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Abstract
The ultimate goal of logic synthesis is to explore implementation

flexibility toward meeting design targets, such as area, power, and
delay. Traditionally, such flexibility is expressed using “don’t
cares” and we seek the best implementation that does not violate
them. However, the calculation and storing of don’t care informa-
tion is CPU and memory-intensive. In this paper, we give an over-
view of logic synthesis approaches based on techniques developed
for Automatic Test Pattern Generation (ATPG). Instead of calculat-
ing and storing don’t cares explicitly, ATPG-based logic synthesis
techniques calculate the flexibility implicitly. Low CPU and mem-
ory usage make those techniques applicable for practical industrial
circuits. Also, the basic ATPG-based logic level operations create
predictable, small layout perturbations, making an ideal foundation
for efficient physical synthesis. Theoretical results show that an
efficient, yet simple add-a-wire-and-remove-a-wire operation cov-
ers all possible complex logic transformations.

1. Introduction
Logic synthesis is an essential step in today’s integrated circuit

design. It translates the designer’s intention, often written in regis-
ter-transfer-level (RTL), to a gate-level netlist which satisfies a
given specification. The gate-level netlist is an interconnection of a
set of logic gates, state elements, and macro blocks such as random-
access memory or acquired intellectual property. The combinational
part of the netlist is often modeled as a Boolean network[1], in
which each node implements a Boolean function. The logic synthe-
sis tools try to find a Boolean network that satisfies specific con-
straints, such as area, power, and timing. The gate-level netlist is
then fed to placement and routing tools for final physical imple-
mentation.

Logic synthesis techniques allow for changing a given netlist and
maintaining its logic equivalence to the original specification. The
term “flexibility” is loosely defined as representing the existence of
such restructuring opportunity in the presence of the constraint of
logic equivalence. Most of the existing logic synthesis techniques
are in a sense exploring such flexibility to achieve specific goals.
To explore the flexibility of Boolean networks, some basic tools are
needed to determine what is allowed and what is not. In general,
three major techniques exist for this purpose: test generation, binary
decision diagrams[2], and satisfiability (SAT)[14].

Techniques used to represent flexibility fall into two main catego-
ries: explicit representation and implicit representation. The explicit
representation calculates and records the implementation’s freedom
in certain forms, such as matching patterns[1], don’t cares[1], or
SPFD[28]. Usually, BDDs are involved in recording such informa-
tion. These representations often demand large storage and inten-
sive computation.

Implicit techniques do not require that the freedom is recorded a
priori. Instead, the freedom is explored whenever it is needed. Rea-

soning techniques such as ATPG and SAT usually explore the
implicitly represented freedom. 

In this overview, we focus on the ATPG-based techniques to
explore flexibility in gate-level Boolean networks. Specifically, we
focus on the concept of Redundancy-Addition-and-Removal
(RAR). The idea is to add one redundant wire to a circuit to make a
previously-irredundant wire redundant, and hence removable. This
simple operation, as will be explained later, forms the basis for all
possible complex logic transformations. 

This paper is structured as follows: in Section 2, we briefly intro-
duce some fundamental concept of ATPG. In Section 3, we contrast
ATPG applied to manufacturing testing from applied for logic syn-
thesis. The basic concept of redundancy-addition-and-removal is
also introduced there. In Section 4, we study the recent advance-
ments in RAR as well as its theoretical completeness in solving the
logic synthesis problems. A long list of applications is reviewed in
Section 5 followed by the conclusions in Section 6.

2. Preliminaries
Here we briefly review pertinent terminology used in test genera-

tion. 

After a chip has been designed and fabricated, it is necessary to
test it to determine whether it is working correctly. This is done by
applying input vectors and then capturing and analyzing the output
response. For a sequential circuit with n primary inputs and p flip-
flops, exhaustive testing would require applying 2n+p vectors. For
even moderate size circuits, this may take too much time. The sin-
gle stuck-at-fault model assumes that the physical defects manifest
themselves as wires which are permanently connected to either Vdd
or GND, and that only one such stuck-at wire exists in a given cir-
cuit. 

In the single stuck-at-fault model, a wire w from a node nx to a
node ny, denoted w(nx→ny), could be stuck at either 1 or 0. Let f be
a multiple-input multiple-output Boolean function implemented by
a combinational circuit C. ffaulty and fgood are the functions imple-
mented by the faulty and good circuits, respectively. We use the D-
notation[22] to represent the fault effect. D (1/0) means that in the
good circuit, the value on a particular wire is 1 whereas in the faulty
circuit the value on the same wire is 0. D denotes the opposite case.
The fault on w is testable if there exists a primary input vector v
such that fgood(v) ≠ ffaulty(v). That is, the difference between the
good and faulty circuits can be observed at primary outputs when
the primary input vector v is applied. When no vector exists which
can distinguish the faulty from the good circuit, the fault on w is
redundant and can be removed by assigning the constant stuck-at-
value on w. The process of finding such a vector v through algorith-
mic means is called Automatic Test Pattern Generation (ATPG).
The processes of test generation and redundancy identification are
known to be NP-hard.
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The input controlling value of a gate g is the logic value which,
when set at any input of g, uniquely determines g’s output regard-
less of the logic values on other inputs. For example, when g is a
NAND gate, the input controlling value of g is 0. XOR gate does
not have an input controlling value because the output cannot be
uniquely determined by any single input. Inverter and buffer have
no input controlling value because they have only one input. The
input non-controlling value of g is the opposite logic value of the
corresponding input controlling value. Logic implication is a pro-
cess of inferring consistent logic values based on known logic val-
ues. Given a logic value v assigned at the output of a gate g, the
direction of implication can be forward or backward until no more
logic values can be inferred. For simplicity, the input controlling
value is generally referred to as the “controlling value” of a gate.

Kunz and Pradhan proposed the notion of Recursive Learning
[19] as a systematic way to identify indirect implications. For
example, in Fig. 1, assume f is assigned 1. Since f is the output of
an OR gate, no more direct implications are possible. Applying
recursive learning on f, we can first set d to 1. Direct backward
implication of d=1 leads to b=1. Next, we can set e to 1 and also
imply b=1. The intersection of these two justifications gives b=1.
That is, f=1 implies b=1. These dependencies can be determined
using the AND-OR reasoning graph[20]. Since each justification
can further spawn new justifications, a user-specified value,
termed depth, is used to control the reasoning. The complexity of
recursive learning is exponential with respect to the depth.

The idea of a dominator was proposed by Kirkland and Mer-
cer[18]. A dominator is a gate through which any fault effect has to
pass to reach primary outputs. The dominators’ inputs which are
not on the fault-propagation path have to be set to non-controlling
values to allow the fault effect to propagate through. Fig. 2 illus-
trates the concept of a dominator. Here, wt is a target wire with a
stuck-at-fault. Since all paths originating from wt have to pass
nodes D1, D2, and D3, these nodes are the dominators of the wt

stuck-at-fault.  Side-inputs to the dominators s1, s2, s3, s4, s5 and s6
should be set to non-controlling values of the corresponding gates
to allow fault-effect propagation. Also, ns must be set to the oppo-
site value of v in order to activate the fault effect. 

For a fault to be testable, some nodes in the circuit must be set to
a fixed value for any test vector. These value assignments are
called the Mandatory Assignments. A formal definition is as fol-
lows:

Definition 1: Let ε be the stuck-at-v (v is either 0 or 1) fault on an
irredundant target wire in a combinational Boolean network C, and
let Γ be the set of all primary input vectors that can activate and
propagate the fault effect to primary outputs. A node k in C has a
mandatory assignment (MA) m if k is assigned the value m under
all primary input vectors in Γ. 

Finding all mandatory assignments of a target fault is known to
be an NP-hard problem, as it involves finding all the test vectors

that can detect the fault. Instead of finding all mandatory assign-
ments, the concept of dominator can be used to find a subset of
such assignments that are easy to compute. Such mandatory
assignments are obtained by setting the side inputs of the domina-
tors to their corresponding non-controlling values and setting the
source of the faulty wire to its fault activating value. These two
types of value assignments, along with their implications, form a
subset of all possible mandatory assignments. The fault is redun-
dant if its MAs are inconsistent, but when the MAs of a fault are
consistent, redundancy is inconclusive. 

3. ATPG in Logic Synthesis - Redundancy 
Addition and Removal

Historically, ATPG was developed to find manufacturing
defects. For a given target fault, test pattern excites and propagates
the fault effect to primary outputs. The goal is to find a set of test
patterns which achieve the highest fault coverage. Circuit struc-
tures as well as testability calculation have been investigated to
speed up the test generation process.

Redundancy forms a link between ATPG and logic synthesis. It
is possible that after exhausting the entire solution space, no test
pattern is found for the target fault. In such a case, the fault is
declared redundant and the test generator moves on to the next tar-
get fault. For a stuck-at-1 fault, being redundant means that perma-
nently connecting this wire to 1 makes no difference as compared
to the original circuit, because no test pattern can distinguish those
two situations. Removing a redundant wire, in traditional logic
synthesis context, can be viewed as reducing the number of literals
by one. ATPG was used as an redundancy identification engine in
[24]. 

When all the redundancies have been removed and the circuit is
irredundant, we may ask: can the circuit be reduced further? In
1993, Cheng[13] and Entrena proposed a simple yet powerful con-
cept: add a redundant wire to the circuit to make a previously-irre-
dundant wire redundant.    

Take Fig. 3 for example. Consider the target wire g1→g4. To
activate the stuck-at-1 fault on this wire, g1 is set to 0. Since g4, g8,
and g9 are the dominators of this fault, the corresponding side
inputs are set to non-controlling values. i.e. c=1, g7=0, and f=1.
The value c=1 leads to g2=0. Now, g1=0 and g2=0 lead to g5=0. All
together, the following MAs are implied: {g1=0, c=1, g2=0, g5=0,
g7=0, f=1, g4=g8=g9=D}. As we mentioned previously, these logic
values are mandatory for the target fault to be testable. At this
point, no conflict exists. What if we artificially create a conflict?
For example, we can add a new wire connecting g5 to g9. Since the
MA on g5 is 0, it forces the output of g9 to be a 0. That is, the fault
effect D is not observable after g9. This causes the target wire to be
untestable and hence redundant. However, we cannot arbitrarily
add a the wire from g5 to g9 without affecting the overall function-
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ality. In [13], redundancy test based on MA is applied on each pos-
sible candidate wire to determine if it can be added.

We note, that though the idea is to add a wire and then remove a
wire, in practice, not only wires but also gates are added or
removed. For example, in Fig. 3, adding the wire from g5 to g9
effectively changed the type of gate g9 from a two-input AND to a
three-input AND. This wire can also be added to the output of g9
by adding a two-input AND. On the other hand, when the target
wire g1→g4 is removed, g4 becomes a one-input AND which can
be removed by connecting c to its output.

Moreover, in this case, adding g5→g9 not only removes g1→g4

but also g6→g7. After removing g6→g7, g6 is hanging and can be
removed. g7 becomes a single-input AND and can also be
removed. 

The circuit shown in Fig. 3 could be a sub-circuit imbedded in a
much larger netlist. The set of MAs calculated is not guaranteed to
be complete since a complete set would necessitate a full justifica-
tion back to the primary inputs of the larger circuit. This can be
very time-consuming but not necessarily more fruitful, since MAs
tend to be found closer to the target wire. 

4. Deeper Understanding of RAR
The number of required redundancy tests on candidate wires can

be large. In [10], a set of rules are used as filters to screen out
impossible candidates. Recently, we proposed a technique which
does not require repetitive redundancy tests[5]. 

We briefly go through the fundamental concepts in [5]. Let wt be
the target wire to be removed and wa to be a redundant wire that,
when added, makes the target wire wt redundant. wa is an alterna-
tive wire of wt. On the other hand, wt can also be viewed as an
alternative wire of wa. By exploring this mutual alternative prop-
erty, [5] proved that for wa to be an alternative to wt, the MA of wa
must result in a conflict on wt. We may start the uncontrollability
and unobservability propagation defined in [16] on wt and directly
capture wa as a result of the propagation. There is no need to per-
form repetitive redundancy testing on the set of candidate wires.
Up to an order of magnitude of speedup has been observed as a
result of this observation.

One may ask: can we explore all possible network transforma-
tions just by adding a wire and removing another wire(s)? Affirma-
tive answer was given by Kunz et. al. in [20]. They proved
theoretically that given any two equivalent circuits C1 and C2,
there exists a sequence of wire addition and removal operations
which can bring the circuit from C1 to C2, or vice versa. This result

underscores the significance of the simple wire-addition-and-
removal operation.

5. Applications
One main advantage of ATPG-based restructuring technique is

that it operates directly on the structural netlist description of the
circuit so that the technical consequences of the performed trans-
formations can be evaluated in an easy way, permitting better con-
trol of the optimization process with respect to the specific goals.
In this section, we briefly discuss some key applications. 

5.1  Literal Minimization
Literal minimization is one of the most important goals at the

technology-independent level of logic synthesis. Typically, fewer
literals implies smaller area and potentially smaller power con-
sumption. SIS[26] is one of the representative logic synthesis sys-
tems.

The use of RAR for literal minimization were studied in
[13][8][20] culminating in [10]. The idea is that if we could add
one wire while removing two or more wires, the literal count
decreases. It is shown in [10] that RAR-based technique achieves
14% better results than SIS script.rugged in terms of the number of
literals while using only one sixth of the CPU time and a fraction
of the memory compared to SIS. 

5.2  Timing Optimization
The major advantage of the redundancy-addition-and-removal

technique is that only wires are reconnected while logic gates are
preserved. This property is especially desirable in the deep-submi-
cron age, when timing estimation obtained during logic synthesis
cannot be justified after placement and routing. Timing can be
incrementally corrected through a sequence of rewiring steps
guided by accurate physical information. Rewiring minimally per-
turbs layout and helps in achieving timing closure[3]. 

Post-layout timing optimization was studied in [17][15]. After
global routing has been performed, when the interconnect effect
can be accurately modeled, RAR is attempted on critical path
wires. If adding a new wire and removing the target wire from the
critical path leads to an overall shortened critical path, the move is
taken. An algorithm combining buffer insertion and RAR was also
proposed [17]. Another post-layout rewiring technique combining
functional symmetry and gate sizing was proposed in [4]. In [25],
timing optimization was performed by iterating restructuring and
placement. Pre-layout timing optimization was studied in [12].

5.3  Power Optimization
Power consumption and speed are two primary cost functions in

today’s integrated circuit design. As mobile computation devices
prevail in the market, the ability to design fast, low-power devices
is of paramount importance. However, these two objectives are
often conflicting: a faster circuit consumes more power, but a low-
power circuit runs slower. Hence, designers often need to trade off
power for speed and vice versa to meet the desired specifications.

Rewiring changes the structure of a netlist and hence affects the
switching probability. Effective capacitance, measured by the
product of switching probability and the load capacitance, is
directly proportional to the power consumption. In [23] and [29],
rewiring-based techniques for power optimization were studied.
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5.4  Other Applications
RAR can also be used to find Boolean divisors efficiently and to

perform substitution [9], to compute local don’t care sets [7], to
improve testability [11], and to perform synthesis for engineering
change [21]. The problem of simultaneous removal of multiple-
redundancies was studied in [6]. RAR based on pattern matching
was discussed in [27].

6. Conclusion 
In this paper, we have briefly reviewed the fundamental concepts

of ATPG in context of applications to logic synthesis. Bridging
ATPG and logic synthesis, Redundancy-Addition-and-Removal
techniques provide an efficient engine to explore the flexibility in
Boolean networks. We have reviewed different approaches from
both theoretical and application points-of-view. With low CPU and
memory usage, adaptable to a wide array of applications, this tech-
nique is a fundamental building block in coping with today’s logi-
cal/physical design challenges.
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