ATPG-based Logic Synthesis: An Overview

Chih-Wei Jim Chang
Cadence Design Systems, Inc.
San Jose, CA 95134

Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering,
University of California, Santa Barbara, CA 93106,
USA

Abstract

The ultimate goal of logic synthesis is to explore implementation flexibility toward meeting design targets, such as area, power, and delay. Traditionally, such flexibility is expressed using “don’t cares” and we seek the best implementation that does not violate them. However, the calculation and storing of don’t care information is CPU and memory-intensive. In this paper, we give an overview of logic synthesis approaches based on techniques developed for Automatic Test Pattern Generation (ATPG). Instead of calculating and storing don’t cares explicitly, ATPG-based logic synthesis techniques calculate the flexibility implicitly. Low CPU and memory usage make those techniques applicable for practical industrial circuits. Also, the basic ATPG-based logic level operations create predictable, small layout perturbations, making an ideal foundation for efficient physical synthesis. Theoretical results show that an efficient, yet simple add-a-wire-and-remove-a-wire operation covers all possible complex logic transformations.

1. Introduction

Logic synthesis is an essential step in today’s integrated circuit design. It translates the designer’s intention, often written in register-transfer-level (RTL), to a gate-level netlist which satisfies a given specification. The gate-level netlist is an interconnection of a set of logic gates, state elements, and macro blocks such as random-access memory or acquired intellectual property. The combinational part of the netlist is often modeled as a Boolean network[1], in which each node implements a Boolean function. The logic synthesis tools try to find a Boolean network that satisfies specific constraints, such as area, power, and timing. The gate-level netlist is then fed to placement and routing tools for final physical implementation.

Logic synthesis techniques allow for changing a given netlist and maintaining its logic equivalence to the original specification. The term “flexibility” is loosely defined as representing the existence of such restructuring opportunity in the presence of the constraint of logic equivalence. Most of the existing logic synthesis techniques are in a sense exploring such flexibility to achieve specific goals. To explore the flexibility of Boolean networks, some basic tools are needed to determine what is allowed and what is not. In general, three major techniques exist for this purpose: test generation, binary decision diagrams[2], and satisfiability (SAT)[14].

Techniques used to represent flexibility fall into two main categories: explicit representation and implicit representation. The explicit representation calculates and records the implementation’s freedom in certain forms, such as matching patterns[1], don’t cares[1], or SPFD[28]. Usually, BDDs are involved in recording such information. These representations often demand large storage and intensive computation.

Implicit techniques do not require that the freedom is recorded a priori. Instead, the freedom is explored whenever it is needed. Reasoning techniques such as ATPG and SAT usually explore the implicitly represented freedom.

In this overview, we focus on the ATPG-based techniques to explore flexibility in gate-level Boolean networks. Specifically, we focus on the concept of Redundancy-Addition-and-Removal (RAR). The idea is to add one redundant wire to a circuit to make a previously-irredundant wire redundant, and hence removable. This simple operation, as will be explained later, forms the basis for all possible complex logic transformations.

This paper is structured as follows: in Section 2, we briefly introduce some fundamental concept of ATPG. In Section 3, we contrast ATPG applied to manufacturing testing from applied for logic synthesis. The basic concept of redundancy-addition-and-removal is also introduced there. In Section 4, we study the recent advancements in RAR as well as its theoretical completeness in solving the logic synthesis problems. A long list of applications is reviewed in Section 5 followed by the conclusions in Section 6.

2. Preliminaries

Here we briefly review pertinent terminology used in test generation.

After a chip has been designed and fabricated, it is necessary to test it to determine whether it is working correctly. This is done by applying input vectors and then capturing and analyzing the output response. For a sequential circuit with n primary inputs and p flip-flops, exhaustive testing would require applying 2^{n+p} vectors. For even moderate size circuits, this may take too much time. The single stuck-at-fault model assumes that the physical defects manifest themselves as wires which are permanently connected to either Vdd or Gnd, and that only one such stuck-at wire exists in a given circuit.

In the single stuck-at-fault model, a wire w from a node n_1 to a node n_2, denoted $w(n_1 \rightarrow n_2)$, could be stuck at either 1 or 0. Let f be a multiple-input multiple-output Boolean function implemented by a combinational circuit C. f_{faulty} and f_{good} are the functions implemented by the faulty and good circuits, respectively. We use the D-notation[22] to represent the fault effect. D (1/0) means that in the good circuit, the value on a particular wire is 1 whereas in the faulty circuit the value on the same wire is 0. \bar{D} denotes the opposite case. The fault on w is testable if there exists a primary input vector v such that $f_{\text{good}}(v) \neq f_{\text{faulty}}(v)$. That is, the difference between the good and faulty circuits can be observed at primary outputs when the primary input vector v is applied. When no vector exists which can distinguish the faulty from the good circuit, the fault on w is redundant and can be removed by assigning the constant stuck-at-value on w. The process of finding such a vector v through algorithmic means is called Automatic Test Pattern Generation (ATPG). The processes of test generation and redundancy identification are known to be NP-hard.
The *input controlling value* of a gate g is the logic value which, when set at any input of g, uniquely determines g’s output regardless of the logic values on other inputs. For example, when g is a NAND gate, the input controlling value of g is 0. XOR gate does not have an input controlling value because the output cannot be uniquely determined by any single input. Inverter and buffer have no input controlling value because they have only one input. The *input non-controlling value* of g is the opposite logic value of the corresponding input controlling value. *Logic implication* is a process of inferring consistent logic values based on known logic values. Given a logic value v assigned at the output of a gate g, the direction of implication can be forward or backward until no more logic values can be inferred. For simplicity, the input controlling value is generally referred to as the “controlling value” of a gate.

Kunz and Pradhan proposed the notion of Recursive Learning [19] as a systematic way to identify indirect implications. For example, in Fig. 1, assume f is assigned 1. Since f is the output of an OR gate, no more direct implications are possible. Applying recursive learning on f, we can first set d to 1. Direct backward implication of $d=1$ leads to $b=1$. Next, we can set e to 1 and also imply $b=1$. The intersection of these two justifications gives $b=1$. That is, $f=1$ implies $b=1$. These dependencies can be determined using the AND-OR reasoning graph[20]. Since each justification can further spawn new justifications, a user-specified value, termed *depth*, is used to control the reasoning. The complexity of recursive learning is exponential with respect to the depth.

The idea of a dominator was proposed by Kirkland and Mercer[18]. A dominator is a gate through which any fault effect has to pass to reach primary outputs. The dominators’ inputs which are not on the fault-propagation path have to be set to non-controlling values of the corresponding gates to allow fault-effect propagation. Fig. 2 illustrates the concept of a dominator. Here, w_i is a target wire with a stuck-at-fault. Since all paths originating from w_i have to pass nodes D1, D2, and D3, these nodes are the dominators of w_i stuck-at-fault. Side-inputs to the dominators s_1, s_2, s_3, s_4, s_5 and s_6 should be set to non-controlling values of the corresponding gates to allow fault-effect propagation. Also, n_x must be set to the opposite side-input of v in order to activate the fault effect.

For a fault to be testable, some nodes in the circuit must be set to a fixed value for any test vector. These value assignments are called the *Mandatory Assignments*. A formal definition is as follows:

Definition 1: Let e be the stuck-at-0 (v is either 0 or 1) fault on an irredundant target wire in a combinational Boolean network C, and let Γ be the set of all primary input vectors that can activate and propagate the fault effect to primary outputs. A node k in C has a mandatory assignment (MA) m if k is assigned the value m under all primary input vectors in Γ.

Finding all mandatory assignments of a target fault is known to be an NP-hard problem, as it involves finding all the test vectors that can detect the fault. Instead of finding all mandatory assignments, the concept of dominator can be used to find a subset of such assignments that are easy to compute. Such mandatory assignments are obtained by setting the side inputs of the dominators to their corresponding non-controlling values and setting the source of the faulty wire to its fault activating value. These two types of value assignments, along with their implications, form a subset of all possible mandatory assignments. The fault is redundant if its MAs are inconsistent, but when the MAs of a fault are consistent, redundancy is inconclusive.

3. ATPG in Logic Synthesis - Redundancy Addition and Removal

Historically, ATPG was developed to find manufacturing defects. For a given target fault, test pattern excites and propagates the fault effect to primary outputs. The goal is to find a set of test patterns which achieve the highest fault coverage. Circuit structures as well as testability calculation have been investigated to speed up the test generation process.

Redundancy forms a link between ATPG and logic synthesis. It is possible that after exhausting the entire solution space, no test pattern is found for the target fault. In such a case, the fault is declared redundant and the test generator moves on to the next target fault. For a stuck-at-1 fault, being redundant means that permanently connecting this wire to 1 makes no difference as compared to the original circuit, because no test pattern can distinguish those two situations. Removing a redundant wire, in traditional logic synthesis context, can be viewed as reducing the number of literals by one. ATPG was used as an redundancy identification engine in [24].

When all the redundancies have been removed and the circuit is irredundant, we may ask: can the circuit be reduced further? In 1993, Cheng[13] and Entrena proposed a simple yet powerful concept: add a redundant wire to the circuit to make a previously-irredundant wire redundant.

Take Fig. 3 for example. Consider the target wire $g_4 \rightarrow g_5$. To activate the stuck-at-1 fault on this wire, g_4 is set to 0. Since g_4, g_5, and g_9 are the dominators of this fault, the corresponding side inputs are set to non-controlling values. i.e. $c=1$, $g_3=0$, and $f=1$. The value $c=1$ leads to $g_2=0$. Now, $g_4=0$ and $g_2=0$ lead to $g_5=0$. All together, the following MAs are implied: $g_j=0$, $c=1$, $g_3=0$, $g_5=0$, $g_7=0$, $f=1$, $g_9=0$, $g_9=g_9\neq 0$. As we mentioned previously, these logic values are mandatory for the target fault to be testable. At this point, no conflict exists. What if we artificially create a conflict? For example, we can add a new wire connecting g_5 to g_9. Since the MA on g_5 is 0, it forces the output of g_9 to be a 0. That is, the fault effect D is not observable after g_9. This causes the target wire to be untestable and hence redundant. However, we cannot arbitrarily add a wire from g_5 to g_9 without affecting the overall function-
which can bring the circuit form theoretically that given any two equivalent circuits

We note, that though the idea is to add a wire and then remove a wire, in practice, not only wires but also gates are added or removed. For example, in Fig. 3, adding the wire from g_5 to g_9 effectively changed the type of gate g_9 from a two-input AND to a three-input AND. This wire can also be added to the output of g_9 by adding a two-input AND. On the other hand, when the target wire $g_1 \rightarrow g_4$ is removed, g_4 becomes a one-input AND which can be removed by connecting c to its output.

Moreover, in this case, adding $g_5 \rightarrow g_9$ not only removes $g_1 \rightarrow g_4$ but also $g_6 \rightarrow g_9$. After removing $g_6 \rightarrow g_9$, g_6 is hanging and can be removed. g_7 becomes a single-input AND and can also be removed.

The circuit shown in Fig. 3 could be a sub-circuit imbedded in a much larger netlist. The set of MAs calculated is not guaranteed to be complete since a complete set would necessitate a full justification back to the primary inputs of the larger circuit. This can be very time-consuming but not necessarily more fruitful, since MAs tend to be found closer to the target wire.

4. Deeper Understanding of RAR

The number of required redundancy tests on candidate wires can be large. In [10], a set of rules are used as filters to screen out impossible candidates. Recently, we proposed a technique which does not require repetitive redundancy tests [5].

We briefly go through the fundamental concepts in [5]. Let w_i be the target wire to be removed and w_a to be a redundant wire that, when added, makes the target wire w_i redundant. w_a is an alternative wire of w_i. On the other hand, w_a can also be viewed as an alternative wire of w_a. By exploring this mutual alternative property, [5] proved that for w_a to be an alternative to w_i, the MA of w_a must result in a conflict on w_a. We may start the uncontrollability and unobservability propagation defined in [16] on w_i and directly capture w_a as a result of the propagation. There is no need to perform repetitive redundancy testing on the set of candidate wires. Up to an order of magnitude of speedup has been observed as a result of this observation.

One may ask: can we explore all possible network transformations just by adding a wire and removing another wire(s)? Affirmative answer was given by Kunz et. al. in [20]. They proved theoretically that given any two equivalent circuits C_1 and C_2, there exists a sequence of wire addition and removal operations which can bring the circuit from C_1 to C_2, or vice versa. This result underscores the significance of the simple wire-addition-and-removal operation.

5. Applications

One main advantage of ATPG-based restructuring technique is that it operates directly on the structural netlist description of the circuit so that the technical consequences of the performed transformations can be evaluated in an easy way, permitting better control of the optimization process with respect to the specific goals. In this section, we briefly discuss some key applications.

5.1 Literal Minimization

Literal minimization is one of the most important goals at the technology-independent level of logic synthesis. Typically, fewer literals implies smaller area and potentially smaller power consumption. SIS [26] is one of the representative logic synthesis systems.

The use of RAR for literal minimization were studied in [13][8][20] culminating in [10]. The idea is that if we could add one wire while removing two or more wires, the literal count decreases. It is shown in [10] that RAR-based technique achieves 14% better results than SIS script. Rugged in terms of the number of literals while using only one sixth of the CPU time and a fraction of the memory compared to SIS.

5.2 Timing Optimization

The major advantage of the redundancy-addition-and-removal technique is that only wires are reconnected while logic gates are preserved. This property is especially desirable in the deep-submicron age, when timing estimation obtained during logic synthesis cannot be justified after placement and routing. Timing can be incrementally corrected through a sequence of rewiring steps guided by accurate physical information. Rewiring minimally perturbs layout and helps in achieving timing closure [3].

Post-layout timing optimization was studied in [17][15]. After global routing has been performed, when the interconnect effect can be accurately modeled, RAR is attempted on critical path wires. If adding a new wire and removing the target wire from the critical path leads to an overall shortened critical path, the move is taken. An algorithm combining buffer insertion and RAR was also proposed [17]. Another post-layout rewiring technique combining functional symmetry and gate sizing was proposed in [4]. In [25], timing optimization was performed by iterating restructuring and placement. Pre-layout timing optimization was studied in [12].

5.3 Power Optimization

Power consumption and speed are two primary cost functions in today’s integrated circuit design. As mobile computation devices prevail in the market, the ability to design fast, low-power devices is of paramount importance. However, these two objectives are often conflicting: a faster circuit consumes more power, but a low-power circuit runs slower. Hence, designers often need to trade off power for speed and vice versa to meet the desired specifications.

Rewiring changes the structure of a netlist and hence affects the switching probability. Effective capacitance, measured by the product of switching probability and the load capacitance, is directly proportional to the power consumption. In [23] and [29], rewiring-based techniques for power optimization were studied.
5.4 Other Applications

RAR can also be used to find Boolean divisors efficiently and to perform substitution [9], to compute local don’t care sets [7], to improve testability [11], and to perform synthesis for engineering change [21]. The problem of simultaneous removal of multiple-redundancies was studied in [6]. RAR based on pattern matching was discussed in [27].

6. Conclusion

In this paper, we have briefly reviewed the fundamental concepts of ATPG in context of applications to logic synthesis. Bridging ATPG and logic synthesis, Redundancy-Addition-and-Removal techniques provide an efficient engine to explore the flexibility in Boolean networks. We have reviewed different approaches from both theoretical and application points-of-view. With low CPU and memory usage, adaptable to a wide array of applications, this technique is a fundamental building block in coping with today’s logical/physical design challenges.

References