001, pp. 742–745.

[7] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal
decoding of linear codes for minimizing symbol error rate,”
IEEE Trans. on I.T., pp. 284–287, Mar. 1974.

	Main
	ISLPED02
	Front Matter
	Table of Contents
	Author Index

