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Abstract complex and custom gates, our data indicates this accounts for no
This paper proposes a circuit power estimation metho@ore than 40~60% of the total power consumption excluding on-
using Bayesian inference and neural networks. Based 6RiP caches. The remaining part of the power consumed internal
statistical distribution of circuit leakage power and switching® gates are estimated by pre-characterized circuit power models,
energy, the entire state and transition space of a circuit ahich evaluate the power consumption of gates based on their
classified using neural networks into a limited few classes thBl/PO (state/transition) information from logic simulation at
represent different power consumption average values. TH¥ery simulation time step. An example of the commercial tools
technique enables efficient table-lookup of circuit power of thEWplementing such a power estimation methodology is Synopsys
entire state and transition space. Theoretical basiBajfesian Prime Power [5]. Power estimation accuracy of this gate-level
inference, feature extraction for neural networks of circuiftethod depends on how well the power consumption (both
leakage power and switching energy are discussed. Experimel§@kage power and switching energy) of gates in the circuit
on a wide range of circuit topologies demonstrated thibrary used by a design is modeled. Since circuit (gate) leakage
robustness of the proposed method for estimating circuit leakag@Wwer is state dependent and circuit internal switching energy is
power of all possible states and switching energy of all possibf@nsition dependent, accurate power estimation of circuit power

transitions. needs to capture the dependency on state and transition of circuit
primary inputs. In general, a limited number of data points of the
l. Introduction power consumption of a circuit are obtained by SPICE

Power consumption is becoming one of the most importa itmulation using a stimulus that is generated either randomly
7] or by algorithmic methods. The challenge is to estimate the

factors in the design of VLSI systems in recent years due K o ol d th itchi

increased integration level and higher clock frequency. Integrat@ age power oevery possible sta,tea.n .t € switching energy

circuits with high power consumption levels have stringe every possible transitigrusing the limited number of SPICE
idata points available with the exponential growth of the state and

requirements on heat removal and management of di/dt no T f 2 circuit with . ber of ri
They also shorten battery life of portable electronics. Detailetflans't'On space of a circult with respect to fts number of primary

and accurate power analysis on a cycle-by-cycle basis 'ri@ul\j'd i ¢ circui d d / o

therefore imperative not only to quantify the requirements of heat odeling o circuit power dependency on stat.es transnllor.\s
removal and di/dt noise management, but also to provide'rbthe entire sta}te/tran3|tlon space is very Ilmltgd in [5]. This is
blueprint for opportunities of reducing power consumption an%ecause of its use of Boolean equations to group

mitigating di/dt noise in a design. Power consumption can l§(§“ates/transitions and its limitation of only modeling single-pin

estimated at high-level [1,2], gate-level [3], and transistor-levéWitChing’ which is a very small fraction of the possible

[4], with a trade-off between estimation accuracy and simulatigffnstions for a majority of the CIrCUIt.S used N microprocessor
speed. Power estimation on a cycle-by-cycle basis is o d SOC. d.eS|gns. The use of po.Iynom|aI equations Is propqsed n
feasible by using the gate-level or transistor-level approach. 61 bqt Itis unclear'how effective thg prpposed method is on
transistor-level method provides better accuracy, but iigodelmg stat.e/tranS|t.|on_dependeﬁt CII’CUI"[ power consumption
requirement of a relatively long simulation time prevents it fro ra wide variety of circuit topologies. In this paper, we propose

being used to study a large number of test vector sequences i A€ Bayesian inference and pattern recognmpn te.chn|ques
large and complex design. using neural networks to solve this problem. The idea is to use

In this paper, we address library circuit power modelin tatistical information of the available SPICE power data points
techniques of the gate-level cycle-by-cycle power estimati a circuit to characterize the correlation between state/transition

methodology, in which the switching activities of the primar)patterns and power congum_pﬂon values of the qrcmt. Such
inputs/outputs (PI/PO) of gates in a circuit library used by (éorrelated pattern information is further used to predict the power
onsumption ofiny singleseen and unforeseen state/transition in

design are obtained by logic simulation. By extracting th . . e
capacitive loads at PI/PO of gates from placement/routir{ eentire state/transition space of the circuit. It should be noted
at the issue addressed in this paper is different from other

information of the design, cycle-by-cycle power consumptio A o . : .
resulting from the charging and discharging of capacitors obabilistic switching activity estimation approaches (e.qg.

interconnects and gates’ inputs can be easily evaluated. rl.O])’ in which switching pr_obgbilities at. P.”PO.Of gates of a
microprocessor and SoC designs that use a substantial numb&eéfgn for ssequencef events in time domain is estimated.
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Il. Problem Specification (mux8) shown in Fig. 1 (a). Procedure for estimating circuit

The leakage power and internal switching energy of a circifi@kage power is very similar.
observe certain statistical distribution properties that are unique Bayesian inference is based on Bayes' theorem:
to the circuit. The values of leakage power and switching energy
can vary by orders of magnitude from one state/transition to P(C, |X):w Q)
another. At the same time, many states have similar leakage P(x)
power, and many transitions have similar switching energy. A
limited few average values of a circuit's leakage power artdere, G denotes a class k, which represents a specific average
switching energy can be derived from clustering its spectrum p®wer valuex is a feature vector that characterizes the states and
leakage power and switching energy collected from SPIgRnsitions of a circuitP(x) is the prior probability. This is the
simulation of a randomly generated test vector sequence [6,7] Rspbability thatx occurs, and it functions as a normalization
efficient table-lookup of the circuit's power consumption. Wéactor.P(C,) is the prior probability that the average power value
would like to partition (classify) thentire state and transition identified by G is used.P(x|C,) is the conditional probability.
space of the circuit with respect to these few limited averaddis is the probability that occurs, given that,Gccurs.P(C,|x)
values. In other words, we need a mechanism to map each oni ¢he posterior probability. This is the probability thataCcurs,
the possible states to one of the leakage power average valg@égn thaix occurs.
and map each one of the possible transitions to one of the Power estimation using Bayesian inference involves a
average switching energy values in such a way that the povimber of steps, which are illustrated in Fig. 1:
estimation error is minimized.

* Collect statistical distribution of circuit power from

1. Circuit Power Estimation Using Bayesian randomly generated test vectors. Fig. 1 (b).
» Cluster the statistical distribution into a limited few classes
Inference

e L . (average values). Fig. 1 (c).
rout e p o reoroncy EAac alne veco or it swicing pover
9 y o : gor < Evaluate P(C), P(x|C) using the clustered statistical
treatment of Bayesian inference can be found in [11,12]. In this . . "~ % . .
X . L distribution information. Fig. 1 (c), (d), (e).
section, we illustrate the key concepts of Bayesian inference and P o .
. . T S . «  For a transitiort in the transition space, use Bayes' theorem
its application to circuit power estimation using the example of

estimating the internal switching energy of the 8-to-1 mux circuit to cglculath(Ck|x). F'g'.l (f.)' .
* Assign an average switching energy value to the trandition

based on calculate®{C,|x).
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Fig 1. lllustration of power estimation using Bayesian inference. dyninte and avg_dyninte denote internal
switching energy and average switching energy, respectively. (a) schematic diagram of 8-to-1 mux (mux8).
(b) statistical distribution of internal switching energy. (c) clustered statistical distribution of internal
switching energy (8 classes or clusters). (d) conditional probability distributid¥(g,{&,). (e) conditional
probability distributions oP(x,|C). (f) using Bayes’ theorem to calculate the posterior probabif{i€gx)

of a specific transitioh



Feature vectox is extracted by examining the circuitenergy via SPICE simulation. Commonly used training and
topology and identifying major sources of internal switchingalidation techniques of neural networks are used in our
energy. We need to encode the transition of the primary inpw@pproach.

into key features that represent the major sources of the internal Circuit PI/PO State Circuit PI/PO Transition

switching energy of the circuit. From the schematic diagram in l l

Fig. 1 (a), it is not difficult to identify that there are two key | Feature Extractiorl | Feature Extracﬁorl

components of the switching energy: the bank of input inverters

and the output inverter. The common element is the circuit l l

primitive inverter. We can encode the switching activity of the Neural Network Neural Network

inverter as: trans(0) = 0.0, trans(1) = 0.1, trans(r) = 0.5, and l

trans(f) = 1.0. Here, trans(x) is the encoding function. And 0, 1, r,

f denotes the four possible transitions (including stationary | Table Lookup) |_Table Lookup |

transitions). The encoded values represents the relative amount l l

of switching energy associated with these 4 possible transitions. Circuit Leakage Power Circuit Internal

We extract two features: Switching Energy

e Xg input data transition encoding, with encoded value as Fig: 3. Block diagram of circuit power estimation using
2(inverter encoding of each input inverter) / 8.0. neural networks in table-lookup

* X, inverter encoding of the output inverter, with the input
transition of the output inverter derived from function  Each input unit is associated to a distinctive feature of circuit
simulation of the primary input transitions. state/transition. Each output unit is associated to a predefined
In Fig 1 (f), we interpret the data as: the transitia® most class of circuit leakage power/switching energy. The number of
likely to be mapped into £ with a small probability to be output units is equal to the number of classes created for the
mapped into ¢ C,, and it is very unlikely to be mapped intg, C circuit leakage power or switching energy. Each class represents
C,, G;, C,, G, Therefore, we can assign the average switchirapn average power consumption value. The number of hidden
energy value represented by &s the switching energy of the units is adjusted to meet the requirements of prediction accuracy
circuit for the transition. and network complexity. The more hidden units there are, the
Bayes' theorem therefore allows the use of statisticalore complex the network is, and the more accurate the solution
information from a set of sample data, Fig. 1 (a)-(e), to evaluaié the classification problem tends to be. It is discussed in
the likelihood of internal switching energy @iy possible [11,12] that when logistic sigmoid and/or softmax activation

transitions, Fig. 1 (f). function(s) are used, the values of the output units can be
interpreted as posterior probabilities.
IV. Neural Networks for Power Estimation The block diagrams for our approach in estimating circuit

It has been shown [11,12] that neural networks have tteakage and internal switching power is shown in Fig. 3. There
underlying mathematical property of Bayesian inference. W&'€ several options to perform table-lookup once the posterior
directly adopt the techniques of solving the 1-of-c classificatidifobabilities are calculated using neural networks. One option is
problem in the area of neural networks to address the circtlie maximum likelihood approach. This selects the average value

power estimation problem. that is associated to the class with the largest posterior
weights weights probability. The other option is to use weighted averages of the
[} predefined average values. The weighting factors are the

posterior probabilities of each class. In practice, a combination of
these two options can be judiciously adopted.

V. Feature Extraction
The prediction accuracy of the power estimation method
discussed in this paper largely depends on the quality of the

input hidden output : . ) . .
layer layer layer feature extraction for circuit leakage and switching power.
Fig: 2. Feed-forward neural network Feature extraction is performed by encoding the state of a circuit

in the case of leakage power estimation, or by encoding the

We use the feed-forward neural network shown in Fig. 2. Itgansition of a circuit in the case of switching energy estimation.
a direct acyclic graph. The graph node is called unit. Each ufitProperly selected feature x should produce two or more
has a value and an activation function associated with it. Ea@igtinctively identifiable conditional probability distributions
graph edge has its own weight. The value of a unit is calculatBtk|GJ), as those shown in Fig. 1 (d) and (e). Neural networks
by its activation function based on the We|ghts of incoming grapﬁe such conditional probablllty distributions to make decisions
edges and the values of units these incoming graph edges @tedssigning a state or transition to the right class, and therefore
connected to. A neural network needs to be trained and validag&irect average power consumption values. For example, we can
before it can be used. The weights in the network are adjus®@pily distinguistP(x,|C,), P(x)|G), P(x,|Cs), P(x4|C), P (x| Ce)
during network training. Training and validation data are derivefom each other in Fig. 1 (d). And the distributionsRgk,|Cs),
from statistical sampling of circuit leakage power and switching(*Cs), P(x,|Cs) are different in Fig. 1 (e). The distributions in



Fig. 1 (d) and (e) complement each other in the sense that simif&ie subtraction of matrix by vector in (2) is done by subtracting
distributions of those classes in Fig. 1 (d) are distinctive in Fig.elery row of the matri¥; by the same vectdvl,. Let S, be the
(e). In practice, multiple features need to work in concert tmxm between-class scatter matrix defined by,
distinguish all classes. A number of options for feature extraction
are experimented for circuit power estimation. S = ZC (Mi _ M)I(Mi _ M) 3)
(1) Direct encoding of primary inputs/outputs =
For a spgcn‘lc pin of primary inputs/outputs, let the fealure. It is shown in [14] that the columns A&, which
be the floating-point value 0.0, 1.0, 2.0, 3.0 when the plsnlmultaneously maximizing between-class variation and
undergoes 00, 1-1, 0- 1, 1- 0 transition, respectively. In the

S . minimizing within-class variation, consist of tlkeeigenvectors
case of leakage power estimation, the only valid encoded values

. . X 1
will be 0.0, 1.0.x can be further optionally scaled to a targe?ssomated with the largest eigenvalues of the matgg's.- It

value range (e.g. between 0.0 and 1.0). Depending on circiiftS been further shown in [15] that the numerical solution of the
topologies, exclusive use of this feature extraction option fdensystem of's is stable, considering the fact that b&h
found to be only effective for circuits with small number ofand S, are symmetric, by using the following method: first

primary inputs. perform spectral factorization §, =HAH', define
(2) Hand-crafted features . X :(H/\'%)'SDH/\'%. followed by a second spectral factorization
This is the method of encoding circuit specific features by

analyzing circuit topology, identifying major power consumptionX =UZU", further define = HA?U, and S'S =0x " In
components, examining clustered power classes with respecbtRer words,%,[ consists of the eigenvalues, eigenvectors of

state, transition, circuit topology, functionality and symmetry. IS;lSD, respectively. Computing the transformation matvik

is a very effective way of finding good features for circuits Witrblsing this method provides another good option of selecting

regular structures. Examples are the features discussed in seGlighctive features for neural networks used for circuit power
1l for the circuit mux8. estimation

(3) Statistical discriminant analysis

V\(|thou_t loss qf generality, let's choose th.e enchmg meth |. Experimental Results
described in section V-(1) for a selected primary input/output. The circuit timation techni d ibed i .
Let n be the total number of sample SPICE power data points of i € (;:rcmb power el.s 'crjn? '?r? ectlnquL.Js escrfl edin rl)r;zwc()jusd
a circuit, each with its associated power value (leakage powerS lons has been applied 1o the entire library of Several hundre

switching energy) and its associated state/transition of prima??c;'ddynarpg (ércunz u?ed_rfrc])r the deIS|gr: Of'? mlcrfr;rocglis'\?g
inputs/outputs of the circuits. By choosimg of the primary and several S0t products. 'he heural network simuiator

inputs/outputs, and encoding each of the data points, we have[Ja has been used to construct, train, validate, a.nd generate c
nxm matrix Y. We can consideY represent data points irm- code of neural networks for leakage power and switching energy

. . . . i estimation of all the circuit topologies in the library. The C code
dimensional space. Assuming we would like to s atures of these neural networks has been further incorporated into a
as the inputs for the neural network, whé&gm. The original P

. . . ++ circui i i
data matrixY from m-dimensional space needs to be furthe(r: circuit power library that models the internal power

. . i : consumption of all circuits. Along with the gate switching
transformed intok-dimensional space. This can be done bXctivities athered from logic simulation, this C++ circuit power
Z=YW, whereW is themxk transformation matrix needs to 9 9 ' P

b lected i h that the classificati f jbrary has been routinely used by a gate-level power estimation
€ selected In such a way that the classification accuracy o %thodology to produce full-chip cycle-by-cycle power
neural network is maximized.

Good and effective features for neural networks need to h consumption profiles of hundreds of thousands of clock cycles

L i . ... _..for the microprocessor and SoC products under development. In
large variations among different sample points. For cIassﬁu:aUQHiS section, we select representative circuit topologies, and
problems, features maximizing the variations between t ' !

. A ... discuss the modeling accuracy of transition-dependent circuit
clusters (classes) and at the same time minimizing the varlathﬂts mal switching energy compared to SPICE data. The number

mtTTSCﬁ?tefrrzr?]retﬁss'r:cris' Seeclﬁsgor;fOfS?:gQﬂ];e;tS%rr?;i'r;saziu%er(grimary inputs of these circuits range from 3 (decode38) to 64
| ) persp (cmp32), covering the range of the transition space size from 56
analysis. to 3.4x10%, For the same circuit, the modeling method of state-

. LetM b? the ¥m vector representing the mean of th_data ... dependent leakage power is exactly the same, but it is a much
points described .by' Further clustgr the SPICE data po!nts W'theasier problem, because the size of the state space is much
respected to their power values irdalusters, as described in smaller than the size of the transition space.

SeC“OF‘ lll. Letry be the n'umber' of data points in clusz_d:erand The power modeling accuracy will depend on the number of
ﬁgﬁgd;nﬁutr:ﬁ;eéfitgdmm;g'nsv%tsigft—plitszaccoéd[g% W€ clusters (classes) over the entire power spectrum and
be the X t i " X th T ’f.c.i”t. . E classification accuracy. The most prominent advantage of neural
e the xm vector, representing the mean gt data points -, qoyorks s its capability of predicting unforeseen scenarios of
described byy; for clusteri. LetS,, be themxm within-class o entire state/transition space. In cases where the complete

scatter matrix defined by, enumeration of state/transition space is not possible, 60% of the
. . data set is used to train the neural network, while the remaining
S = Zm(Yi - Mi) (Yi - Mi) (2)  40% of the data is used for validation. Special effort has been

made to ensure that the classification accuracy between the



mutually exclusive training and validation data closely trackg’||. Conclusions

each other. The method of using a single mean value for all A circuit power estimation method using Bayesian inference
transitions is used as the benchmark for comparison. Th{d neural networks has been proposed. Based on statistical
benchmark reflects the variation of the switching energy Wit§istribution of circuit leakage power and switching energy, the
respect to different transitions. The comparison results are sho@fitire state and transition space of a specific circuit are classified
in Fig. 4 and 5. It can be seen that the characteristics of ififing neural networks into a limited few classes that represent
benchmark curves are highly circuit topology dependent and thgferent power consumption average values. This technique
variation around the mean is high. For circuits with a smadinaples efficient table-lookup of circuit power of the entire state
number of primary inputs, no coherent pattern can be observgdq transition space. This method involves gathering statistical
When the number of primary inputs increases, the benchmagformation, clustering power consumption values, feature
curve approaches normal distribution. On the other hand, tBgtraction for neural networks of circuit leakage and switching
estimation errors using neural networks always obserpergy, construction, training and validation of neural networks,
distributions similar to normal distribution, with much smallerang table-lookup of circuit leakage and switching power using
variation compared to the benchmark curves. The estimatigie validated neural networks. Experimental results on a wide
error decreases when the number of clusters increases andrfige of circuit topologies demonstrated the feasibility of using
more complicated neural networks are used, provided statistiggé proposed method for estimating state-dependent leakage
difference of the power data set between different clusters e%wer and transition-dependent switching energy of library
and appropriate features are selected. Most of the computing tigiguits in a cycle-by-cycle power estimation methodology.
required for this approach has been spent on using SPICE A@hough the focus of this study has been on power consumption
SPICE-like fast circuit simulator) to collect circuit powermodeling of library circuits, the proposed method and its
consumption data sets that represent statistical behaviorsygfiations may also be feasible for the power estimation of

circuit power consumption. The time used for training anflinctional blocks, or even high-level power estimation.
validating neural networks is negligible by comparison.
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Fig 4. Probability distribution of estimation error compared to SPICE for different circuits. y-axis is the probabilityisstexisstimation

error. Letavgvalbe the mean of all the SPICE simulated values for a circuiedtes), actva| be the estimated value of switching energy using
the circuit power model for a specific transitinrthe SPICE simulated switching energy for the same transiti@spectively. Estimation error
of neural networks for a transitiaris defined asinerr, = (estva) - actval) / avgval "nn10", "nn5" denotes the estimation error for neural
networks with 10, 5 outputs, respectively. "avg" denotes the estimation error, defamapbas= (avgval- actval) / avgval if the mean is used
as the transition-independent estimated power value. The curves in figures include both training and validation data.
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Fig 5. Cumulative estimation error compared to SPICE for different circuits and metrics of C++ circuit power neural netelsrkmod
axis is the percentage of total data points. y-axis is the absolute value of estimation error. A point (x,y) in grapletedrasrgbsolute
value of estimation error is less than y for x% of cases. The definitions of estimation error, “nn10”, “nn5”, and “avgsameeths those
described in Fig. 4. “train dpts”, “valid dpts” denotes the number of training and validation data points used to trertvaligatral
network, respectively. Training and validation data sets are mutually exclusive. An “n.a.” entry for “valid dpts” indicatésitigedata
set is completely enumerated. The curves in figures include both training and validation data. “ft1 #”, “ft2 #”, “ft3 # tenotenber of
features constructed by methods described in section V-(1), V-(2), V-(3), respectively. “hidden #” denotes the numberuwiitsidfien
neural network. “time/event” is the average execution timsesifor evaluating the switching energy of a single switching event of a
specific circuit on a Sun Ultra 60/360 workstation for the C++ circuit power library compiled by gcc-3.0.x. This time johra®sin
feature extraction, classification using neural networks, and table lookup of average switching energy value.
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