
GSTE Through A Case Study

Jin Yang
Strategic CAD Labs, Intel Corp.

jin.yang@intel.com

Amit Goel
ECE, Carnegie-Mellon University

agoel@ece.cmu.edu

Abstract

Generalized Symbolic Trajectory Evaluation (GSTE) [17, 18,
19] is a very significant extension of STE that has the power to
verify all ω-regular properties but at the same time preserves
the benefits of the original STE [16]. It also extends the sym-
bolic quaternary model used by STE to support seamless model
refinement for efficiency and accuracy trade-off in GSTE model
checking. In this paper, we present a case study on FIFO ver-
ification to illustrate the strength of GSTE and demonstrate its
methodology in specifying and verifying large scale designs.

1 Introduction

STE is a model checking technique based on a form of qua-
ternary symbolic simulation [16, 9]. It has shown great promise
in verifying medium to large scale industrial hardware designs,
with a high degree of automation and at both the gate level and
the transistor level. STE has been in active use at Intel, Compaq,
IBM, and Motorola. In Motorola, it has been used to verify sev-
eral memory units, some with millions of transistors [14, 15, 13].
In Intel, it has been used, for instance, to verify a floating point
arithmetic unit against the IEEE standard 754 [12], and to ver-
ify a complex IA-32 instruction length decoder unit with 12,000
gates and 1100 latches [2].

Despite its efficiency, STE is very limited in the kinds of prop-
erties it can handle. Any property spreading over an indefinitely
long time interval cannot be expressed in STE, let alone be ver-
ified. Further, any property requiring backward reasoning is be-
yond the reach of STE as the nature of simulation only allows
constraints to be propagated forward.

In recent years, several efforts have been made to extend
the expressiveness of STE. The first such work was proposed
by Seger and Bryant in [16], where they introduced non-nested
loops into STE assertions. In [3], Beatty proposed a more gen-
eral extension of STE assertions by introducing a form of la-
beled transition graphs where each vertex is associated with an
antecedent and a consequent. In [10], Jain developed a gener-
alized STE algorithm to model check this form of generalized
STE assertions, which was mathematically clarified by Chou in
[6]. This work, however, has two major limitations. First, it does
not support backward reasoning, making it very difficult, if not
impossible, to use assumptions in the future or at the output of a
circuit. Second, it is built on the same symbolic quaternary sim-

ulation mechanism as in STE, making it impossible to support
arbitrary boolean constraints and model refinement.

The work in [17, 18, 19] significantly advanced previous
state-of-the-art. The contributions are twofold. First, STE was
extended with backward simulation and further generalized to
verify all ω-regular properties. Second, the symbolic quater-
nary model was extended to work with sets of quaternary as-
signments. Such an enhancement provides a great deal of flexi-
bility in choosing the right abstraction level for a circuit in GSTE
to achieve model-checking efficiency while avoiding excessive
over-approximation.

We do not intend to cover all the aspects of GSTE in this
paper. Instead, we illustrate the essence and usage of GSTE
through a FIFO verification case study. In Section 2, we provide
a brief introduction to GSTE and the symbolic quaternary model.
In Section 3, we give motivations for selecting the FIFO verifica-
tion as our case study and describe what we want to accomplish.
In Section 4, we discuss previous similar work in [4, 11], and
point out the advantages of GSTE in supporting implementation-
independent specifications and making verification more effi-
cient and more productive. In Section 5, we develop a high level
FIFO specification using an assertion graph, the specification
language for GSTE, and show how to refine it to meet various
design requirements. In Section 6, we demonstrate GSTE model
checking through several examples. In particular, we discuss an
extension to the symbolic quaternary model to handle symbolic
sets of quaternary assignments, and show it enables model re-
finement in GSTE model checking. In Section 7, we present the
experimental results on verifying several FIFO implementations
with different sizes. The results show only a near linear increase
in memory consumption with respect to the depth of a FIFO. We
also show one data point from real life FIFO verification. All
verifications were done on the original unpruned gate-level RTL
models. In Section 8, we briefly discuss the relation of GSTE
to classic symbolic model checking. We conclude the paper in
Section 9.

2 GSTE Overview

We first introduce a simple circuit model. A circuit consists of
a set of boolean nodes N, which is partitioned into two sets: state
nodes NS and input nodes NI . A state is an assignment to all the
nodes in N. There is a next state function χn

�
N � for each node

n � NS. The set of next state functions defines how the circuit

0-7803-7607-2/02/$17.00 ©2002 IEEE

transitions between states. The transition can also be defined by
the equivalent transition relation R

�
N,N ������� n 	 NS

�
n �
� χn

�
N ��� ,

where N � is a copy of N to hold the values for N after the transi-
tion and n ��� N � is the copy of n. A state trace is a state sequence
such that every pair of consecutive states in the sequence satisfies
the transition relation.

In GSTE, a specification is expressed as an assertion graph.
An assertion graph is a quintuple G � �

V ,v0,E,ant,cons � , where
V is a set of vertices with v0 being the initial vertex, E is a set
of directed edges, ant and cons are functions that map each edge
to a state predicate called antecedent and a state predicate called
consequent, respectively. A circuit satisfies the graph, if for ev-
ery path in the graph from the initial vertex and every state trace
in the circuit of the same length, if the trace satisfies the an-
tecedent sequence on the path, then it also satisfies the conse-
quent sequence on the path.

The expressiveness of assertion graphs can be further en-
riched with terminal conditions and fairness conditions that limit
the kinds of paths to be examined. In the former case, only paths
that end at a terminal vertex are checked. In the latter case, only
fair infinite paths are checked, and it can be proven that such an
extension has the expressive power of the ω-regular languages.
Further, the algorithm described below has been generalized to
model check the two extensions. For an in-depth treatment of
GSTE, we refer the reader to [17, 18, 19].

To model check an assertion graph against a circuit, we first
compute a simulation relation that maps each edge e in the graph
to a set of circuit states sim

�
e � . A state s is in sim

�
e � , if some

trace leading to s satisfies the antecedent sequence on some path
from the initial vertex to the edge e. Once the computation is
done, we check the consequent on each edge e to see if it is
satisfied by every state in sim

�
e � . Figure 1 lists the entire GSTE

algorithm, where post is the post-image function of a state set
S
�
N � given by post

��
S
�
N ������ N.S

�
N ��� R

�
N,N � � , i.e., the set

of states reachable from a state in S
�
N � in a single transition. It

can be proven that the algorithm returns true if and only if the
circuit satisfies the assertion graph.

Although the algorithm in Figure 1 can be implemented using
a BDD-based symbolic technique, building transition relations
and working on precise sets of circuit states are very sensitive
to the state explosion problem. GSTE significantly alleviates
the problem by using the symbolic circuit simulation technique
in STE [5] to compute the sets of next states, and doing so on
the quaternary abstraction of the circuit, where each node in the
circuit has the four values � 0,1,X , ��� . X denotes an unknown
and � an over-constraint. Besides the quaternary generalization
of the boolean operations, two new operations are defined: the
least upper bound � and the greatest lower bound � of any two
quaternary values. It should be pointed out that we are using a
slightly different partial order than was used in the original STE
theory [16]. We place X at the top and � at the bottom. The
reason for this is that we can then interpret X as the set � 0,1 �
and � as /0. As a result, the least upper bound � corresponds
to the set union and the greatest lower bound � corresponds to
the set intersection. Figure 2 lists the truth tables for the basic
quaternary operations.

Algorithm: GSTE
�
G,post �

(* initialize simulation relation computation *)
1. for each edge e in the assertion graph G
2. if e is from the initial vertex
3. sim

�
e � := ant

�
e � ;

4. put e into the event queue;
5. else
6. sim

�
e � := /0;

(* perform simulation relation computation *)
7. while the event queue is not empty
8. get an edge e from the queue;
9. for each successor edge e � of e
10. sim

�
e � � := sim

�
e � ��� post

�
sim

�
e ���� ant

�
e � � ;

11. if there is a change in sim
�
e ���

12. put e � into the event queue;
(* check consequents *)
13. for each edge e in the graph
14. if sim

�
e ���� cons

�
e �

15. return(false);
16. return(true);
end.

Figure 1. GSTE Algorithm

X 0 1 T

X X X T

T

T1

T

0

1

T T T

1

1

T

|

0 1X

1

X X

0

1

T T

!

1

0

X 0 1 T&

X X 0 T

0 T

T0X

T

0

1

T

0

T T

X

0

1

T

X 0 1 T

X X 0 T

T

TT

T

0

1

T T T

1

1

T

0 T0

1

X 0 1 T

X X X X

0

1X

T

0

1

T X 0

X

1

1

XX 0

X

Figure 2. Quaternary Operations

Any state set in the circuit can be represented either precisely
or approximately by a quaternary assignment to the nodes in the
circuit. A node has a boolean value in the quaternary assignment
if it has the same boolean value in every state of the set. Other-
wise, it has value X . The empty set is represented by assigning �
to one or more nodes depending on where the conflict occurs in
the circuit. With this abstraction, the state space becomes much
smaller, and all operations become much more efficient. For in-
stance, the intersection � (union �) of two state sets becomes a
bit-wise � (�) of the two corresponding quaternary assignments.
The post-image function becomes the bit-wise quaternary gener-
alization of the next state functions together with X for the input
nodes.

It was shown in [6] that the quaternary model of a circuit is
essentially an abstract interpretation of the boolean model via a
Galois connection [8].

The quaternary model can be made symbolic by allowing a
quaternary assignment to take boolean functions over symbolic
constants [5, 9] as its values. All the quaternary operations can
be easily extended to handle such symbolic quaternary assign-
ments. To be model checked in this quaternary model, an asser-
tion graph must express its antecedents and consequents using
symbolic quaternary assignments. However, such a symbolic
assignment can only capture a very limited set of boolean con-

straints among signals along an arbitrary path in the graph, since
a symbolic constant would take the same value whenever it is
mentioned on the path. In Section 6, we shall propose an ex-
tension to the symbolic quaternary model that will completely
eliminate this limitation.

3 FIFO Case Study

A FIFO is a very common data structure in microprocessor
design. Despite being a simple and well-understood subject in
textbooks, the design and implementation of a FIFO in a micro-
processor can be very complex and diversified. At minimum, a
FIFO can be implemented as either a circular stationary structure
or a marching buffer with a fixed back-end. Sometimes the im-
plementation is embedded in a memory. In many situations, the
data entries in a FIFO are split into many parts, either logically or
physically, and are mingled with other parts of the microproces-
sor. Each part may be implemented differently. As an example,
a wide datapath element may be split so that only its identifier
goes through the FIFO, while the rest is stored in a content ad-
dressable memory (CAM) and is picked up and assembled when
the element comes out of the FIFO.

Additionally, a FIFO may need to satisfy different design
requirements. For instance, data elements may have variable
lengths. Some computation could happen to a data element
while it is in a FIFO, either changing some of its attributes or
adding new attributes. Data may arrive and depart a FIFO at
different rates and under different conditions. A FIFO may con-
tain multiple slots to support parallelism. Timing is yet another
complication factor.

Given these facts, FIFO verification makes a very good case
study to demonstrate the strength of GSTE and develop its prac-
tical methodology. In particular, we would like to achieve three
goals in this case study: (1) to develop a high level GSTE speci-
fication for the standard FIFO which can then be refined to meet
different design requirements, (2) to make sure that a refined
specification is as implementation-independent as possible, i.e.,
describing what an implementation should do rather than how it
does it, and (3) to make sure that GSTE is capable of efficiently
model-checking such a specification.

We consider several FIFO implementations for this case
study. We start with the two basic FIFO implementations. In
the marching implementation, the element at the head of the
FIFO is read out during every dequeue operation and all other
elements in the FIFO shift one entry toward the head (Figure 3
(1)). The stationary implementation is a circular structure with
head and tail pointers. On a dequeue operation, an element is
read from the entry pointed to by the head pointer which is then
incremented (Figure 3 (2)). In both implementations, an element
is enqueued to the entry pointed to by the tail pointer which is
then updated.

Using these two implementations, we show how a high level
FIFO specification can be developed independent of any imple-
mentation and yet can still be efficiently model checked against
by making non-data-path state elements precise. We discuss a
key technique called extended symbolic quaternary model that

demux
tail

din

reset

full

enq deq

empty

dout

(1) marching

demux
tail

din

reset

full

enq deq

empty

dout

head
mux

(2) stationary

Figure 3. Two Implementations of FIFO

overcomes the coarseness of the original symbolic quaternary
model and enables seamless model refinement.

We further consider a more complex variation of the FIFO
where every entry has two slots (Figure 4). The double-slot
FIFO is derived from a real industrial design. There are two
rows of data in the FIFO and each enqueue operation involves
two data inputs, din0 and din1. Each input can be directed to ei-
ther row, depending on the row selection signals row0 and row1.
It is possible that both are written to the same row, thereby cre-
ating bubbles in the other row. If both inputs are written to the
same row, din0 should be written ahead of din1. When we try to
dequeue from a non-empty FIFO, we may get either one or two
data outputs depending on the presence or absence of a bubble.
Signal valid0 is low if a bubble is read from the top row, and
valid1 is low if a bubble is read from the bottom row.

clk

enq

full

row0

row1

din0

din1

deq

dout0

dout1

valid0

valid1

reset

Row 0

Row 1

Control

Figure 4. Double-Slot FIFO

Using this more complex design, we demonstrate how the

high level specification can be refined to reflect the precise
requirement of a double-slot FIFO. To model check the re-
fined specification against any implementation, the same sim-
ple model refinement heuristics applies, i.e., making non-data-
path state elements precise. We conduct several experiments
on verifying each of the specifications against both stationary
and marching implementations, and analyze the time and BDD
complexities in model checking with respect to the depth of the
FIFO.

Finally, we consider a complex real-life FIFO design with
7506 latches and 17367 gates, from which the simplified double-
slot FIFO was derived. The interface behavior of the FIFO is
much more complex. For instance, up to four sets of data can
come into the FIFO simultaneously, but at most two sets can go
into any of the two rows. There may be an additional bubble gen-
erated in the FIFO due to a tricky hand-shake protocol between
the FIFO and the downstream unit, and so forth. We briefly dis-
cuss how our work was extended by the verification expert on the
design and show the verification result obtained from the expert.

4 Previous STE Work on FIFO Verification

In [4], Beatty, Bryant and Seger presented a transistor-level
FIFO verification case study using STE. Due to the limitation
of STE, the high level specification for the FIFO was given in
terms of single state transitions. For the marching implementa-
tion, these transitions include, for instance, that if the FIFO has k
entries, then after a distinct data is enqueued without a dequeue
operation, the FIFO will have k � 1 entries and the k � 1-th entry
will contain the distinct data, and if the data is in the k-th entry
(k � 0), then it will move to the k 1 entry after a dequeue oper-
ation. In order to verify a transistor-level implementation against
this specification, states in the specification must be mapped to
concrete states in the implementation. This is a very painstaking
and tedious task that is strongly implementation-dependent and
requires a very good understanding of how the implementation
works internally.

Although Jain’s work on generalizing STE overcomes the
expressiveness limitation of STE, it still cannot escape the im-
preciseness of the symbolic quaternary model. Consequently, a
high-level specification has to be augmented with an often fairly
complex implementation mapping to form a complete specifica-
tion for model checking. This mapping is essentially a set of
interacting state machines that describe how key state elements
in the implementation interact with each other. Therefore, this
approach would suffer the same drawbacks as the original STE
approach. Furthermore, the manually constructed mapping can
be complex and error-prone.

As we shall show in the next few sections, GSTE overcomes
these problems by specifying and verifying the behavior of a
FIFO at its IO boundaries, and thus drastically simplifies the
complexity of the verification task. Without the need for im-
plementation mapping, the same high level specification can be
verified against different implementations. Finally, the black-
box approach is insensitive to the internals of an implementation,
which makes regression much easier.

5 FIFO Specification

The correct behavior of a FIFO can be summarized as fol-
lows: (1) the full and empty flags of the FIFO must be set cor-
rectly, and (2) elements enqueued into the FIFO must be de-
queued in the right order uncorrupted. Developing an assertion
graph to express the correct behavior of a FIFO is a relatively
straightforward task. First, we keep track of the numbers of en-
tries in the FIFO and how they get updated.

1. After reset, the FIFO has 0 entry.
2. The number of entries increments by 1 after an enqueue

only operation, if the number is less than the depth. It decre-
ments by 1 after an dequeue only operation, if it is not 0.
Otherwise, it remains unchanged.

Furthermore, the empty flag is set if and only if the number of
entries is 0, and the full flag is set if and only if it is the depth of
the FIFO.

This part of specification for a 3-deep FIFO is captured by the
assertion graph in Figure 5. The initial vertex of the graph is init,
corresponding to an arbitrary state before reset. The other ver-
tices are the counting states keeping track of the numbers of en-
tries in the FIFO. The edges in the graph correspond to the tran-
sitions between states. Each edge is labeled with an antecedent
(i.e. what is assumed when the transition happens) and a conse-
quent (i.e. what needs to be proven), separated by a ”/”.

1−entries 2−entries0−entries

empty&!full
enq iff deq /
!empty&!full

enq iff deq /
!empty&!full

enq /
empty&!full

enq&!deq /
!empty&!full

enq&!deq /
!empty&!full

!empty&full
deq /!enq&deq /

!empty&!full
!enq&deq /
!empty&!full

!enq /

reset / true

init 3−entries

!deq /
!empty&full

Figure 5. Counting Entries for A 3-Deep FIFO

Obviously, specifying an assertion graph directly for a very
deep FIFO would be very tedious and error-prone. Instead, in the
Intel FORTE environment ([1]), the assertion graph is generated
by calling, with depth k � 3, the following parameterized code
written in the functional language fl. This code follows pretty
much the text description of the FIFO specification.

let FIFO_counting_spec k =
let reset_state =
(state init, //* vertex/state *//
[//* edges/transitions from the vertex *//
(transition "reset" to (state (0-entries))

antececent (reset)
consequent (true)

)
]

)
in
let counting_state i =
(state (i-entries), //* vertex/state *//
if (i = 0) then //* 0-entries *//

[//* edges/transitions from the vertex *//
(transition "incr" to (state (1-entries))
antecedent (enq)
consequent (empty&!full)

),
(transition "stay" to (state (0-entries))
antecedent (!enq)
consequent (empty&!full)

)
]

else if (i = k) then //* full entries *//
[//* edges/transitions from the vertex *//
(transition "decr" to (state ((k-1)-entries))
antecedent (deq)
consequent (!empty&full)

),
(transition "stay" to (state (k-entries))
antecedent (!deq)
consequent (!empty&full)

)
]

else // non-empty and non-full entries *//
[//* edges/transitions from the vertex *//
(transition "incr" to (state ((i+1)-entries))
antecedent (enq&!deq)
consequent (!empty&!full)

),
(transition "decr" to (state ((i-1)-entries))
antecedent (!enq&deq)
consequent (!empty&!full)

),
(transition "stay" to (state (i-entries))
antecedent (enq=deq)
consequent (!empty&!full)

)
]

)
in
let init_vertex =
(state init)
in
let edges =
reset_state @ (for i from 0 to k (counting_state i))
in
AG init_vertex edges ;

This assertion graph, however, does not specify that an en-
queued data element will come out uncorrupted at the right time.
To model this, we enqueue a vector of distinct symbolic con-
stants at an arbitrary time, and then keep track of the position of
the data in the FIFO. The position decrements by 1 upon each
dequeue operation. When the position is the first in the FIFO,
the next dequeue operation should produce the data. In addition,
transitions need to be added from each counting state to appro-
priate position states to enqueue the distinct data. Figure 6 shows
the assertion graph augmented from Figure 5 to express the com-
plete specification of a 3-deep FIFO. The vertices at the bottom
correspond to the position states, and the downward edges cor-
respond to the distinct enqueue operations.

enq&deq&
din=D /
true

1−entries 2−entries0−entries

empty&!full
enq iff deq /
!empty&!full

enq iff deq /
!empty&!full

enq /
empty&!full

enq&!deq /
!empty&!full

enq&!deq /
!empty&!full

!empty&full
deq /!enq&deq /

!empty&!full
!enq&deq /
!empty&!full

!enq /

enq&!deq&
din=D /
true true

din=D /
enq&!deq&enq&!deq&

din=D /
true

!deq /
true

!deq /
true

!deq /
true

deq /
true

deq /
true

deq /
dout=D

enq&deq&
din=D /
true

1st−entry 2nd−entrydone

reset / true

init

3rd−entry

3−entries

!deq /
!empty&full

Figure 6. The Complete Specification for A 3-Deep FIFO

This assertion graph can be easily refined to specify the cor-
rect behavior of each of the two rows in a double-slot FIFO.
The number of entries in the row could now be incremented by
either 1 or 2 by an enqueue operation, depending on whether
the row selection signals row1 and row2 are the same or differ-
ent. Figure 7 shows the refined assertion graph for row 0 of the
double-slot FIFO. For clarity, the consequents except for the out-
put are omitted. The black dots indicate where the antecedents
are. Note that if two elements are enqueued to the same row
when the FIFO only has one available entry left, then the second
element is dropped from the FIFO and needs to be resent later.
The graph for row 1 can be obtained symmetrically.

Legends:
e − enq
d − deq
r0 − row0
r1 − row1

1−entries 2−entries0−entries

dd
dout=D

1st−entry 2nd−entry

init

3rd−entry

3−entries

!enq

e&(r0!=r1)

e&(r0=r1)

d&e&(r0!=r1)
!d&!e+

e&!d&(r0!=r1)
e&d&(r0=r1)+

e&!d&(r0=r1)

e&!d
e=d !d

d!e&d!e&d
e&d&fstInp

e&!d&sndInp

e&!d&fstInp

e&!d&sndInp

e&d&fstInp

e&!d&fstInpe&!d&fstInp

!d !d!d

reset

d /

done

sndInp − (!r0&!r1&din1=D)
fstInp − (!r0&din0=D+r0&!r1&din1=D)

Figure 7. Specification for A 3-Deep Double-Slot FIFO

For the real-life FIFO design, the assertion graph for the
double-slot FIFO was further refined to reflect the more com-
plex IO interactions without mentioning any internal behavior.
For instance, to reflect the additional bubble in the FIFO, the
edge

�
1st-entry,done � was split into two consecutive ones, and

would say that if the dequeue operation on the first edge does
not produce the distinct data, then the dequeue operation on the
second edge must do.

6 FIFO Verification

Now let us apply the GSTE algorithm in Figure 1 to verify
the standard FIFO specification against the two different imple-
mentations. Figure 8 shows the quaternary simulation result on
the 3-deep marching FIFO implementation from the algorithm
in Figure 1. On every edge, we only list state elements with
boolean values. The others have value X . The entries in the
FIFO are numbered 0 to 2 from right to left. The tail pointer
maintains a scalar value after reset until the self loop at vertex
2nd-entry. Since the tail pointer may have 10 or 11 on the self-
loop depending on if there is an enqueue operation, the lower bit
becomes X . The situation becomes worse on the self loop at ver-
tex 1st-entry, as both bits become X . Consequently, the content
in the first entry become X as D could potentially be erased by
an enqueue operation, and GSTE would eventually fail.

1−entries 2−entries0−entries

1st−entry 2nd−entrydone

init

3rd−entry

3−entries

[tail=1] [tail=2] [tail=3]

[tail=0] [tail=1] [tail=2]

[tail=3][tail=2][tail=1]

[tail=0]

[tail=0,din=D] [tail=1,din=D] [tail=2,din=D]

[tail=1,din=D]

[tail=3,entry[2]=D]

[]

[]

[tail=3,entry[2]=D][tail[1]=1,entry[1]=D]

[tail[1]=1,entry[1]=D]

[]

[tail=2,din=D]

Figure 8. Quaternary Simulation for the Marching FIFO

The problem of losing precision is caused by the coarseness
of the STE symbolic quaternary model, as many needed con-
straints among nodes cannot be captured precisely and are thus
lost. In the marching implementation, for instance, the constraint
“the tail pointer cannot be 0” is lost. This problem is much more
severe for the stationary implementation. Even for an edge in the
top half of the graph, the head and tail pointers will quickly be-
come X during simulation as they go through all possible values
as long as a constant difference is maintained between the two
pointers.

To overcome this problem, GSTE is extended to work on
symbolic sets of quaternary assignments. In this approach, a
set of precise nodes can be specified for model checking. The
values and the relations among these nodes are kept precise in
any quaternary assignment. For instance, consider the following
set of three states for three nodes p, q, r:

!�"
p # 0,q # 1,r # 1 $, " p # 1,q # 0,r # 0 $, " p # 1,q # 0,r # 1 $&% .

In the quaternary model, this set is abstracted as a single assign-
ment ' p � X ,q � X ,r � X (. Useful constraints such as p �� q and
q) r are lost. However, if p and q are precise nodes, then the
set is abstracted as a set of two quaternary assignments:

!*"
p # 0,q # 1,r # 1 $, " p # 1,q # 0,r # X $+% ,

and the useful constraints are preserved. Using a parametric
variable vp, This abstract set can be represented as the symbolic
quaternary assignment

"
p # vp,q #-, vp,r #/.0, vp?1:X 12$,

which generates the set by assigning all possible values to vp.
In [20] we presented a unique parameterization algorithm that

builds a canonical symbolic quaternary assignment from any
symbolic quaternary assignment for a given set of quaternary
assignments. This is needed for the termination of the fix-point
computation in the GSTE algorithm. In the following, we shall
use the marching implementation example to show how this ex-
tension improves the simulation result. Let us specify the two
bits of the tail pointer as precise, and assume the simulation re-
lation for the self-loop at 1st-entry has been partially computed:

sim0 # "
tail[1] # 0, tail[0] # 1,entry[1] # D $.

To update the simulation relation through the self-loop (Step 10
in Figure 1), we first compute the next set (i.e., post-image) of
states simulated by the edge:

nextsim
post . sim0 143 ant . 1st-entry,1st-entry 1
post . " tail[1] # 0, tail[0] # 1,entry[1] # D $5176 " enq # z,deq # 0 $
"

tail[1] # z, tail[0] #-, z,entry[1] # D $.
Note a free variable z is assigned to enq in the antecedent in or-

der to increase precision. In the subsequent � operation, a spe-
cial variable $c is temporally introduced to represent the union
result in order to preserve the precision:

newsim
sim0 8 nextsim
c?

"
tail[1] # z, tail[0] #-, z,entry[1] # D $

:
"
tail[1] # 0, tail[0] # 1,entry[1] # D $

"
tail[1] # c&z, tail[0] # !c 9 !z,entry[1] # D $.

At the end, the new simulation result is canonicalized using the
unique parameterization algorithm:

"
tail[1] # vtail : 1 ; , tail[0] #�, vtail : 1 ; ,entry[1] # D $.

Figure 9 shows the improved simulation result by assigning
each edge with a symbolic representation of a set of quaternary
assignments, where shorter variable names v1 and v0 are used in
place of vtail < 1 = and vtail < 0 = for clarity.

For the stationary implementation, every bit in both the head
and tail pointers must be precise in order for GSTE to pass the
verification. In addition, the wrap bit that indicates the FIFO
is full must also be made precise. In general, a good heuris-
tics to start with is to make every non-data-path element precise.
The verification of the double-slot FIFO uses exactly the same
heuristics for model refinement. With the extended symbolic
quaternary model, the specification can focus on what an imple-
mentation should do rather than how it does it.

7 Experimental Results

The GSTE model checker is implemented using the func-
tional language fl on top of STE in the Intel FORTE environ-
ment. The Figure 10 lists the experimental results on verifying

1−entries 2−entries0−entries

1st−entry 2nd−entrydone

init

3rd−entry

3−entries

[tail=1] [tail=2] [tail=3]

[tail=0] [tail=1] [tail=2]

[tail=3][tail=2][tail=1]

[tail=0]

[tail=0,din=D] [tail=1,din=D] [tail=2,din=D]

[tail=3,entry[2]=D]

[]

[tail=3,entry[2]=D]

[tail[1]=1,tail[0]=v0,

 entry[1]=D]

[tail[1]=1,tail[0]=v0,
 entry[1]=D]

[tail[1]=v1,tail[0]=!v1+v0,
 entry[0]=D]

[tail[1]=v1,tail[0]=!v1+v0,
 entry[0]=D]

[tail=2,din=D][tail=1,din=D]

Figure 9. Improved Simulation for the Marching FIFO

the standard high level FIFO specification against both stationary
and marching implementations of width 10 with various depths.
Figure 11 lists the experiment results on verifying the double-
slot FIFO specification against the two implementations. All
the experiments were done on a computer with 1.5 GHz Intel R

>
Pentium R

>
4 with 1 GB memory.

Circuit Marching Stationary
depth #lats #gates time mem #lats #gates time mem

sec. MB sec. MB

3 42 314 0.2 17.3 45 231 1.2 17.4
7 83 799 1.0 17.5 87 424 7.7 19.8

15 164 1936 3.6 18.8 169 799 60.5 28.0
31 325 4734 12.9 21.8 331 1834 508.4 35.7
63 646 11931 52.2 27.7 653 4825 4227.3 63.7

Figure 10. GSTE Results for Single-Slot FIFOs

Circuit Marching Stationary
depth #lats #gates time mem #lats #gates time mem

sec. MB sec. MB

3 68 889 0.5 17.5 92 1051 1.2 17.7
7 157 2231 2.5 19.6 182 2249 10.2 23.9
15 334 5040 9.6 23.0 360 5227 95.4 31.6
31 687 11098 39.7 31.4 714 12658 853.2 48.8
63 1392 23396 168.5 45.5 1420 33635 7849.8 110.8

Figure 11. GSTE Results for Double-Slot FIFOs

From Figure 12, we can see that for all four implementations,
the memory usage, which includes a 12MB overhead for load-
ing the GSTE system, grows almost linearly with respect to the
depth of a FIFO. The time complexity (Figure 13) also grows
quite nicely, though not linearly. The complexity for verifying a
stationary implementation is much higher and grows faster than
that for verifying a marching implementation, since in the sta-
tionary implementation, the state space is determined by both
the head pointer and the tail pointer and thus is much larger. It
is worth mentioning that the complexity does not depend very
much on the width of a FIFO. Furthermore, the majority of the
time in model checking was spent in GSTE written in fl inter-
acting with the core STE engine. BDD complexity was never an
issue! Variable re-ordering was never invoked.

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60 70

M
em

or
y

(M
B

)

Queue Depth

Queue Verification

single marching
single stationary
double marching
double stationary

Figure 12. Verification Memory Usage

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70

R
un

 T
im

e
(s

ec
s.

)

Queue Depth

Queue Verification

single marching
single stationary
double marching
double stationary

Figure 13. Verification Runtime

Finally, we report the verification result of the complex real-
life FIFO design with 7506 latches and 17367 gates, obtained
from the verification expert on the design. The assertion graph
uses 55 symbolic constants and 40 symbolic variables. 41 state
elements are made precise for the model refinement. The model
checking took 5220 seconds and 260 MB memory.

We would like to emphasize that all the verifications were
done without any prior abstraction or pruning on the original
gate-level RTL models.

8 Relation to Classic Symbolic Model Checking

Classic symbolic model checking (SMC) has been studied ex-
tensively for over a decade and has been applied to many ap-
plication areas (see [7] for a good survey). GSTE extends its
expressive power by using the same fundamental formal tech-
niques, such as state transition diagrams for specification, pre-
image computation and fix-point computation, well developed
for SMC. However, GSTE often promises orders of magnitudes
higher capacity than SMC for linear temporal logic in hardware

verification, because it benefits from preserving efficient and
high capacity techniques used in STE.

From the specification point of view, an assertion graph
clearly distinguishes between antecedents and consequents, and
ties them tightly together with the underlying structure repre-
senting some kind of computation flow. Further, it universally
quantifies over paths in the graph. It is not only a more natu-
ral way for describing hardware properties, but also a key en-
abler for GSTE-style efficient model checking. Automata-based
specifications, on the other hand, do not make this distinction.
The majority of them existentially quantifies over paths. Even
though ? -automata universally quantify over paths, they have a
completely different acceptance criterion in terms of recurrent
and/or stable automata states.

From the verification point of view, an assertion graph drives
symbolic circuit simulation based on its underlying structure and
antecedents, and thus confines its search space to what is useful
for proving the consequents. SMC, on the other hand, works
on the product machine of the specification automaton (or its
complement) and the circuit model. It builds some form of the
transition relation for the product machines, and then performs
a global reachability analysis. The latter approach is generally
more computationally expensive and easier to cause state explo-
sion.

Perhaps what is more significant in achieving high capacity
in GSTE is that the circuit abstraction is an integrated part of
model checking and the level of the abstraction depends heavily
on the assertion graph. In fact, the complexity of GSTE model
checking is primarily determined by the number of variables in
the assertion graph. For SMC, however, abstraction techniques
are used mostly as an external pre-processing step. Such an ab-
straction step is often done manually and relies on a good un-
derstanding of nicely structured circuit model. However, this is
usually very difficult, if not impossible, to do on flattened, cus-
tomized gate-level RTL models.

9 Conclusion

In this paper, we described the techniques in GSTE to verify
a much richer set of properties while preserving the benefits of
STE, and to support seamless model refinement. We illustrated
the essence of GSTE and demonstrated its strength through a
FIFO case study. To the best of our knowledge, this is the first
scalable black-box solution for formally specifying and model
checking FIFO structures.
Acknowledgment
We would like to thank Brian Moore, Carl Seger, Rajnish
Ghughal, Andreas Tiemeyer and Alan Hu for reading the paper
and providing many useful suggestions.

References

[1] M. Aagaard, R. Jones, T. Melham, J. O’Leary, and C.-J. Seger.
A methodology for large-scale hardware verification. In FM-
CAD’2000, November 2000.

[2] M. Aagaard, R. Jones, and C.-J. Seger. Combining theorem prov-
ing and trajectory evaluation in an industrial environment. In Proc.
of the 35th DAC, pages 538–541, June 1998.

[3] D. Beatty and R. Bryant. Formally verifying a microprocessor
using symbolic simulation methodology. In Proc. of the 31st DAC,
June 1994.

[4] D. Beatty, R. Bryant, and C.-J. Seger. Synchronous circuit verifi-
cation by symbolic simulation: An illustration. In Proc. of the 6th
MIT Conference on Advanced Research in VLSI, pages 98–112,
1990.

[5] R. Bryant and C.-J. Seger. Formal verification of digital circuits
using symbolic ternary system models. In DIMAC Workshop on
Computer-Aided Verification, June 1990.

[6] C.-T. Chou. The mathematical foundation of symbolic trajectory
evaluation. In CAV’1999, July 1999.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 1999.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. In Conference Record of the 4th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 238–252, 1977.

[9] S. Hazelhurst and C.-J. Seger. A simple theorem prover based on
symbolic trajectory evaluation and OBDDs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
14(4):413–422, April 1995.

[10] A. Jain. Formal Hardware Verification by Symbolic Trajectory
Evaluation. PhD thesis, ECE, Carnegie-Mellon University, Au-
gust 1997.

[11] K. Nelson, A. Jain, and R. Bryant. Formal verification of a super-
scalar execution unit. In Proc. of the 34th DAC, June 1997.

[12] J. O’Leary, X. Zhao, R. Gerth, and C.-J. Seger. Formally verify-
ing ieee compliance of floating-point hardware. Intel Technology
Journal, Q1:147–190, 1999.

[13] M. Pandey and R. Bryant. Exploiting symmetry when verifying
transistor-level circuits by symbolic trajectory evaluation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(7):918–935, July 1999.

[14] M. Pandey, R. Raimi, D. Beatty, and R. Bryant. Formal verifica-
tion of PowerPC(TM) arrays using symbolic trajectory evaluation.
In Proc. of the 33rd DAC, June 1996.

[15] M. Pandey, R. Raimi, D. Beatty, R. Bryant, and M. Abadir. For-
mal verification of content addressable memories using symbolic
trajectory evaluation. In Proc. of the 34th DAC, June 1997.

[16] C.-J. Seger and R. Bryant. Formal verification by symbolic evalu-
ation of partially-ordered trajectories. Formal Methods in System
Design, 6(2):147–190, March 1995.

[17] J. Yang. Generalized symbolic trajectory evaluation. STE Sympo-
sium, A Satellite Workshop of CAV’2000, 2000.

[18] J. Yang and C.-J. Seger. Generalized symbolic trajectory evalua-
tion. Intel SCL Technical Report (submitted for journal publica-
tion), 2000.

[19] J. Yang and C.-J. Seger. Introduction to generalized symbolic
trajectory evaluation. In Proc. of ICCD-2001, pages 360–365,
September 2001.

[20] J. Yang and C.-J. Seger. Generalized symbolic trajectory eval-
uation - abstraction in action. In LNCS: Proc. of FMCAD2002,
November 2002.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

