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Abstract ─ In this paper, we present Forge, an optimal algorithm for 
gate sizing using the Elmore delay model. The algorithm utilizes 
Lagrangian relaxation with a fast gradient-based pre-processing step 
that provides an effective set of initial Lagrange multipliers. Com-
pared to the previous Lagrangian-based approach, Forge is consid-
erably faster and does not have the inefficiencies due to difficult-to-
determine initial conditions and constant factors. We compared the 
two algorithms on 30 benchmark designs, on a Sun UltraSparc-60 
workstation. On average Forge is 200 times faster than the previ-
ously published algorithm. We then improved Forge by incorporating 
a slew-rate-based convex delay model, which handles distinct rise 
and fall gate delays. We show that Forge is 15 times faster, on aver-
age, than the AMPS transistor-sizing tool from Synopsys, while 
achieving the same delay targets and using similar total transistor 
area. 

1 Introduction 

The increasing use of fluid standard cell libraries demands 
efficient algorithms for gate sizing. For some time researchers 
have been exploiting the convexity of the Elmore [1] or Pen-
field-Rubinstein [2] delay model for optimizing transistor, 
gate and wire sizes. One of the first algorithms was TILOS 
[4], which models transistors as RC equivalent circuits and 
uses the Elmore model for gate delays. TILOS makes incre-
mental changes to the transistors using a delay sensitivity cri-
terion.  

Sapatnekar, et al., presented the first exact solution to the 
transistor-sizing problem, minimizing a convex function over 
a convex set of constraints [3]. The formulation of the problem 
minimized circuit area subject to the constraint that the maxi-
mum delay for all paths meets a delay target. An interior point 
method was used to find the global minimum area. The algo-
rithm proceeds by binding the optimal solution in a multi-
dimensional volume. The size of this volume is progressively 
halved (approximately) while ascertaining that the half that is 
retained binds the optimal solution. This is accomplished by 
finding a point near the center of the current volume. This is 
an iterative process with time complexity per iteration of 

)( 5.2nO , where n is the number of transistors in the design. 
Once a point close to the center is found, a hyper-plane is gen-
erated to halve the volume. When the volume is sufficiently 

small the algorithm terminates. This method may not be suit-
able for large problems, as the cost per iteration is high.  

In 1999, Chen, et al. [5], presented an elegant solution by 
defining constraints on the circuit components rather than on 
the signal paths. Instead of an exponential number of signal 
paths, now only a linear number of timing constraints over all 
circuit components needs to be considered. Thus, a single it-
eration of this algorithm has a time complexity of )(nO , 
where n is the number of components. This approach was also 
used in [6]. Lagrangian relaxation then solves the problem of 
minimizing total area subject to a delay requirement [7]. This 
work was the first to prove convergence of the algorithm and 
to guarantee optimality. However, certain practical implemen-
tation details expose the weaknesses of this approach and 
these will be discussed in the subsequent sections. In Lagran-
gian relaxation, constraints are “relaxed” by incorporating 
them into the objective function. In our case the objective 
function is the total area of the circuit, or a weighted sum of 
the component sizes. Multiplying each constraint by a constant 
called the Lagrange multiplier, and adding it to the objective 
function facilitates this inclusion. Thus, for a fixed vector e of 
Lagrange multipliers, we have a new optimization problem 
that is free of constraints. Of course, the challenge now is to 
find suitable values for e. In [5], the approach is to start from 
an arbitrary point in the solution space. Then the Lagrange 
multipliers are iteratively adjusted based on the difference 
between the timing of the current solution and the desired tim-
ing.  We propose an approach that estimates the optimal vector 
e using fast gradient-based minimization. Then the relaxation 
process is invoked with this vector e, guaranteeing minimum 
area. We call our implementation Forge, since our algorithmic 
approach “forges” fast delay minimization through a gradient-
based search and optimal area minimization through the re-
laxation method. 

The rest of the paper is organized as follows. Section 2 
will briefly go over the Elmore delay model. Section 3 will 
give details of Lagrangian relaxation applied to minimizing 
area given a maximum delay bound. We are using the Elmore 
model, as it is simple enough for compact equations leading to 
clearer derivations. Motivation for the Forge algorithm will be 
given in Section 4. We will consider practical implementation 
issues of Lagrangian relaxation, as proposed in [5], in this 
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section. Forge is discussed in Section 5. Section 6 will show 
results comparing Forge with the stand-alone Lagrangian 
method (e.g. in [5]). Results with Forge using a more complex 
delay model and comparisons with the AMPS tool from Syn-
opsys are in Section 7. Conclusions will be given in Section 8. 

2 Elmore Delay Model 

The Elmore delay model is applicable to distributed networks 
of resistors and capacitors [1][2]. Thus, each component in the 
design is decomposed into an equivalent output resistance, and 
each input to a component is represented by a capacitance. Let 

ir̂  and iĉ , be the unit size output resistance and input capaci-
tance for component i , respectively. The size of component i  
is given by ix . Then the output resistance and input capaci-
tance for a component i  are: iii xrr /ˆ=  and iii xcc ⋅= ˆ . The 
delay for the design is then the sum of the resistor delays. The 
delay for a resistor is its resistance multiplied by the down-
stream capacitance.  

Lagrangian relaxation has been successfully applied to 
simultaneous optimization of interconnect and gate sizes con-
sidering cross-talk [8] with the Elmore delay model. Next we 
look at area minimization given a maximum delay constraint 
with Lagrangian relaxation based on the Elmore model. 

3 Lagrangian Relaxation 

We review the algorithm presented in [5].  For simplicity we 
will only consider gate sizing using the Elmore delay model. It 
has been shown that the algorithm applies to simultaneous 
gate and wire sizing with a delay model that accounts for in-
put/output slew rates and diffusion capacitances [5]. The main 
optimization problem, termed the Primal Problem (PP), is first 
reduced to a simpler form, using characteristics of the optimal 
solution. Then by considering the Lagrangian Dual Problem 
(LDP) the optimal solution to PP is obtained. LDP can be seen 
as an optimization problem having variables corresponding to 
the constraints of the PP [7][10]. We begin by looking at the 
Primal Problem. 

3.1 The Primal Problem (PP) 
Consider a design with s input drivers, t output loads and n re-
sizable components. An output resistance D

iR  represents each 
primary input sii ≤≤1 , , and a load capacitance L

jC  is at each 
primary output tjj ≤≤1  , . Input drivers and gates are termed 
components. A node is the output of a component that con-
nects components together or connects primary output drivers 
to an output load. Thus, there are sn +  components and 
nodes. Two additional artificial components are added, an 
output and input component. The output component connects 
all the t output loads, and the input component is connected to 
all the s inputs. A circuit with the artificial components in-
cluded is shown in Figure 1. There are now 2++ sn  compo-
nents and nodes. Let 1++= snm . The components and nodes 
are labeled in reverse topological order.  

Topological sorting is achieved in linear run-time via 
PERT [9]. Thus, we have the output loads in the 

range ti ≤≤1 , the resizable components are in the range 
ni ≤≤1 , and the input drivers are in the range 

snin +≤≤+1 . Let )(iinput be the set of indices of compo-
nents connected to the inputs of component i for 10 −≤≤ mi . 
Let )(ioutput be the set of indices of components connected to 
the output of component i . Then the Primal Problem )(PP is 
formulated as follows: 

ix  represents the size of the component, ia and iD  are the 
arrival time at the output, and the delay of component i, re-

spectively. iα is the weighting for a component size. The de-
lay of a component is its output ( ) downstreamiii CxrD ⋅= /ˆ resistance 
multiplied by the downstream capacitance:. iL  and iU are the 
lower and upper bounds on the size of component i. The prob-
lem is formulated with arrival time constraints on the compo-
nents, and primary outputs, and not on the worst-case path. By 
introducing one Lagrange multiplier per arrival time constraint 
in a , we get 
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Then the Lagrangian relaxation sub problem )/( λLRS  is: 

n1,...,  i     subject to              
)(   Minimize   :/

=≤≤ ii UxL
LLRS

i

ax,λλ
  (2) 

There are three sets of unknowns: the set of component 
sizes x, the set of arrival times a, and the set of Lagrange mul-
tipliers e. The Kuhn-Tucker conditions require 0/ =∂∂ iaLλ at 
the optimal solution for sni +≤≤1 . Rearranging λ/LRS , we 
get: 

Fig. 1. Circuit representation showing two artificial com-
ponents. Nodes and components are indexed. The filled
circles represent nodes. 
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Fig. 2. The Primal Problem: minimize area given timing con-
straints for each gate. 
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Applying 0/ =∂∂ iaLλ , we get the following optimality condi-
tions on the set of Lagrange multipliers, 

sni
iinputj

ji
ioutputk

ik +≤≤∑=∑
∈∈

1for    
)()(
λλ   (4) 

That is, for all resizable components and primary input driv-
ers, the sum of the Lagrange multipliers at the outputs must 
equal the sum of the Lagrange multipliers at the inputs.  

Let Ωλ= {e ≥ 0: e satisfies optimality conditions}. Using 
the above, and ignoring any constants, the problem is further 
reduced to 
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Next we will see how the above is solved. 

3.2 Solving λ/LRS  
For a given vector e 0≥ , the problem is solved optimally by a 
greedy algorithm. The algorithm performs optimal local resiz-
ing until convergence. Local resizing involves solving for the 
optimal size of a component that minimizes )(xλL , while keep-
ing the other sizes fixed. Let iµ be the sum of Lagrange multi-
pliers assigned to the inputs of component i. 

∑
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Let iR and iC be the upstream weighted resistance and the 
downstream capacitance of component i, respectively. 
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Then we can rewrite )(xλL , focusing on a particular gate i: 
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Local optimizations are carried out on components in topo-
logically sorted order until no further improvement is possible. 
Note that this process is carried out for a given set of Lagrange 
multipliers. To achieve the minimum area for a given target 
delay, the optimal set of multipliers must be found. The next 
section will discuss the Lagrangian Dual Problem (LDP), 
which will enable us to iteratively solve for the optimal set of 
multipliers. 

3.3 The Lagrangian Dual Problem (LDP) 
Consider the Primal Problem given in Figure 2. The LDP of 
the PP is: 
 
 
 
 
 
 
 
 
For a formal discussion on the Dual, the reader is directed to 
Bazaraa, et al. [10]. For a vector e, Q(e) is a concave function 
over e 0≥ , and is non-differentiable [10]. Thus, the authors of 
[5] utilize subgradient optimization [10], to solve LDP. In 
subgradient optimization, the gradient direction is substituted 
with a subgradient direction. In our application, starting from 
an arbitrary point einit in λΩ , the solution to λ/LRS is ob-
tained. Then for each arrival time, the subgradient is defined 
as the arrival time constraint (slack) evaluated at the current 
solution. Next the subgradient is multiplied by a step size kρ . 
The next point is obtained by adding the subgradient to each 
λ. Finally the new λ’s are projected to the closest point in λΩ . 
Given that the step size has the following properties: 

0lim =∞→ kk ρ and ∞=∑
∞

=1k kρ , the procedure will converge 
to the optimum. The procedure is summarized in Figure 4. 
Note that the updating procedure for λ (for resizable compo-
nents) does the following: for any input on the current critical 
path, λ for that input is unchanged; for any input on a non-
critical path, λ for that input is decreased. Thus λ values dic-
tate the criticality of paths. Note also from (6) that the size of 
component i is directly proportional to ∑ ∈= )(iinputj jii λµ . 
Thus, components on a non-critical path are downsized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the initial λ vector e we assigned an einit to primary out-
puts and applied the procedure in Figure 5, assuming equal 
distribution of outµ  over the input λ’s. The mapping 
to λΩ (step 4, Figure. 4) requires that the sum of the input λ’s 
equal the sum of the output λ’s. We first get the current sum 
of λ’s, or µ, of a component, and then compute how the total 
is distributed among each input. Then we apply the same dis- 

Fig. 3. LDP: maximize the infimum (greatest lower bound) of LRS/λλλλ.
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 tribution using the sum of the downstream λ’s. 
 
 
 
 
 
 
 
 
 
 
 
 
The final algorithm that solves PP is: 
 
 
 
 
 
 
 
Next we will look at key motivations that led to the formuliza-
tion of Forge. 

4 Motivation 

The delay model we are using is convex. Thus, for a given 
delay, other than the absolute minimum, there exist contours 
of equal delays. A contour means that the same delay can be 
achieved with different sets of sizes. 

This is illustrated in Figure 7. Consider the path  “track-
ing” the minimum area solution at each contour. This path 
mimics the operation of the Lagrange algorithm. The inner 
loop of the SolveLDP algorithm operates by incrementally 
changing the set of Lagrange multipliers (which reduces the 
delay) and then finding the minimum area for that given set of 
multipliers. Thus, extra iterations are being utilized to opti-
mize intermediate steps for area. We anticipate great savings 
in run time if we could search the solution space as repre-
sented by the path from the right in Figure 7. Employing a 
steepest descent method, the delay target can be reached very 
quickly. The first solid arrow terminating at the delay contour 
represents this. The second arrow terminating at the minimum 
area point represents area minimization on the delay contour.  

A method to facilitate minimizing area on the delay con-
tour is explored by considering the inverter chain given in 
Figure 8. From the optimal conditions on the Lagrange multi-
pliers (4), we have λλλλλλ ===== 43210 . Also, as we 
have single input gates, λµµ == ji . Using ( )jji xrR ˆλ= , if 
we examine (6) (which solves LRS/λ) disregarding the bound-
ary values we get, 

( ) iijj
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Then solving for λ : 
 

( ) iijj
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αλ
λ

+
=

ˆˆ
ˆ2     ⇒ ( ) iiiiijji Crxcxrx ˆˆˆ 22 λαλ =+  

Dividing by ix  
( ) ( ) 0ˆˆˆ =−+ iiiiiiijj Cxrxxcxr λαλ  

( ) ( )( ) iiiijjiii xxcxrCxr αλ =− ˆˆˆ  

( ) ( ) iijjiii

ii

xcxrCxr
x

ˆˆˆ −
= αλ    (8) 

Thus, it can be seen that the sizes ji xx , imply a value for λ. 
Consider the point at which the steepest descent has found the 
target delay. Then using (8) we compute values for all λ’s. 
This provides a very good initial vector einit .  
Another motivation is that though subgradient optimization 
theoretically converges to the optimum solution, practically it 
has been seen that this is not the case [10][11]. The authors of 
[10] state that careful fine-tuning of step size choices is re-
quired for good performance. The authors of [11] state “al-
though of simple convergence conditions, the convergence of 
subgradient methods can consume a long time for some in-
stances. The subgradient optimization is very sensitive to the 
initial values for the multipliers and the rules applied for step 
size controlling”. We illustrate this in Table 1. For each design 
we used two initial vectors einit . The values shown are the λ 
values for the primary outputs (all other λ are derived using 
(4)). We report the runtime for each step size multiplier used. 
(Inf denotes divergence). We used several step size multipli-
ers, multipliers kρ that meet the requirements for convergence, 

Fig. 5. Mapping of λλλλ to the closest
point in λΩ . 
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and multipliers ρ that do not meet convergence requirements 
(k is the iteration count).  

Design einit kρ  ρ  

  1/1e7k 1/5e7k 1/1e7 1/5e7 

C17 1e-4 0.03 Inf Inf 0.01 

 1e-5 0.00 Inf Inf 0.00 

b1 1e-4 Inf Inf 0.28 1.10 

 1e-5 Inf Inf 0.30 Inf. 

cc 1e-4 Inf Inf 0.44 1.82 

 1e-5 Inf Inf Inf 2.16 

alu2 1e-4 Inf Inf Inf Inf 

 1e-5 Inf Inf Inf Inf 

des 1e-4 362.76 Inf Inf Inf 

 1e-5 Inf Inf Inf Inf 

Table 1. Lagrange run times, illustrating convergence problems due to 
the strong sensitivity to the step size multipliers and initial points. Re-
ported run time for each multiplier step size and initial point pair are in 
seconds. 

 It can be readily seen from Table 1 that subgradient op-
timization is very sensitive to the start point and the choice of 
step sizes, and the best set of parameters differs from design to 
design. As the best, or even a workable pair of start point and 
multiplier choices are not known a priori, in our implementa-
tion we try a range of initial points and step size multipliers. 
These are in the two forms βρβρ 1/ ,/1 == k , k  is the current 
iteration. Each start point, multiplier pair is tried out for a time 
period of 30 minutes. If algorithm convergence is not seen 
within this period, then we restart with another pair. 

In the next section we present Forge, which exploits the 
relationship between the sizes and the Lagrange multipliers, 
and is void of difficult-to-predict initial conditions and con-
stant factors. 

5 Forge 

As seen in the previous section, the subgradient search used to 
solve LDP is very crucial for performance. Many approaches 
have been suggested to improve subgradient search [10].  Ex-
ploiting the convex nature of the problem at hand, we will 
present a method that provides an initial einit that will be close 
to the optimal e*. Then using this einit as a starting point we 

will invoke Lagrangian relaxation with a modified subgradient 
approach, LagrangeM. Our approach is independent of con-
stant factors, and uses the delay slack at each gate in a more 
intuitive manner than that given in Figure 4. 

The algorithm is outlined in Figure 9. The algorithm con-
sists of three steps. The first uses steepest descent to arrive as 
close as possible to the desired delay contour. Then the algo-
rithm attempts to search along the delay contour for the best 
area solution. Using the set of sizes from the end of this proc-
ess, at the next step we estimate values for the initial Lagrange 
multipliers, and then invoke the relaxation algorithm. In prac-
tice these estimates were close to the optimal values, resulting 
in fast convergence of the relaxation, which is the last step. 

5.1 Steepest Descent Search 
The first step in Forge is to arrive at the desired delay contour. 
We use a steepest-descent, gradient-based approach. The 
drawback of using such an approach is that steepest-descent is 
not directed toward a particular delay target, but simply mini-
mizes the delay. To address this problem, when we apply the 
steepest-descent in topological order, we will attempt to size 
the primary output drivers to meet the current delay target at 
the output. If this is not feasible, we size the drivers optimally. 
Finally, the steepest descent is stopped when the delay is less 
than the target delay. 

Consider (6), which sizes ix to its local optimum value. If 
we disregard the upper and lower bounds on ix (only to sim-
plify the presentation in this paper), the area iα , and the La-
grange multiplier iµ (as we are only interested in minimizing 
delay at this step), we arrive at the value of ix that minimizes 
delay. 

iiiii cRCrx ˆˆ* =   (9) 
We apply (9) to each gate in topological order, except for the 
primary output drivers. For the primary output drivers we at-
tempt to arrive as close to the target delays by sizing the driv-
ers to meet the delay target. Consider the simple inverter chain 
in Figure 8. The total delay is given by, 

( ) ( ) LCxrxcxrxcRD ⋅+⋅+= 111122221 ˆˆˆˆ  (10) 
Let 3a be the arrival time at node 3n . Then the delay is written 
as, 

( ) ( ) LCxrxcxraD ⋅+⋅+= 1111223 ˆˆˆ   (11) 
For a given target delay, 0AD = , we can compute the value 
of 1x that will result in the desired delay: 

( ) ( ) 30111122 ˆˆˆ aACxrxcxr L −=⋅+⋅  
Multiplying by 1x and, rearranging we get the quadratic equa-
tion 

( ) ( ) 0ˆˆˆ 1130
2
1122 =+−−⋅ LCrxaAxcxr   (12) 

(12) can be solved if: ( ) ( ) 0ˆˆˆ4 11
2
1122

2
30 ≥−− CrxcxraA . If 

this is not the case then we use (9) to optimally size the driver. 
The algorithm is shown in Figure 10. 

5.2 Contour Search 
Using (12) and (8) we can formulate a routine that explores 
the contour and converges to the optimal solution. The routine 
for the simple inverter chain in Figure 8 is as follows. The 
chain is traversed in reverse topological order. From the in-
verter that drives the load we compute 10 λλ = using (8). Then 
we assume that 12 λλ = from the optimality criteria, and com-

Fig. 9. Algorithm Forge. 
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pute 2x using (6). Arrival times are updated, and the last stage 
is resized to meet the target delay using (12), thus remaining 
on the delay contour. The above procedure is repeated until 
convergence.  

For general circuit topologies it is not possible to get such 
a simple relationship between the Lagrange multipliers as for 
an inverter chain. But from the above we can see that sizes 
imply values for the multipliers. In the next section we will 
expand the algorithm to include general topologies. Using the 
fact that sizes imply values for the Lagrange multipliers, we 
predict reliable values for the Lagrange multipliers that will be 
the starting point of the relaxation algorithm (LagrangeM).  

5.2.1 General networks of gates 
For networks of gates, it is not possible to form a simple rela-
tionship between the Lagrange multipliers. To facilitate explo-

ration of the contour in order to estimate values for einit , we 
make the following assumption for an n-input gate i : 

  /   then , if
)(

nλ iji
iinputj

jii µλµ == ∑
∈

 

We assume that the total µ for a component is equally distrib-
uted across the s'λ  related to each input of that component. 
For example, consider component 2 in Figure 11. From the 
optimality criteria we get: 114252 λµλλ ==+ . Then assum-
ing a uniform distribution we get 2/14252 µλλ == . 
The Lagrange multipliers are now computed as follows. Con-
sider component 2 of the design in Figure 11. From (5), 
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Using our assumption of equal distribution: 
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This has the same form as (8). For an n-input component i we 
have: 
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iRs is the sum of the upstream resistances. Then for each input 
gate we assume that this value is evenly distributed. That is, 

iniinputjn iiiiji   gatefor  inputs ofnumber   theis  and )(  where,/ ∈== λµλ

 By rearranging (14) and solving for x we get: 
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       (15) 

The final algorithm that estimates λ values is given in Figure 
12. 

The assumption of equal distribution assigns equal impor-
tance to paths that fan-in to that component. This could lead to 
sizing components such that the load drivers cannot be sized 
to meet the required delay. For example, the estimation may 
size the upstream components too much or too little, ulti-
mately causing the delay to deviate too far from the target. 
Finally, the assumption of equal distribution may not lead to 
the minimum area solution since we are disregarding the criti-
cality of timing paths. However, by following the procedure in 
Figure 12 we get a good estimate of an initial vector einit for 
the Lagrangian Relaxation.  

In summary, first we reach a delay contour as close as 

possible to the target delay using gradient-based minimization. 
Then we explore this contour (seeking the minimum area solu-
tion) by enforcing a uniform distribution of the s'λ . Finally, 
with the set of sizes and the Lagrange multipliers they imply, 
we call Lagrangian Relaxation with a modified subgradient 
search, which is the subject of the next section. 

Fig. 10. Algorithm steepest-descent. 
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5.3 Modified Subgradient Search (LagrangeM) 
In section 4 we showed that Lagrangian Relaxation coupled 
with subgradient optimization suffered from two problems: 1) 
not knowing what a good value for einit is, and 2) the great 
difficulty in determining the proper factors used to control the 
step size adjustments to the multipliers. In the previous sec-
tions we have addressed the initial value problem by a method 
used to estimate einit. However, we are again faced with the 
task of step-wise adjustments to the multipliers to arrive at the 
optimum solution. One of the main drawbacks in the method 
used in Figure 4 is that the dampening factor β is fixed 
throughout the optimization process. We propose the follow-
ing procedure, given in Figure 13, for the incremental im-
provement of the λ’s. 

This procedure is more sensitive to local delay information, by 
providing a dampening factor that is dependent on the local 
delay information. 

The ia ’s are the current set of arrival times at the outputs 
of each component, the ja ’s are the arrival times at the inputs 
to each component, iD  the delay through each component, 
and 0A  is the target delay. We ran Lagrange and Forge on 30 
benchmark circuits. In the next section we will see how the 
two algorithms compared to each other. 

6 Results 

As the Lagrange algorithm requires tuning to get the best run-
time, to make an equitable comparison, we tried a range of β 
values and initial points, for intervals of 30 minutes. If algo-
rithm convergence was not seen, then we switched to another 
β, initial point pair. Table 2 summarizes the results. The num-
bers reported as area are sum of the gate widths normalized by 
the result from Lagrange.  

  Lagrange Forge 

Design cells area CPU(s) Area CPU(s) 
Impr.  
runtime 

C17 6 1 0.310 0.973 0.010 31 

b1 9 1 1.360 0.998 0.010 136 

cm138a 23 1 2.670 0.999 0.020 134 

cm42a 20 1 4.160 1 0.020 227 

cm151a 38 1 12.860 1.002 0.030 429 

cm150a 52 1 6.990 0.998 0.060 140 

cu 57 1 16.020 0.985 0.060 267 

cc 60 1 8.600 0.999 0.060 143 

B9 131 1 16.040 1 0.170 94 

apex7 257 1 524.180 0.996 0.650 806 

C880 467 1 83.860 0.989 9.930 90 

alu2 516 n/a Inf n/a 1.390 n/a 

too_large 800 n/a Inf n/a 2.100 n/a 

apex6 703 n/a Inf n/a 1.850 n/a 

C1355 791 1 1697.77 0.992 4.870 349 

rot 753 n/A Inf n/a 13.540 n/a 

vda 935 n/a Inf n/a 4.880 n/a 

frg2 1070 n/a Inf n/a 8.210 n/a 

C2670 1310 n/a Inf n/a 3.130 n/a 

t481 1439 1 124.690 0.9685 2.910 43 

C3540 1424 n/a Inf n/a 7.300 n/a 

apex5 1707 n/a Inf n/a 9.640 n/a 

dalu 1921 1 1261.14 0.9914 6.030 209 

k2 2215 n/a Inf n/a 33.250 n/a 

seq 2724 n/a Inf N/a 56.890 n/a 

C5315 2529 n/a Inf n/a 33.250 n/a 

i10 3280 n/a Inf n/a 39.030 n/a 

C6288 3798 n/a Inf n/a 45.760 n/a 

C7552 3994 1 300.94 0.9789 11.520 26 

des 6160 1 1305.39 0.993 86.13 15 

Average      196 
Table 2. Runtime comparisons. 

From Table 2 it can be seen that Forge converges at a 
much faster rate than Lagrange. The final values for the x ’s 
(the total area) are within numerical “noise” of Lagrange for 
all benchmarks. Also note that of the 30 benchmarks, La-
grange did not converge for 14 of the designs. On average, 
Forge is nearly 200 times faster than Lagrange and has no 
convergence problems. 

7 Delay Model 

To demonstrate the versatility of our algorithm, we applied a 
more accurate delay model, and took rise and fall delays into 
consideration. We then compared the quality of our sizing 
results with AMPS, a commercially available sizing tool from 
Synopsys. All cells in our library were inverting. The slope-
based delay and output slew models are: 

( ) nriseinputfloadfpffall xcCbxaDelay /,τ⋅+⋅+⋅=  
( ) pfallinputrloadrnrrise xcCbxaDelay /,τ⋅+⋅+⋅=
( ) nriseinputftloadftpftfall xcCbxaSlew /,τ⋅+⋅+⋅=
( ) pfallinputrtloadrtnrtrise xcCbxaSlew /,τ⋅+⋅+⋅=  

The nMOS and pMOS widths are nx and px , respectively, and 
we assumed a uniform size for all transistors in a pull-up or 
pull-down network. τ is the input slew rate. The constants 

rtrtrttfftftrrrfff cbacbacbacba ,,,,,,,,,,,  were determined using 
the non-linear curve fitting software NLREG [12]. The charac-
terization was over transistor widths from 0.5um to 12um, 
input slew rates from 20 to 200 ps and output loads up to 
500fF. Similar approaches have been successfully applied in 
[13]. Table 3 summaries the average error and the standard 
deviation of the error, for the gates in our library. The average 
error for delay and slew-rate includes error averages for rise 
and fall transitions. Note that delay models are in posynomial 

Fig. 13. Step-wise improvement procedure for the λλλλ’s. 
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form, which has been shown to be convex. We present results 
on 5 benchmarks and compare with the results from AMPS. 

Gate Delay Slew 
 error  σn-1 error  σn-1 

INV 4.89% 3.75% 5.13% 3.47% 
NAND2 6.57% 5.64% 6.59% 4.87% 
NOR2 5.19% 4.42% 5.12% 3.78% 
NAND3 7.64% 7.99% 7.02% 6.56% 
NOR3 6.87% 6.35% 5.43% 4.55% 
NAND4 9.12% 10.13% 4.55% 4.93% 
NOR4 8.85% 8.76% 5.73% 4.32% 

Table 3. Accuracy of Delay model. 

The gate sizing constraint that we employed with Forge and 
AMPS was to require uniform sizing of all pMOS (nMOS) 
transistors in the pull-up (pull-down) network.   

The results for sizing are shown in Table 4. Note that 
Forge has a significant run time advantage over AMPS, aver-
aging 15X faster, while achieving the same delay targets and 
using similar total transistor area, approximated by the sum of 
device sizes. The delays reported were obtained from PathMill 
static timing analysis runs. Note that Forge is optimal with 
respect to the delay model used for the gates. As was shown in 
Table 3, the delay model we used leaves room for improve-
ment. This explains the reasonably small (percentage wise) 
area differences between Forge and AMPS. 

Design cells Amps Forge 
  Delay 

(ns) 
Area 
(um) 

CPU 
(s) 

Delay 
(ns) 

Area 
(um) 

CPU (s) 
run 
time 
Impr 

b9 129 1.548 

1.092 

0.762 

219 

221.06 

259.8 

 

 

22.17 

1.548 

1.095 

0.748 

219 

220.65 

311.34 

 

 

0.420 

 

 

53 

C880 482 3.136 

2.416 

2.224 

815.00 

847.00 

924.75 

 

 

42.68 

3.136 

2.416 

2.221 

815.00 

874.97 

958.79 

 

 

4.520 

 

 

9 

alu2 496 3.301 

2.859 

2.846 

795.00 

824.64 

811.65 

 

 

42.26 

3.301 

2.873 

2.828 

795.00 

868.21 

919.62 

 

 

10.460 

 

 

4 

Apex6 1029 1.767 

1.486 

1.427 

1652.00 

1656.50 

1660.77 

 

 

50.70 

1.767 

1.552 

1.427 

1652.00 

1660.34 

1698.59 

 

 

17.990 

 

 

3 

C5315 2379 3.1781 

2.506 

2.191 

3813.00 

3841.01 

4069.36 

 

 

128.76 

3.1781 

2.541 

2.24 

3813.00 

3841.49 

4200.27 

 

 

16.380 

 

 

8 

C6288 5494 7.387 

5.992 

5.734 

8818.00 

8863.55 

8936.59 

 

 

2672.78 

7.387 

6.010 

5.751 

8818.00 

8873.17 

9421.65 

 

 

207.260 

 

 

13 

Average 15 

Table 4. Forge sizing solutions compared with AMPS.  Each design was 
given two delay targets. Reported CPU times are the total for both tar-
gets. 

8 Conclusions 

In this paper we presented Forge, an algorithm that enhances 
the Lagrangian relaxation method, by very quickly predicting 

reasonable values for the Lagrange multipliers required in the 
optimization. This was achieved by a gradient-based minimi-
zation to obtain the desired delay target, followed by a search 
on the equal delay contour. We have shown that the sizes of 
the components imply a value for a Lagrange multiplier, thus 
enabling the estimation. In the previous formulation of the 
Relaxation algorithm, values for the multipliers were obtained 
using a subgradient method. However, this approach is highly 
dependent on an initial value and constant factors.  These fac-
tors are shown to contribute to erratic behavior in the subgra-
dient search. Unfortunately, acceptable values for these factors 
are highly specific to the design and target-delay.  On average 
there is about a 200X improvement in the run time for Forge 
over Lagrange.  

Finally, we also showed that Forge provided a signifi-
cant run time advantage over the AMPS tool from Synopsys, 
averaging 15 times faster. 
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