
Congestion Minimization During Placement Without Estimation

 Bo Hu and Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106
{hb, mms}@ece.ucsb.edu

Abstract In the presence of white space, routability can be effectively

This paper presents a new congestion minimization technique for
standard cell global placement. The most distinct feature of this
approach is that it does not follow the traditional “estimate-then-
eliminate” strategy. Instead, it avoids the excessive usage of rout-
ing resources by the “local” nets so that more routing resources
are available for the uncertain “global” nets. The experimental
results show that our new technique, SPARSE, achieves better
routability than the traditional total wire length (Bounding Box)
guided placers, which had been shown to deliver the best
routability results among the placers optimizing different cost
functions [2]. Another feature of SPARSE is the capability of
allocating white space implicitly. SPARSE exploits the well
known empirical Rent’s rule and is able to improve the routabil-
ity even more in the presence of white space. Compared to the
most recent academic routability-driven placer Dragon[8],
SPARSE is able to produce solutions with equal or better
routability.

1. Introduction
As one of the traditional placement objectives, congestion mini-
mization has been researched for more than a decade. A place-
ment with good routability not only saves time spent on routing,
it also correlates the timing estimation at the placement stage
with the end result after routing, causing routing to avoid unnec-
essary detours. The importance of good routability is more evi-
dent in deep sub-micron technology where interconnects
dominate the performance, and possibly the area, of a VLSI cir-
cuit. Traditional logic synthesis captures the gate contribution to
the chip area but does not account for the area of interconnects.
Since interconnects tend not to scale with the gates, a design with
minimum area achieved by logic synthesis might not be routable
due to wiring congestion. As a result, the chip size may need
some expansion to provide more routing resources to complete
the design.

To minimize the congestion, numerous approaches have been
proposed in the past years. Most of them [1], [2], [3], [5], [6], [7],
[8], [9]share the same “estimate-then-eliminate” strategy. For
estimation, they apply the probabilistic routing similar to [4] or a
simplified global routing. Performing a detailed routing step is
too CPU-intensive. In the probabilistic approach, each net has
several candidate routes, and the probability of going through a
particular routing edge can be calculated. To eliminate the con-
gestion, [1] includes congestion data into its simulated annealing
based formulation. In [6], the traditional quadratic placement for-
mulation is modified to minimize congestion. In [5], a new multi-
partitioning heuristic is proposed to take into account wire con-
gestion.

improved as shown in [3], [8], [9]. The idea is to spread the cells
in the congested regions so as to reduce the routing resource
demands.

It is generally believed that at the placement level, total-wire-
length cost function correlates well with total routed wire length.
Furthermore, it was shown in [2] that the total-wire-length opti-
mizing placers achieve the best routability results when com-
pared to placers optimizing various other cost functions. To
eliminate the congestion further, [2] proposed a post processing
technique.

Although these previously proposed approaches are effective in
eliminating the congestion, they have not provided an insight into
the question of what netlist structure produces predictable inter-
connects. Thus, they cannot directly guide the logic synthesis to
construct better routable net structures at the logic level.

Another strand of previously proposed approaches for minimiz-
ing congestion have been developed in the FPGA context. In
[12], Rent’s rule is employed to match the routing resource
demands with the real estate supply in order to avoid routing
overflows in local spots. In [13], Rent’s-rule-based clustering and
placement techniques are proposed to efficiently reduce the max-
imum number of tracks required to route the whole design.

In this paper, we present a new congestion minimization tech-
nique for the fixed-die standard cell global placement. The most
distinct feature of this technique is that it does not follow the tra-
ditional “estimate-then-eliminate” strategy. Instead, it avoids
excessive usage of routing resources by the “local” nets so that
more routing resources are available for the uncertain “global”
nets. Our experimental results show that the new placer,
SPARSE, achieves better routability than do the total-wire-length
minimizing techniques. In addition, SPARSE is capable of allo-
cating white space implicitly. SPARSE exploits a well known
empirical Rent’s Rule and produces placement solutions with
equal or better routability than the most recent academic routabil-
ity-driven placer Dragon[8].

The rest of this paper is organized as follows. In section 2, we
define terms and formulate the congestion-driven global place-
ment problem in the fixed-die context. In section 3 we conduct a
thorough analysis of congestion. We propose an approach to the
estimation-free congestion minimization. Section 4 discusses the
Rent’s-rule-based implicit white-space allocation. Section 5
explains our global placer, SPARSE. Experimental results are
given in section 6, followed by conclusions in section 7.

0-7803-7607-2/02/$17.00 ©2002 IEEE

2. Problem Formulation
In this section we first give definitions used throughout this
work, and then formulate the fixed-die standard cell placement
problem.

2.1 Definitions
A die has a core area which consists of a set of rows R for stan-
dard cell placement. Each row r in R defines a number of avail-
able sites S(r). The total number of the available sites for
standard cells, denoted by TS, is the summation of S(r) over all
rows. This is analytically expressed in EQ1.

(EQ1)

The fixed-die context suggests that the sets R and S(r) are fixed
during the placement. The core area is divided into a set of rect-
angular global bins B. We denote the total area of the cells in a
bin b as a(b), and the capacity of b as c(b). For each bin b, we
have the following capacity constraint:

(EQ2)

A placement is called legal when the capacity constraints of all
the bins are satisfied. A global routing graph GRG(N,E) is con-
structed based on this bin structure. Each bin corresponds to a
node n in N and each boundary between two bins defines an
edge e in E. Each routing edge e has a capacity ec(e), which is
the number of routing tracks assigned to e. We use ea(e) to
denote the actual number of nets going through e after routing.
In EQ3 we define the edge overflow eo(e). The total overflow
TO is the summation of eo(e) over all routing edges as stated in
EQ4.

(EQ3)

(EQ4)

Figure 1 illustrates the global bin structure and its corresponding
routing graph. The core area in the figure is partitioned into 4 x 4
bins. In this example, each global bin spans two rows. In the fig-
ure the mapping between a global bin and a node in GRG is indi-
cated by the dashed arrow.

We denote the netlist to be placed by NT(G,NE). G and NE are
the sets of gates and nets respectively. The degree of a net i,
denoted by d(i), is the number of terminals i has. In bin-based
placement, we also define a global degree of a net i, denoted by

D(i), as the number of global bins where i has at least one termi-
nal.

To make placement feasible, the total available sites TS in the
core area must be equal to or larger than the total cell area TA. If
TS is larger than TA, we define White Space(WS) as TS - TA.
Generally, the ratio of White Space in a VLSI design can range
from 0.1% to 30%. We also define white space with respect to a
bin b as ws(b) = c(b) - a(b).

2.2 Problem Formulation
We formulate the congestion-driven global placement problem
as follows:

Given a global bin structure B and the corresponding routing
graph GRG(N,E), place the netlist NT(G, NE) into B such that
the Total Overflow(TO) is minimized while all the bin capacity
constraints are satisfied. TO is computed after global routing has
been performed on the routing graph GRG(N,E).

3. Congestion Analysis
Congestion occurs when routing demand exceeds the routing
resource supply. A feasible placement is one in which the rout-
ing demand matches the routing supply across the chip. As has
been shown in the previous works, minimizing the total wire
length decreases the wire congestion as well. But it is often the
case that local congestions cannot be completely eliminated. The
reason is that the total wire length model captures only the total
routing resource utilization, but has no provision for showing
how local routing resources are being used. The total wire length
minimization tends to cluster the strongly connected cells. As a
result, local routing resources might be in excessive demand. In
such a situation, either the region itself is not routable, or it can-
not provide routing resources for nets attempting to pass through
it. In either case, some nets will have to detour and end up with
longer, unpredictable lengths. If too many nets detour, the final
routed wire length differs considerably from the initial estima-
tion at the placement phase.

To investigate the characteristics of congestion, we have per-
formed the following local congestion analysis. We take MCNC
and IBM placement benchmarks and carry out wire-length
driven global placement and global routing on the global bin
routing graph data structure. Before we analyze systematically
the nature of congestion in the routing edges, we wish to distin-
guish local nets from global ones:

Definition 1: Local Certainty of a routing edge e, denoted by LC(e), is
the number of nets which are going through e and have at least one ter-
minal in either routing node incident to e. Each net i contributing to
LC(e) is referred to as a Local Certainty Net, or simply a local net, with
respect to the routing edge e.

Definition 2: Global Uncertainty of a routing edge e, denoted by GU(e),
is the number of nets which are passing through e and do not have any
terminal in either routing node incident to e. Each net i contributing to
GU(e) is referred to as a Global Uncertainty Net, or simply, a global net,
with respect to the routing edge e.

We note that our concept of the local and global nets differs from
the traditional one. It is possible that a short net is actually global
with respect to some routing edge. At the same time, a long net
must be local with respect to the edges which are incident to its
terminals.

TS S r()
r
∑=

a b() c b()≤

eo e() 0 ea e() ec e()≤
ea e() ec e()– ea e() ec e()>




=

TO eo e()
e
∑=

 global bin structure

ec(e)
ea(e)

 global routing graph

Fig. 1: Global Bin Structure and Corresponding Global Routing
Graph
 2

Based on the previous definitions, we introduce the concept of
global uncertainty of a design.

Definition 3: Global Uncertainty of a placed and routed design, denoted
by GU, is the summation of GU(e) over all routing edges e.

We also refer to the total number of routing tracks consumed by
the Local Certainty Nets and Global Uncertainty Nets as the
Local Certainty Net Consumption and Global Uncertainty Net
Consumption, respectively.

After the placement and routing, we collect Local Certainty and
Global Uncertainty information on each routing edge and list
their average ratios in Table 1. In this investigation, each bin

contains approximately 10~30 cells.

The data in Table 1 suggest that for each routing edge, on the
average, Local Certainty Nets consume the majority of routing
resources. We also observe that the Local Certainty Nets are
more predictable than the Global Uncertainty Nets. For a given
routing edge e and a net contributing to LC(e), we instantly
know that this net has at least one terminal in either one of two
routing nodes incident to e. These observations motivate us to
focus on the Local Certainty Nets for congestion minimization.
The idea is to suppress the Local Certainty Net Consumption
while keeping the Global Uncertainty Net Consumption approx-
imately the same. By doing this, it is possible to achieve the fol-
lowing two objectives: (1) More Global Uncertainty Nets can be
accommodated in a local region, since the Local Certainty Net
Consumption in this region is reduced; (2) More freedom can be
provided to accommodate the Global Uncertainty Nets. For
instance, a global net could have more candidate routes, since
overall the Local Certainty Net Consumption is reduced. It is
worth mentioning that by restricting Local Certainty Net Con-
sumption, we must not let the Global Uncertainty grow in an
uncontrolled manner. If not, the growth of the Global Uncer-
tainty might overwhelm the benefits of the Local Certainty
reduction.

Based on this analysis, we propose to optimize the Local Cer-
tainty Net Consumption in order to reduce the congestion. How-
ever, applying the model developed so far, we would still need to
predict the routes for all the nets to determine LC(e) and GU(e)
for the routing edges. To eliminate completely the necessity of
route prediction, we take the following bin-centric, instead of
edge-centric, perspective.

Definition 4: A Local Certainty of a global bin b, denoted by LC(b), is
the number of nets which have at least one terminal in b and at least one
terminal outside b. Similarly, each net contributing to LC(b) is referred
to as a Local Certainty Net, or simply a local net with respect to bin b.

Since the Local Certainty Nets with respect to a bin have to pass
through one of the four adjacent routing edges to reach other ter-
minals, restricting the Local Certainty of a global bin is equiva-
lent to restricting the total Local Certainty of its adjacent routing
edges. We prefer LC(b) over the LC(e) because LC(b) is much
easier to maintain and, more importantly, no probabilistic pre-
dictions are required for computing it.

4. Rent’s-Rule-Based Implicit White Space
Allocation

In the presence of white space, a simple total-wire-length-based
placement tends to cluster cells as close as possible to minimize
the cost function. As a result, this cost function is unable to
effectively exploit the potential of available white space for con-
gestion improvement. This also explains why previous
works[8][9] handle white space allocation using a partitioning-
based approach instead of total wire length as the optimization
metric.

In the 1960s, several researchers independently discovered that
an exponential relationship exists between a block of logic gates
and the IO terminals it needs to communicate with the external
gates. This relationship is called the Rent’s rule and is stated in
EQ5.

(EQ5)

In EQ5, K is the average number of terminals per gate, and B is
the number of gates in a logic block. I gives the number of termi-
nals required by the logic block for external communication, and
this requirement is controlled by the exponent p, called the
Rent’s Parameter. It was shown that p is a measure of the
design’s interconnect complexity. In general, the larger p is, the
more routing resources are required for the same amount of
logic.

The Rent’s rule says that a certain number of IO terminals are
expected by a block of logic gates. For example, if we are given
a design which is characterized by Rent’s Parameter p and pick a
logic block, the expected number of interconnects originating
from this logic block is given by the Rent’s Rule. In this case, we
derive the number of IO terminals from the number of gates. On
the other hand, we can also rewrite EQ5 into a form shown in
EQ6, which expresses the number of gates, B, as a function of
the number of IO terminals, I.

(EQ6)

The equation above determines the number of gates, or the logic,
from the given number of IO terminals I and the Rent’s Parame-
ter p. This mutual dependency between the number of logic
gates and IO terminals suggests that in our bin-based placement,
if we restrict (or reduce) the IO terminals of a bin b, LC(b), we
expect the number of logic gates in b to be reduced as well. This
observation enables us to take a net-centric point of view in allo-
cating the white space, which is different from the approaches in
previous works which focus on logic gates. To allocate white
space in a bin b, some logic gates assigned to b have to move
outside of b. Instead of explicitly restricting the use of silicon in
b, we exploit the intrinsic relationship between the logic and IO
terminals, and try to restrict the use of IO terminals in order to
lower the complexity of the internal logic.

Local
Certainty (%)

Global
Uncertainty(%)

biomed 79% 21%

industry2 79% 21%

ibm01 77% 23%

ibm02 67% 33%

Ave 75.5% 24.5%

TABLE 1. Local Certainty vs. Global Uncertainty

I KB
p

=

B I
K
---- 

 
1
p

=

 3

5. SPARSE: A Congestion Driven Global Placer
Following the analysis in sections 3 and 4, we propose the con-
gestion minimization technique which does not require probabi-
listic routing estimation. The idea is to restrict (evenly
distribute) routing resources consumed by the Local Certainty
nets so that the unpredictable Global Uncertainty nets can be
accommodated better. In the presence of white space, our tech-
nique exploits the intrinsic relationship between the interconnect
and logic utilization (as discussed in section 4), and allocates the
white space implicitly. Our new placer, SPARSE, is based on a
simulated annealing algorithm and a novel cost function which
is derived from the traditional total-weighted wire-length. In sec-
tion 5.1, we first give the cost function template with an unspec-
ified parameter - Sparse parameter. Then in section 5.2 we show
how the Sparse parameter can be determined.

5.1 The Cost Function Template
We begin with the traditional total-weighted wire-length-based
cost function stated in EQ7.

(EQ7)

In the cost function above, BB(i) is the half-perimeter of the
net’s i bounding box, is the adjustment factor for the multi-
ple-pin nets. In case of timing optimization, can also be used
to favor timing critical nets.

For each global bin b we compute a parameter called the Sparse
Parameter . Using , we modify EQ7, which
becomes EQ8:

(EQ8)

In EQ8, D(i) is the global degree of a net i. The average value of
 over all global bins where the net i has terminals, is used

as an extra weight imposed on it. As a result, the modified ver-
sion makes it more desirable that the terminals of a net are
placed inside the global bins with low Sparse Parameter. If

 is designed to characterize the Local Certainty LC(b), the
cost function in EQ8 favors a solution with more balanced LC(b)
distribution. For example, for the net i in figure 2, the new cost-
function-based optimization will prefer the first topology instead
of the second one, although the two topologies have exactly the
same wire length. In the first topology, the terminal t is placed in

a bin with smaller LC(b). Supposing that each boundary between
bins could accommodate only one routing track, it is clear that

the second topology would make the design unroutable, while
the first one would be routable.

5.2 Deriving Sparse Parameter Ps(b)

To derive , we start with the following requirements:

(1) should reflect the Local Certainty LC(b). Since our
goal is to restrict the Local Certainty LC(b), it is straightforward
that should be designed such that restricting leads
to the restriction of LC(b).

(2) should be correlated with Global Uncertainty. A rout-
ing track, if occupied, is either consumed by a Local Certainty
Net or a Global Uncertainty Net. The restriction of LC(b) leads
to a more evenly distributed Local Certainty Net Consumption,
and as a result, more routing tracks are available around the
regions where it is reduced. These newly available tracks can be
used to accommodate Global Uncertainty Nets, but in order to
minimize congestion, we must make sure that the growth of Glo-
bal Uncertainty is not going to overwhelm the newly available
routing resources. Since Global Uncertainty is correlated with
the total wire length, minimization of the new cost function in
EQ8 should not disturb the total wire length in an uncontrolled
manner. For example, suppose that a routing edge e with total 10
tracks(ec(e) = 10) has initially 8 Local Certainty nets and 3 Glo-
bal Uncertainty nets. The overflow eo(e) = 8 + 3 - 10 = 1. Sup-
pose that by restricting the Local Certainty consumption, we
manage to reduce 8 Local Certainty nets to 6, while Global Cer-
tainty net count increases by 1. As a result, overflow is elimi-
nated, since eo(e) = 6 + 4 - 10 = 0.

It is clear that LC(b) can be used as because LC(b) trivi-
ally fulfills the first requirement. But a simple LC(b) based

 does not satisfy the second requirement. The following
example illustrates the reason:

In figure 3, LC(b) based metric gives the same value for
bm and bn, since LC(bm) = LC(bn). But the two cases have dif-
ferent effects on Global Uncertainty. The first case is more desir-
able because it does not increase the Global Uncertainty whereas
the second case does. This example also demonstrates the corre-
lation between wire length and Global Uncertainty. Increased
wire lengths lead to increased Global Uncertainty.

This observation motivates us to take into account not only
LC(b), but also the length of each net i contributing to LC(b). As
a result, we choose a weighted sum of wire length as a base
value to derive .

(EQ9)

In EQ9, the wire length is weighted by its own degree d(i).
Essentially, it means that small-fanout nets are prioritized to

CF wiBB i()
i
∑=

wi
wi

Ps b() Ps b()

CF ′ wi

Ps b()
b i∈
∑

D i()

 
 
 
 

BB i()
i

∑=

Ps b()

Ps b()

i t i

t

Fig. 2: An example for new cost function

Ps b()

Ps b()

Ps b() Ps b()

Ps b()

Ps b()

Ps b()

LC(bm) = 2 LC(bn) = 2
 bnbm

Fig. 3: Same LC(b) with different GU contribution

Ps b()

Ps b()

WS b()
wiBB i()

d i()

i LC b()∈
∑=
 4

reduce the wire length. This weighting scheme is also consistent
with the fanout distribution in a typical design, since small-
fanout nets constitute a majority of total nets. In the meantime,
for the same net, the smaller wire length suggests smaller WS(b)
value. In addition, WS(b) correlates with LS(b) in that the fewer
the number of nets in LS(b), the fewer the number of nets
counted in EQ9. These observations suggest that WS(b) is a pos-
sible candidate to serve as .

It should be noted that in our current implementation, WS(b)
captures only the nets contributing to LC(b). It ignores the nets
totally absorbed inside global bins. The reason is that our global
router counts only the overflow on the routing edges. But it is
not hard to consider those “hidden” nets. For example, we could
use pin density measure proposed in [9] to adjust WS(b) such
that the more “hidden” nets there are, the larger will WS(b) and
thus become.

It is also worth mentioning that our new cost function is taking
an interconnect-centric point of view. Consequently, the timing
optimization can also be integrated into our scheme. For exam-
ple, in EQ8 and EQ9 can be adjusted to reflect timing criti-
cality.

We choose as a final , a function of the form

 which maps WS(b) to . This function,
called the Sparse Function, is shown in Figure 4.

In figure 4, , , and represent the minimum,

average and maximum WS(b) values respectively, and these val-
ues are obtained from an initial global placement. The decision
to start from an initial placement is based on the fact that the
core algorithm in SPARSE is simulated annealing. For very
large benchmarks, it takes SPARSE a long time to finish if we
perform placement from scratch. Moreover, the global place-
ment problem has been well researched and several fast
approaches have been proved effective. These include min-cut
based, like Capo[11], and quadratic programming based, like
Gordian[10]. For this reason, we consider SPARSE to be more
of an intermediate step between global and detailed placement.

, , and are user-defined. These three points,
(,), (,), and (,), jointly

determine the parameters, a, b and p in Sparse Function. In
SPARSE, we deliberately introduce two distinct regions in the
curve. Region I has a sharper slope. It corresponds to our optimi-
zation goal that penalizes excessive routing-resource usage by
LC(b). Region II becomes flat as expected because the final cost
function should converge to total wire length if LC(b) is rela-
tively evenly distributed.

Once the Sparse Curve is determined, we build a look-up table
to retrieve value for a given WS(b). In the process of
annealing, WS(b) and are incrementally updated.

6. Experimental Results
To experiment with SPARSE, we first set up a design flow as
shown in Figure 5.

In the figure above, Capo[11] is called to deliver an initial global
placement for SPARSE. WL is the traditional total-wire-length-
based optimization using the cost function stated in EQ7. WL
and SPARSE both take the initial global placement from Capo
and perform low-temperature annealing optimization.

After placement optimization, the results from Capo, WL and
SPARSE are fed into the Labyrinth global router downloaded
from [14]. The routing results are noted for congestion analysis
and comparison.

The benchmarks we use are MCNC Benchmarks and IBM
Placement benchmarks available at [14]. The first three columns
in Table 2 give the statistics for benchmarks used in the experi-
ments. The fourth column shows the global bin structure for
each benchmark. Each global bin contains roughly 10 to 20 stan-
dard cells. All the experiments are conducted on a 800Mhz Pen-
tium III processor with 512M memory. CPU times are reported
in minutes.

6.1 Placement Without White Space
The first experiment is used to show that SPARSE delivers a glo-
bal placement with better routability if no extra space is avail-
able, that is, WS = 0. In the experiment, , , and

 are set to 0.1, 0.5 and 2.5 respectively. The results are
listed in Table 2.

Data in Table 2 suggest that WL and SPARSE achieve remark-
able routability improvement as compared to Capo, since both
WL and SPARSE take into account minimization of the Global
Uncertainty. In addition, SPARSE is able to obtain even better
results than WL. It is interesting that SPARSE actually achieves
better total wire length after global routing than WL. For exam-
ple, consider Table 2, and in particular, the data for benchmark
ibm04. The pre-route estimation of the total wire length from
WL is 141328 and from SPARSE is 145698, but after global
routing, the total wire length of SPARSE is 92333 while that of
WL is 98804, 7% larger than that of SPARSE. This indicates that
SPARSE can achieve better routability with fewer nets detour-

Ps b()

Ps b()

wi

Ps b()

SP x() ax
p

b+= Ps b()

WSave WSmax

 Psmax

 Psave

Psmin

WSmin

 I

 II

WS(b)

 Ps(b)

Fig. 4: Sparse Function: WS(b) to Ps b()

WSmin WSave WSmax

Psmin Psave Psmax

WSmin Psmin WSmin Psmin WSmin Psmin

Ps b()
Ps b()

Capo Placement

 WL SPARSE

 Labyrinth Global Routing

 MCNC, IBM Placement Benchmarks

Routing Result Comparison

Fig. 5: SPARSE design flow

Psmin Psave

Psmax
 5

ing. Of course, since we have a much more complex cost func-
tion to update, CPU times are increased by 2 to 3 times.

6.2 Placement With White Space
The second experiment is conducted to show that SPARSE has a
capability to implicitly allocate white space whereas WL does
not.

Figure 6a, 6b show the area utilization results from WL and
SPARSE for IBM benchmark ibm03. In figure 6a we observe
that WL packs blocks very densely to minimize the total wire
length. In contrast, SPARSE controls implicitly the logic utiliza-
tion and results in a more sparse placement as shown in figure
6b.

To demonstrate the quality of the white space insertion, we con-
duct another experiment, which compares SPARSE with evenly
distributed white space in WL. In other words, during the WL
placement, we fix the same amount of white space into each glo-
bal bin and prohibit cells to occupy it. The total white space for
each benchmark is approximately 16% - 18% of the total core
area.

Results in Table 3 suggest that SPARSE consistently produces
placement solutions with better routability and less total wire
length after routing. The white space allocation by SPARSE
helps routability more than the evenly distributed white space
helps WL. Examining the results in Table 2, we note that
SPARSE eliminates all the overflows with the aid of the white
space and produces routable designs.

We also compare our results with the recent academic placer
Dragon[8]. In [8], white space is intelligently allocated based on
the congestion estimates. We use the same benchmarks as in [8].
For each benchmark, the white space ratio is listed in the second
column in Table 4. The experiment setup is shown in Figure 7.

We first compare SPARSE with Dragon. As in the previous
experiments, we start SPARSE from the initial placement from
Capo. In table 4, we show the comparison between Dragon (Dr)
and Capo + SPARSE (Ca+SP). We set the routing edge capacity
to a value such that the placement result by SPARSE is nearly
routable, and report the routing result for the placement from
Dragon. It can be seen that SP from Capo initial placement can
achieve much better routability than Dragon under the same

Fig. 6a:WL-based placement Fig. 6b: SPARSE placement

total Half
Bounding Box

wire length overflow
total wire length

after routing

WL SP WL SP WL SP

bio 5015 4960 13 0 7460 7007

ind2 20948 20991 15 0 27282 26072

ind3 40831 41033 0 0 48579 46759

avqs 15396 14763 6 0 17205 15947

ibm03 57770 56901 109 0 78623 71966

ibm04 91938 91826 56 0 100122 93246

Total 231898 230474 199 0 279271 260997

TABLE 2. SPARSE vs. WL with evenly distributed WS

#gate
s #nets

bin
strut

total Half Bounding Box
Wire length #overflow

end wire length after
routing CPU(m)

Capo WL SP Capo WL SP Capo WL SP WL SP

bio 6417 5742 16x21 6033 4666 4720 244 165 40 8211 7458 6771 16 x2.5

ind2 12142 13419 20x32 24690 19178 19565 455 162 54 31821 25591 24419 41 x2.5

ind3 15059 21940 25x32 46683 37089 38324 632 35 28 55083 46020 45214 65 x2.4

avqs 21854 22124 28x41 20457 14879 14913 1250 60 29 24509 17983 17183 80 x2.5

ibm03 22207 21621 32x36 64845 56714 57645 796 131 23 88908 77941 71129 87 x2.8

ibm04 26633 26163 32x43 80561 70664 72849 1204 93 0 111643 98804 92333 121 x2.9

Total 243269 203190 208016 4581 646 174 320175 273797 257049

TABLE 3. congestion minimization comparison between Capo, WL(total wire length based), and SPARSE (SP) with WS = 0

 Capo Placement

 S PA R S E

 Labyrinth Global Routing

 IBM Placement Benchmarks

Routing Result Comparison

 Dragon

SPARSE

Fig. 7: SPARSE vs. Dragon
 6

routing capacity constraint. The total overflow is reduced from
881 to 112. Moreover, the total wire length is reduced accord-
ingly. For SPARSE, CPU times are increased by 2 to 5 times
compared to Dragon. The run time can be improved by design-
ing a more efficient updating of SPARSE cost function during
annealing process.

As shown in figure 7, we also experimented with Dragon +
SPARSE flow. Table 4 list the results from Dragon + SPARSE
(Dr + SP). It can be seen that Dr + SP flow is better than Capo +
SP in terms of both routability and total routed wire length. The
results are consistent with those in [8] where Dragon is able to
produce a placement with better routability and total wire length
than Capo. When combining Dragon and SPARSE, the total
overflow is reduced from 881 (by Dragon only) to 24 and the
total wire length is from 479235 to 398999 (16%). These results
suggests that SPARSE could be inserted into the existing place-
and-route flows for both routability and wire length improve-
ment.

7. Conclusion
In this paper, we have proposed a novel congestion minimization
technique, which does not require probabilistic routing or any
prior congestion estimation. Experiments show that our new
technique achieves better routability and shorter total wire
length than Capo[11], Dragon[8], and the traditional total-wire-
length-based approach. Compared to the previous works, our
technique is less layout-dependent and as a result, can provide
more direct guidance for routability-driven logic optimization.
Furthermore, because our new technique takes an interconnect-
centric point of view, it can be smoothly integrated into a timing
optimization flow.

8. Acknowledgments
The authors gratefully acknowledge support by MARCO/
DARPA Giga Scale Research Center. The authors also thank
Xiaojian Yang from UCLA for his help in the experiments.

References
[1] C.-L. E. Cheng. “RISA: Accurate and Efficient Placement Routabil-

ity Modeling”. Proc. International Conference on Computer-Aided
Design, pp. 690-695, 1994.

[2] M. Wang, X. Yang, and M. Sarrafzadeh. “Congestion Minimization
During Placement”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems”, vol. 19, no.10, pp.1140-1148,
2000.

[3] W. Hou, H. Yu, X. Hong, Y. Cai, W. Wu, J. Gu and W. H. Kao. “A
New Congestion-driven Placement Algorithm Based on Cell Infla-
tion”. Proc. Asia and South Pacific Design Automation Conference,
pp. 605-608. 2001.

[4] J. Lou, S. Krishnamoorthy, and H. S. Sheng. “Estimating Routing
Congestion Using Probabilistic Analysis”, Proc. International Sym-
posium on Physical Design, pp. 112-117, 2001.

[5] S. Mayrhofer and U. Lauther. “Congestion-driven Placement Using
a New Multi-partitioning Heuristic”, Proc. International Conference
on Computer-Aided Design, pp. 332-335, 1990.

[6] P. N. Parakh, R. B. Brown, and K. A. Sakallah. “Congestion Driven
Quadratic Placement”, Proc. Design Automation Conference, pp.
275-278, 1998.

[7] X. Yang, R. Kastner, and M. Sarrafzadeh. “Congestion Reduction
During Placement Based on Integer Programming”, Proc. Interna-
tional Conference on Computer-Aided Design, pp.573-576, 2001.

[8] X. Yang, B-K. Choi, M. Sarrafzadeh. “Routability Driven White
Space Allocation for Fixed-die Standard-cell Placement”, Proc.
International Symposium on Physical Design, pp. 42-47, 2002.

[9] A. Rohe, U. Brenner. “An Effective Congestion Driven Placement
Framework”, Proc. International Symposium on Physical Design,
pp.6-11, 2002.

[10]J.M. Kleinhans, G.Sigl, F.M. Johannes and K.J. Antreich, “GORD-
IAN: VLSI Placement by Quadratic Programming and Slicing Opti-
mization”, IEEE Trans. CAD, vol. 10, no.3, Mar 1991, pp.356-365.

[11]A.E. Caldwell, A.B. Kahng, I.L. Markov, “Can Recursive Bisection
Alone Produce Routable Placements?”, Proc. Design Automation
Conference, pp.477-482, 2000.

[12] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, A. Singh,
“Interconnect-Complexity Aware Placement for FPGA using Rent’s
Rule”, Proc. of 3rd System Level Interconnect Prediction WorkShop ,
pp.23-30, April, 2001.

[13]A. Singh, G. Parthasarathy, M. Marek-Sadowska, “Interconnect-
Resource Aware Placement for hierarchical FPGAs”, Proc. Interna-
tional Conference on Computer-Aided Design, pp.132-136, 2001.

[14] “http://gigascale.org/bookshelf ”.

ws%

total Bounding Box wire
length #overflow end wire length after routing

placement
CPU(m)

Dr Ca+SP Dr+SP Dr Ca+SP Dr+SP Dr Ca+SP Dr+SP Dr Ca+SP

ibm01-e 14.8% 23962 18752 18953 160 0 0 30930 22633 21076 16 x4.1

ibm01-h 12% 23560 17878 18375 275 19 0 30329 22122 20725 15 x4.2

ibm02-e 9.6% 67143 60491 62208 0 0 0 81266 72539 72188 40 x3.8

ibm02-h 4.7% 62337 60139 57471 0 45 0 77195 76973 68575 63 x2.5

ibm07-e 10.0% 95906 100777 90043 391 0 24 127847 131239 111718 42 x5.5

ibm07-h 4.7% 101377 98635 93603 55 48 0 131668 121772 104717 43 x5.4

Total 374285 356672 340653 881 112 24 479235 447278 398999

TABLE 4. Congestion minimization comparison between SPARSE and Dragon[8], in the presence of white space
 7

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

