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Abstract
This paper proposes a circuit power estimation method

using Bayesian inference and neural networks. Based on
statistical distribution of circuit leakage power and switching
energy, the entire state and transition space of a circuit are
classified using neural networks into a limited few classes that
represent different power consumption average values. This
technique enables efficient table-lookup of circuit power of the
entire state and transition space. Theoretical basis of Bayesian
inference, feature extraction for neural networks of circuit
leakage power and switching energy are discussed. Experiments
on a wide range of circuit topologies demonstrated the
robustness of the proposed method for estimating circuit leakage
power of all possible states and switching energy of all possible
transitions.

I. Introduction
Power consumption is becoming one of the most important

factors in the design of VLSI systems in recent years due to
increased integration level and higher clock frequency. Integrated
circuits with high power consumption levels have stringent
requirements on heat removal and management of di/dt noise.
They also shorten battery life of portable electronics. Detailed
and accurate power analysis on a cycle-by-cycle basis is
therefore imperative not only to quantify the requirements of heat
removal and di/dt noise management, but also to provide a
blueprint for opportunities of reducing power consumption and
mitigating di/dt noise in a design. Power consumption can be
estimated at high-level [1,2], gate-level [3], and transistor-level
[4], with a trade-off between estimation accuracy and simulation
speed. Power estimation on a cycle-by-cycle basis is only
feasible by using the gate-level or transistor-level approach. The
transistor-level method provides better accuracy, but its
requirement of a relatively long simulation time prevents it from
being used to study a large number of test vector sequences in a
large and complex design.

In this paper, we address library circuit power modeling
techniques of the gate-level cycle-by-cycle power estimation
methodology, in which the switching activities of the primary
inputs/outputs (PI/PO) of gates in a circuit library used by a
design are obtained by logic simulation. By extracting the
capacitive loads at PI/PO of gates from placement/routing
information of the design, cycle-by-cycle power consumption
resulting from the charging and discharging of capacitors of
interconnects and gates’ inputs can be easily evaluated. For
microprocessor and SoC designs that use a substantial number of

complex and custom gates, our data indicates this accounts for no
more than 40~60% of the total power consumption excluding on-
chip caches. The remaining part of the power consumed internal
to gates are estimated by pre-characterized circuit power models,
which evaluate the power consumption of gates based on their
PI/PO (state/transition) information from logic simulation at
every simulation time step. An example of the commercial tools
implementing such a power estimation methodology is Synopsys
Prime Power [5]. Power estimation accuracy of this gate-level
method depends on how well the power consumption (both
leakage power and switching energy) of gates in the circuit
library used by a design is modeled. Since circuit (gate) leakage
power is state dependent and circuit internal switching energy is
transition dependent, accurate power estimation of circuit power
needs to capture the dependency on state and transition of circuit
primary inputs. In general, a limited number of data points of the
power consumption of a circuit are obtained by SPICE
simulation using a stimulus that is generated either randomly
[6,7] or by algorithmic methods. The challenge is to estimate the
leakage power of every possible state, and the switching energy
of every possible transition, using the limited number of SPICE
data points available with the exponential growth of the state and
transition space of a circuit with respect to its number of primary
inputs.

Modeling of circuit power dependency on states/transitions
in the entire state/transition space is very limited in [5]. This is
because of its use of Boolean equations to group
states/transitions and its limitation of only modeling single-pin
switching, which is a very small fraction of the possible
transitions for a majority of the circuits used in microprocessor
and SoC designs. The use of polynomial equations is proposed in
[8], but it is unclear how effective the proposed method is on
modeling state/transition dependent circuit power consumption
for a wide variety of circuit topologies. In this paper, we propose
to use Bayesian inference and pattern recognition techniques
using neural networks to solve this problem. The idea is to use
statistical information of the available SPICE power data points
of a circuit to characterize the correlation between state/transition
patterns and power consumption values of the circuit. Such
correlated pattern information is further used to predict the power
consumption of any single seen and unforeseen state/transition in
the entire state/transition space of the circuit. It should be noted
that the issue addressed in this paper is different from other
probabilistic switching activity estimation approaches (e.g.
[9,10]), in which switching probabilities at PI/PO of gates of a
design for a sequence of events in time domain is estimated.
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II. Problem Specification
The leakage power and internal switching energy of a circuit

observe certain statistical distribution properties that are unique
to the circuit. The values of leakage power and switching energy
can vary by orders of magnitude from one state/transition to
another. At the same time, many states have similar leakage
power, and many transitions have similar switching energy. A
limited few average values of a circuit’s leakage power and
switching energy can be derived from clustering its spectrum of
leakage power and switching energy collected from SPICE
simulation of a randomly generated test vector sequence [6,7] for
efficient table-lookup of the circuit’s power consumption. We
would like to partition (classify) the entire state and transition
space of the circuit with respect to these few limited average
values. In other words, we need a mechanism to map each one of
the possible states to one of the leakage power average values,
and map each one of the possible transitions to one of the
average switching energy values in such a way that the power
estimation error is minimized.

III. Circuit Power Estimation Using Bayesian
Inference

We solve the partitioning problem specified in section II
through Bayesian inference. A more rigorous theoretical
treatment of Bayesian inference can be found in [11,12]. In this
section, we illustrate the key concepts of Bayesian inference and
its application to circuit power estimation using the example of
estimating the internal switching energy of the 8-to-1 mux circuit

(mux8) shown in Fig. 1 (a). Procedure for estimating circuit
leakage power is very similar.

Bayesian inference is based on Bayes' theorem:
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Here, Ck denotes a class k, which represents a specific average
power value. x is a feature vector that characterizes the states and
transitions of a circuit. P(x) is the prior probability. This is the
probability that x occurs, and it functions as a normalization
factor. P(Ck) is the prior probability that the average power value
identified by Ck is used. P(x|Ck) is the conditional probability.
This is the probability that x occurs, given that Ck occurs. P(Ck|x)
is the posterior probability. This is the probability that Ck occurs,
given that x occurs.

Power estimation using Bayesian inference involves a
number of steps, which are illustrated in Fig. 1:

•  Collect statistical distribution of circuit power from
randomly generated test vectors. Fig. 1 (b).

•  Cluster the statistical distribution into a limited few classes
(average values). Fig. 1 (c).

• Extract feature vector x for circuit switching power.
•  Evaluate P(Ck), P(x|Ck) using the clustered statistical

distribution information. Fig. 1 (c), (d), (e).
• For a transition t in the transition space, use Bayes' theorem

to calculate P(Ck|x). Fig. 1 (f).
• Assign an average switching energy value to the transition t

based on calculated P(Ck|x).

•
•
•
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Fig 1. Illustration of power estimation using Bayesian inference. dyninte and avg_dyninte denote internal
switching energy and average switching energy, respectively. (a) schematic diagram of 8-to-1 mux (mux8).
(b) statistical distribution of internal switching energy. (c) clustered statistical distribution of internal
switching energy (8 classes or clusters). (d) conditional probability distributions of P(x1|Ck). (e) conditional
probability distributions of P(x2|Ck). (f) using Bayes’ theorem to calculate the posterior probabilities P(Ck|x)
of a specific transition t.



Feature vector x is extracted by examining the circuit
topology and identifying major sources of internal switching
energy. We need to encode the transition of the primary inputs
into key features that represent the major sources of the internal
switching energy of the circuit. From the schematic diagram in
Fig. 1 (a), it is not difficult to identify that there are two key
components of the switching energy: the bank of input inverters
and the output inverter. The common element is the circuit
primitive inverter. We can encode the switching activity of the
inverter as: trans(0) = 0.0, trans(1) = 0.1, trans(r) = 0.5, and
trans(f) = 1.0. Here, trans(x) is the encoding function. And 0, 1, r,
f denotes the four possible transitions (including stationary
transitions). The encoded values represents the relative amount
of switching energy associated with these 4 possible transitions.
We extract two features:
•  x1: input data transition encoding, with encoded value as

Σ(inverter encoding of each input inverter) / 8.0.
•  x2: inverter encoding of the output inverter, with the input

transition of the output inverter derived from function
simulation of the primary input transitions.
In Fig 1 (f), we interpret the data as: the transition t is most

likely to be mapped into C6, with a small probability to be
mapped into C5, C7, and it is very unlikely to be mapped into C1,
C2, C3, C4, C8. Therefore, we can assign the average switching
energy value represented by C6 as the switching energy of the
circuit for the transition t.

Bayes' theorem therefore allows the use of statistical
information from a set of sample data, Fig. 1 (a)-(e), to evaluate
the likelihood of internal switching energy of any possible
transitions, Fig. 1 (f).

IV. Neural Networks for Power Estimation
It has been shown [11,12] that neural networks have the

underlying mathematical property of Bayesian inference. We
directly adopt the techniques of solving the 1-of-c classification
problem in the area of neural networks to address the circuit
power estimation problem.

input
layer

hidden
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weights weights

Fig: 2. Feed-forward neural network

We use the feed-forward neural network shown in Fig. 2. It's
a direct acyclic graph. The graph node is called unit. Each unit
has a value and an activation function associated with it. Each
graph edge has its own weight. The value of a unit is calculated
by its activation function based on the weights of incoming graph
edges and the values of units these incoming graph edges are
connected to. A neural network needs to be trained and validated
before it can be used. The weights in the network are adjusted
during network training. Training and validation data are derived
from statistical sampling of circuit leakage power and switching

energy via SPICE simulation. Commonly used training and
validation techniques of neural networks are used in our
approach.
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Fig: 3. Block diagram of circuit power estimation using
neural networks in table-lookup

Each input unit is associated to a distinctive feature of circuit
state/transition. Each output unit is associated to a predefined
class of circuit leakage power/switching energy. The number of
output units is equal to the number of classes created for the
circuit leakage power or switching energy. Each class represents
an average power consumption value. The number of hidden
units is adjusted to meet the requirements of prediction accuracy
and network complexity. The more hidden units there are, the
more complex the network is, and the more accurate the solution
of the classification problem tends to be. It is discussed in
[11,12] that when logistic sigmoid and/or softmax activation
function(s) are used, the values of the output units can be
interpreted as posterior probabilities.

The block diagrams for our approach in estimating circuit
leakage and internal switching power is shown in Fig. 3. There
are several options to perform table-lookup once the posterior
probabilities are calculated using neural networks. One option is
the maximum likelihood approach. This selects the average value
that is associated to the class with the largest posterior
probability. The other option is to use weighted averages of the
predefined average values. The weighting factors are the
posterior probabilities of each class. In practice, a combination of
these two options can be judiciously adopted.

V. Feature Extraction
The prediction accuracy of the power estimation method

discussed in this paper largely depends on the quality of the
feature extraction for circuit leakage and switching power.
Feature extraction is performed by encoding the state of a circuit
in the case of leakage power estimation, or by encoding the
transition of a circuit in the case of switching energy estimation.
A properly selected feature x should produce two or more
distinctively identifiable conditional probability distributions
P(x|Ck), as those shown in Fig. 1 (d) and (e). Neural networks
use such conditional probability distributions to make decisions
on assigning a state or transition to the right class, and therefore
correct average power consumption values. For example, we can
easily distinguish P(x1|C1), P(x1|C2), P(x1|C6), P(x1|C7), P(x1|C8)
from each other in Fig. 1 (d). And the distributions of P(x2|C3),
P(x2|C4), P(x2|C5) are different in Fig. 1 (e). The distributions in



Fig. 1 (d) and (e) complement each other in the sense that similar
distributions of those classes in Fig. 1 (d) are distinctive in Fig. 1
(e). In practice, multiple features need to work in concert to
distinguish all classes. A number of options for feature extraction
are experimented for circuit power estimation.

(1) Direct encoding of primary inputs/outputs
For a specific pin of primary inputs/outputs, let the feature x

be the floating-point value 0.0, 1.0, 2.0, 3.0 when the pin
undergoes 0→0, 1→1, 0→1, 1→0 transition, respectively. In the
case of leakage power estimation, the only valid encoded values
will be 0.0, 1.0. x can be further optionally scaled to a target
value range (e.g. between 0.0 and 1.0). Depending on circuit
topologies, exclusive use of this feature extraction option is
found to be only effective for circuits with small number of
primary inputs.

(2) Hand-crafted features
This is the method of encoding circuit specific features by

analyzing circuit topology, identifying major power consumption
components, examining clustered power classes with respect to
state, transition, circuit topology, functionality and symmetry. It
is a very effective way of finding good features for circuits with
regular structures. Examples are the features discussed in section
III for the circuit mux8.

(3) Statistical discriminant analysis
Without loss of generality, let’s choose the encoding method

described in section V-(1) for a selected primary input/output.
Let n be the total number of sample SPICE power data points of
a circuit, each with its associated power value (leakage power or
switching energy) and its associated state/transition of primary
inputs/outputs of the circuits. By choosing m of the primary
inputs/outputs, and encoding each of the data points, we have an
n×m matrix Y. We can consider Y  represent n data points in m-
dimensional space. Assuming we would like to select k features
as the inputs for the neural network, where k≤m. The original
data matrix Y from m-dimensional space needs to be further
transformed into k-dimensional space. This can be done by
Z=YW , where W  is the m×k transformation matrix. W  needs to
be selected in such a way that the classification accuracy of the
neural network is maximized.

Good and effective features for neural networks need to have
large variations among different sample points. For classification
problems, features maximizing the variations between the
clusters (classes) and at the same time minimizing the variations
within clusters are desired. Selection of such features is studied
in [13,14] from the perspective of statistical discriminant
analysis.

Let M  be the 1×m vector representing the mean of the n data
points described by Y. Further cluster the SPICE data points with
respected to their power values into c clusters, as described in
section III. Let ni be the number of data points in cluster ci, and
encoding the selected m primary inputs/outputs accordingly, we
have a number of ni×m matrices Yi, where i = 1, 2, …, c. Let M i

be the 1×m vector, representing the mean of ni data points
described by Yi for cluster i . Let Sw  be the m×m within-class
scatter matrix defined by,

S Y M Y Mw i i

t

i

c

i i= −( ) −( )=∑ 1
(2)

The subtraction of matrix by vector in (2) is done by subtracting
every row of the matrix Yi by the same vector M i. Let Sb be the
m×m between-class scatter matrix defined by,

S M M M Mb i

t

i

c

i= −( ) −( )=∑ 1
(3)

It is shown in [14] that the columns of W , which
simultaneously maximizing between-class variation and
minimizing within-class variation, consist of the k eigenvectors
associated with the k largest eigenvalues of the matrix S Sw b

−1 . It

has been further shown in [15] that the numerical solution of the
eigensystem of S Sw b

−1  is stable, considering the fact that both Sw

and Sb are symmetric, by using the following method: first
perform spectral factorization S H Hw

t= Λ ,  def ine

X H S H
t

b= ( )− −Λ Λ
1
2

1
2 , followed by a second spectral factorization

X U Ut= Σ , further define ∇ = −H UΛ
1
2 , and S Sw b

− −= ∇ ∇1 1Σ . In

other words, Σ , ∇  consists of the eigenvalues, eigenvectors of
S Sw b

−1 , respectively. Computing the transformation matrix W

using this method provides another good option of selecting
effective features for neural networks used for circuit power
estimation.

VI. Experimental Results
The circuit power estimation technique described in previous

sections has been applied to the entire library of several hundred
static/dynamic circuits used for the design of a microprocessor
and several SoC products. The neural network simulator SNNS
[16] has been used to construct, train, validate, and generate C
code of neural networks for leakage power and switching energy
estimation of all the circuit topologies in the library. The C code
of these neural networks has been further incorporated into a
C++ circuit power library that models the internal power
consumption of all circuits. Along with the gate switching
activities gathered from logic simulation, this C++ circuit power
library has been routinely used by a gate-level power estimation
methodology to produce full-chip cycle-by-cycle power
consumption profiles of hundreds of thousands of clock cycles
for the microprocessor and SoC products under development. In
this section, we select representative circuit topologies, and
discuss the modeling accuracy of transition-dependent circuit
internal switching energy compared to SPICE data. The number
of primary inputs of these circuits range from 3 (decode38) to 64
(cmp32), covering the range of the transition space size from 56
to 3.4×1038. For the same circuit, the modeling method of state-
dependent leakage power is exactly the same, but it is a much
easier problem, because the size of the state space is much
smaller than the size of the transition space.

The power modeling accuracy will depend on the number of
clusters (classes) over the entire power spectrum and
classification accuracy. The most prominent advantage of neural
networks is its capability of predicting unforeseen scenarios of
the entire state/transition space. In cases where the complete
enumeration of state/transition space is not possible, 60% of the
data set is used to train the neural network, while the remaining
40% of the data is used for validation. Special effort has been
made to ensure that the classification accuracy between the



mutually exclusive training and validation data closely tracks
each other. The method of using a single mean value for all
transitions is used as the benchmark for comparison. This
benchmark reflects the variation of the switching energy with
respect to different transitions. The comparison results are shown
in Fig. 4 and 5. It can be seen that the characteristics of the
benchmark curves are highly circuit topology dependent and the
variation around the mean is high. For circuits with a small
number of primary inputs, no coherent pattern can be observed.
When the number of primary inputs increases, the benchmark
curve approaches normal distribution. On the other hand, the
estimation errors using neural networks always observe
distributions similar to normal distribution, with much smaller
variation compared to the benchmark curves. The estimation
error decreases when the number of clusters increases and the
more complicated neural networks are used, provided statistical
difference of the power data set between different clusters exist
and appropriate features are selected. Most of the computing time
required for this approach has been spent on using SPICE (or
SPICE-like fast circuit simulator) to collect circuit power
consumption data sets that represent statistical behaviors of
circuit power consumption. The time used for training and
validating neural networks is negligible by comparison.

VII. Conclusions
A circuit power estimation method using Bayesian inference

and neural networks has been proposed. Based on statistical
distribution of circuit leakage power and switching energy, the
entire state and transition space of a specific circuit are classified
using neural networks into a limited few classes that represent
different power consumption average values. This technique
enables efficient table-lookup of circuit power of the entire state
and transition space. This method involves gathering statistical
information, clustering power consumption values, feature
extraction for neural networks of circuit leakage and switching
energy, construction, training and validation of neural networks,
and table-lookup of circuit leakage and switching power using
the validated neural networks. Experimental results on a wide
range of circuit topologies demonstrated the feasibility of using
the proposed method for estimating state-dependent leakage
power and transition-dependent switching energy of library
circuits in a cycle-by-cycle power estimation methodology.
Although the focus of this study has been on power consumption
modeling of library circuits, the proposed method and its
variations may also be feasible for the power estimation of
functional blocks, or even high-level power estimation.
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Fig 4. Probability distribution of estimation error compared to SPICE for different circuits. y-axis is the probability. x-axis is the estimation
error. Let avgval be the mean of all the SPICE simulated values for a circuit. Let estvali, actvali be the estimated value of switching energy using
the circuit power model for a specific transition ti, the SPICE simulated switching energy for the same transition ti, respectively. Estimation error
of neural networks for a transition ti is defined as nnerri = (estvali - actvali) / avgval. "nn10", "nn5" denotes the estimation error for neural
networks with 10, 5 outputs, respectively. "avg" denotes the estimation error, defined as avgerri = (avgval - actvali) / avgval, if the mean is used
as the transition-independent estimated power value. The curves in figures include both training and validation data.
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Fig 5. Cumulative estimation error compared to SPICE for different circuits and metrics of C++ circuit power neural network models. x-
axis is the percentage of total data points. y-axis is the absolute value of estimation error. A point (x,y) in graph is interpreted as absolute
value of estimation error is less than y for x% of cases. The definitions of estimation error, “nn10”, “nn5”, and “avg” are the same as those
described in Fig. 4. “train dpts”, “valid dpts” denotes the number of training and validation data points used to train/validate the neural
network, respectively. Training and validation data sets are mutually exclusive. An “n.a.” entry for “valid dpts” indicates the training data
set is completely enumerated. The curves in figures include both training and validation data. “ft1 #”, “ft2 #”, “ft3 #” denotes the number of
features constructed by methods described in section V-(1), V-(2), V-(3), respectively. “hidden #” denotes the number of hidden units of a
neural network. “time/event” is the average execution time in µs for evaluating the switching energy of a single switching event of a
specific circuit on a Sun Ultra 60/360 workstation for the C++ circuit power library compiled by gcc-3.0.x. This time period includes
feature extraction, classification using neural networks, and table lookup of average switching energy value.
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