
Optimized Power-Delay Curve Generation
for Standard Cell ICs

Miodrag Vujkovic and Carl Sechen
Department of Electrical Engineering

University of Washington
Seattle, WA

miodrag@ee.washington.edu, sechen@ee.washington.edu

Abstract

An effective way to compare logic techniques, logic fami-
lies, or cell libraries is by means of power (or area) versus de-
lay plots, since the efficiency of achieving a particular delay is
of crucial significance. In this paper we describe a method of
producing an optimized power versus delay curve for a combi-
national circuit. We then describe a method for comparing the
relative merits of a set of power versus delay curves for a cir-
cuit, each generated with a different cell library. Our results
indicate that very few combinational functions need to be in a
cell library, at most 11. The power-delay points achieved by
Design Compiler from Synopsys using the state-of-the-art Arti-
san Sage-X library compare unfavorably to our approach. In
terms of minimum energy-delay product, our approach is supe-
rior by 79% on average. Our approach yields the same delay
points with a 107% savings in power consumption, on average.
We also show that the specified VDD for a process technology
should only be used for the absolute fastest implementations of
a circuit.

1. Introduction

The standard cell design style has been an important ap-
proach for application-specific integrated circuits (ASICs) for a
long time. The quality of a synthesized design depends on three
components: the synthesis tool, the place and route tools and the
target cell library [1]. Choosing the right cell library can have a
significant impact on the characteristics of a designed circuit.

General principles of cell library design, aimed to improve
final circuit speed, have been proposed, such as providing each
cell in a variety of drive strengths or including cells with dual
polarity [1]. It was shown that relatively simple modifications in
a cell library could lead to 20-30% speed improvements. An-
other study investigated the impact of library size on the quality
of automated synthesis [2]. The results have indicated that an
incrementally larger library size could considerably reduce area
while meeting comparable timing requirements. On the other
hand, the experimental study presented in [3] has confirmed that
a great number of cells in typical libraries are not essential.

In high performance applications, the use of fixed, pre-
defined cell libraries is becoming unattractive. Fixed libraries
prevent device tuning for delay/power optimization [4]. Their

physical features are rarely optimal for all applications, and
therefore the performance of such designs is limited. The solu-
tion to these problems is the use of on-the-fly cell generation.
These libraries are often referred to as fluid or liquid cell librar-
ies.

A semi-custom design methodology, which exploits a fluid
cell approach, has been reported in [5]. The basic building
blocks used in this methodology are a set of parameterized static
CMOS gates (around 10 different gates), suitable for circuit
tuning. A cell generation tool was used to create a conventional
library of discrete sizes. There were from 10 to 25 power levels
and from 1 to 4 beta ratios for each gate type. The library con-
sisted of approximately 1200 cells, and is referred to as a “tall
thin” library.

A similar flow called the Power and Performance Optimi-
zation (PPO) flow was developed to achieve higher perform-
ance and reduce the power consumption in cell-based designs
[6]. The PPO flow starts from an implemented design and opti-
mizes the transistor sizes in each cell within a design to increase
the performance and/or reduce the power dissipation. Also, in
[7] a post-layout transistor sizing method for power reduction
aims to reduce the redundancy of cell-based design and to ob-
tain performance close to full-custom quality.

Transistor-level optimization can also be performed by re-
structuring. It can be combined with sizing of the individual
transistors to optimize performance of a given structure. The
proposed technique is called transistor-level resynthesis [8].
Results show that transistor-level resynthesis can achieve delay
improvements up to 20%, along with a smaller transistor count
and a power reduction. Efficient way to obtain the cost versus
delay trade-off curve of combinational circuits by mapping of
the gate-sizing problem onto piecewise linear model is pre-
sented in [9].

2. Motivation

The drawbacks associated with existing approaches to stan-
dard cell IC synthesis are as follows.
1) There has not been clear evidence as to which combina-

tional cells should be in a library when optimized power
versus delay trade-offs are the objective.

2) Typically only a single point in power-delay or area-delay
space is produced when comparing cell libraries.

0-7803-7607-2/02/$17.00 ©2002 IEEE

3) Fluid cell approaches have been used primarily to try to
improve one aspect of the original power-delay point (typi-
cally to improve the delay).

4) Thus far different circuit synthesis approaches have been
compared based on single points in power-delay or area-
delay space.
An effective way to compare logic techniques, logic fami-

lies, or cell libraries is by means of power (or area) versus delay
plots, since the efficiency of achieving a particular delay is of
crucial significance. In Fig. 1, it is apparent that whatever tech-
nique was used to produce curve A is clearly superior to the
technique used to produce curve B. When two curves intersect,
as do curves B and C in Fig. 1, it is possible to specify delay
ranges (for example) where one technique outperforms the
other.

Fig. 2 illustrates very typical power (and area) versus delay
curves for a benchmark circuit. Note that a very wide range of
power (factor of 4), area (factor of 9) and delay (factor of 3) are
readily available.

In this work:
1. We identify a method to produce an optimized power ver-

sus delay curve for a combinational circuit.
2. We describe a method for comparing the relative merits of

a set of power versus delay curves for a circuit, each gener-
ated with a different cell library.

3. We show which logic functions should be in a cell library
to achieve the best power versus delay curves, analyzed
over a set of benchmark circuits.

4. We show that the power-delay points achievable by Design
Compiler from Synopsys using the state-of-the-art Artisan
Sage-X library compare unfavorably to our approach.

5. We show that the specified VDD for a process technology
should only be used for the absolute fastest implementa-
tions of a circuit.

Our ultimate objective is to provide an optimized power (or

area) versus delay plot for a circuit, in which the user can
“click” on a particular point and the layout having those power
(or area) and delay characteristics will be provided. Quite often
the desired delays are either in fact not achievable, or are
achievable but at a significant increment in cost (power or area).
With power (and area) versus delay curves, feasibility and cost
are readily available.

Another objective is to achieve full-custom circuit efficien-
cies (in terms of power, area and delay) while providing a fully
automated design flow typical of semi-custom design.

The focus of this paper is on the steps leading up to the lay-
out phase.

3. Design Flow

Our fluid cell design flow included the following steps: cell
characterization, technology library generation, design synthe-
sis, and transistor-level optimization. We used simulation para-
meters for the TSMC 0.18-micron technology, with lambda-
based design rules, featuring a drawn channel length of 0.20
microns and a fanout-of-four inverter delay of 84ps. The initial
set of transistor sizes was such that all nMOS widths were the
same (1.4 µm), as were the pMOS widths (2.1 µm). The cells
were characterized for input slews ranging from 50-400 ps, and
fanouts ranging from one to ten (the unit load is inverter1x).

Design Compiler (DC) from Synopsys was used for synthe-
sizing the benchmark circuits into optimized, technology-
dependent, gate-level designs. The benchmark circuits were
mapped to a given technology library – generated by Library
Compiler. Four scripts with different logic-level optimization
steps (flattening and timing-driven structuring) were used. We
found that in all cases the best results were obtained using
Script1 (structuring enabled, flattening disabled). Consequently,
only results obtained using Script1 will be presented.

Based on prior layout experience, the wire load model we
used was 17 µm per fanout. Since the wire capacitance for the
target technology was 0.2 fF/µm, this implies 3.4 fF per fanout.

3.1 Transistor-Level Optimization
AMPS (Automatic Minimization of Power through Sizing)

from Synopsys was used for transistor-level optimization within
the three-dimensional optimization space delay/area/power [10].
AMPS takes a circuit netlist in spice format, in addition to a set
of input patterns that will be used for power estimation, and
runs a static delay analysis and a dynamic power simulation,
based on the PowerMill/Nanosim and PathMill tools [11]. The
power/delay optimization was performed using the three rele-
vant optimization modes:

• Cost-function mode (CFM)
• Delay-requirement mode (DM)
• Power-requirement mode (PM)

Figure 1. Comparison of power-delay curves

4
6
8

10
12
14
16
18
20

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
delay (ns)

po
w

er
 (m

W
)

curve A

curve C

curve B

10
15
20
25
30
35
40
45
50
55
60

5 6 7 8 9 10 11 12 13 14 15 16 17
delay (ns)

po
w

er
 (m

W
)

4
8
12
16
20
24
28
32
36
40
44*103

ar
ea

 (u
m

)
static11 - optimal
static11 - area estimate

Figure 2. Power (area) vs. delay plot – each point
represents one possible implementation

Table 1. Overview of standard cell libraries

First, AMPS was run for each benchmark in CFM. The
weighting factors for the delay and power analysis were varied
in range 1-32 by powers of two, for example, (delay cost, power
cost) ∈{(1,32), (1,16), ...(1,1), ...(32,1)}. The goal of this step
was solely to obtain a range of delay/power values for each
benchmark. After that, a group of target delay values was se-
lected from the obtained delay range, and similarly, a set of tar-
get power values was chosen from the power range. The cost-
function optimization rarely achieves the minimum power and
delay values. Therefore, some target values were selected below
the minimum of the range.

Our actual power vs. delay optimization is performed with
AMPS in DM and PM, using the selected group of target delay
and power values, respectively. In delay-requirement mode,
AMPS resizes the circuit to achieve the specified delay and then
continues to reduce the power while preserving the worst-case
delay. In power-requirement mode, the specified power was
achieved first followed by the attempt to reduce the delay while
not exceeding the required power. The AMPS optimization
process consists of a series of DM runs (dmr1, dmr2…) and PM
runs (pmr1, pmr2…) for a wide range of target delay and power
values, as shown in Fig. 3. Each AMPS run consists of 10 itera-
tions. While it is possible to do more iterations, we found no
advantage in doing so.

During the optimization process AMPS generates a large
number of points in (power, delay) space. Among them, only the
dominant points are retained to define the optimized power vs.
delay curve. A point (x1, y1) dominates a point (x2, y2) if and
only if x2 is greater than or equal to x1 and y2 is greater than or
equal to y1. In other words, both points are retained if and only
if each of the points has exactly one attribute (power or delay)
that is superior to the other point’s corresponding attribute.

PS was provided with a discrete set of allowable transistor
sizes. The allowable transistor sizes for our 0.18-micron process
were between 0.7 µm and 14 µm, in steps of 0.7 µm, and be-
tween 0.3 µm and 0.7 µm in steps of 0.1 µm.

The transistor-level optimization can be performed using
two different sizing schemes: tx and pn. In the tx scheme, every
transistor in a cell can be independently sized, while in the pn
scheme, all n-devices for a cell are sized as a group, and all p-
devices are sized as a separate group. We found that the pn
scheme produced equally good power-delay curves in far less
time, and produced far fewer cell instances.

3.2 Overview of Cell Libraries
In our research we have investigated a very large number of

libraries, where a given library is characterized by the different
combinational logic functions it provides. Our experience sug-
gests that the static25 library (Table 1), containing 25 different
logic functions and including most of the functions that have up
to 3 transistors in series, represents approximately one of the
most complex (in terms of function count) libraries that is in use
today.

While we have investigated a very large number of subsets
of this 25-cell library, Table 1 contains the best performing six
subsets (where a subset with fewer cells is considered better
than a larger subset that produces essentially the same power-
delay curves). Furthermore, we observed that libraries contain-
ing multi-level cells and/or pass-transistor-based cells, such as
XOR and MUXs, consistently yielded worse results than the
libraries in Table 1 (due to space limitations we are not able to
show this data).

4. Library Evaluation

For a given circuit, we generate a power vs. delay curve for
each of the cell libraries shown in Table 1. The complete set of
power-delay curves for benchmark circuit C6288 is shown in
Fig. 4. For each library in Fig. 4, among all power-delay points
generated, only the dominant points are retained to produce the
shown curve.

optimum
point 5.2 5.6 6.0 6.3 6.6 7.0 7.4 delay (ns)

25

40
35
30

45

60

75

power (mW)

optimum
curve

pmr1
pmr2
pmr3
pmr4
pmr5

pmr6

pmr7

dm
r1

dm
r2

dm
r3

dm
r4

dm
r6

dm
r5

dm
r7

dm
r8

Figure 3. AMPS optimization process consists of target
delay (dmr) and target power (pmr) optimization runs

15

25

35

45

55

65

75

5 6 7 8 9 10 11 12 13 14 15 16 17
delay (ns)

po
w

er
 (m

W
)

static7

static8a

static8b

static9a

static9b

static11

static25

Figure 4. Power-delay curves for 7 static libraries
(whole range) – C6288 benchmark

Cell name static7 static8a static8b static9a static9b static11 static25
inverter X X X X X X X
nand2 X X X X X X X
nand3 X X X X X
nand4 X X X X X
nor2 X X X X X X X
nor3 X X X X
nor4 X
xor2 X X X X X X
xnor2 X
aoi21 X X X X X
aoi22 X X X X X X X
oai21 X X X X
oai22 X X X X X X
aoi31-aoi33 (3) X
aoi211-aoi222 (3) X
oai31-oai33 (3) X
oai211-oai222 (3) X

A (zoomed in) portion of the power-delay curves for
theC7552 benchmark is shown in Fig. 5. Note that the largest
library, static25, did not produce the best results for either
benchmark circuit in Figs. 4 and 5.

A potentially unpleasant aspect of using a transistor and/or
gate sizer on a random logic block is that it might touch a sig-
nificant percentage of the cell instances in the block. We there-
fore measured the number of different library cells (unique in-
stances) used in a design implementation. Cells are considered
different, if they differ in size or functionality. Fig. 6 shows the
different cell count versus target delay for various libraries for
circuit des. The number of different cells generated during the
optimization process generally increases with the number of
functionally different cells in the starting library. As shown
later, the static11 library yields good power-delay performance,
and yet as indicated in Fig. 6, uses a modest number of different
cells.

4.1 Library comparison
Although a manual inspection of a family of power-delay

curves can often lead to the identity of the best performing li-
brary for a given circuit, this is not always easy. Further, it is
difficult to manually ascertain the relative behavior over a wide
range of circuits. We therefore developed a method for deter-
mining the relative performance of the libraries.

After the family of power-delay curves is generated for a
circuit, the next step is to identify the overall optimal power-
delay curve. This is accomplished by retaining only the domi-

nant points among all points produced by all libraries.
One possible measure of library quality is the number of

points on the overall optimal curve due to that particular library.
However, with this approach, non-dominant points do not con-
tribute even if they lie in the vicinity of the optimal curve. This
would be unfortunate since the accuracy of the tools used to
obtain the points is at best within a few percent.

We therefore defined an envelope curve that lies above the
optimal curve by a small margin and parallel to it (as shown in
Fig. 7). In order to measure Euclidean distance on a plot with
two types of units (power and delay), the power and delay val-
ues were normalized to their minimum values. The small margin
we happen to use is 2.5%, but our conclusions were invariant
for margins at least as high as 5%.

 For a given circuit, a possible quality metric for a library
would then be the total number of points from its power-delay
curve that lie on or below the envelope. However, this may not
be a good metric if groups of points tend to lie close to one an-
other. In other words, five points that are grouped together in a
particular portion of power-delay space would not be of the
same quality as the case in which the five points are more sepa-
rated and span a greater portion of the power-delay space. We
believe that a better metric of library performance is the per-
centage of a library’s power-delay curve that lies at or below the
envelope. To accomplish this, a library’s power-delay curve is
decomposed into a piecewise linear representation. Note that
each power-delay point is associated with two linear segments,
as illustrated in Fig. 8. The curve length assigned to a power-
delay point is defined as one-half of the length of each of the
two linear segments (one to the left li-1 and one to the right li)
associated with the power-delay point.

 curve_length(i) = li-1 /2 + li/2 (1)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Normalized delay

N
or

m
al

iz
ed

 p
ow

er

envelope

optimal curve

2.5% margin

Figure 7. Envelope curve lies above the optimal curve
by some margin

Figure 8. Curve length calculation

Normalized Power-Delay C6288 benchmark (static9a)

1.1

1.2

1.3

1.4

1.5

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
Normalized delay

N
or

m
al

iz
ed

 p
ow

er

li-1 li

observed point i

curve_length(i) = li-1 / 2+ li / 2

envelope

optimal points generated by particular library

0
20
40
60
80

100
120
140
160
180
200

to
ta

l n
um

be
r o

f "
di

ffe
re

nt
"

ce
lls

1.2 1.3 1.4 1.5 1.6 1.8 2
required delay (ns)

static7

static8a

static8b

static9a

static9b

static11

static25

Figure 6. Cell count vs. target delay –
for various libraries - des benchmark

Figure 5. Power-delay curves for 7 static libraries
(partial range) - C7552 benchmark

6

7

8

9

10

11

12

13

14

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6
delay (ns)

po
w

er
 (m

W
)

static7

static8a

static8b

static9a

static9b

static11

static25

In order to include the influence of points that lie a very
small distance outside the envelope, we developed a weighting
function weight(i) for each power-delay point. A point i on
or inside the envelope gets a weight of one, and the weight de-
creases quadratically with distance d(i) from the envelope. We
used the following analytical formula for the weight function for
a power-delay point i:

>

⋅+

≤
=

0d(i)if
)i(dcoef1

1

0d(i)if1

)i(weight
2 (2)

Higher values of coef create a steeper curve for the weight
function, which lowers the impact of points above the envelope.
A reasonable value of coef is 15, and the subsequent results
comparing the relative qualities of the different libraries are
unchanged if coef is within a factor of 2 or 3 from our choice of
15.

The Quality score (or goodness) of a particular library lib
can therefore be expressed as:

∑

∑ ⋅
=

librariesallovergeneratedjpointsoptimallla

libbygeneratedipointsall

th(j)curve_leng

)i(length_curve)i(weight
)lib(Quality (3)

The Quality scores were computed for 7 libraries, averaged
over 11 ISCAS combinational benchmark circuits, as shown in
Fig. 9. We selected the largest available benchmarks, plus ran-
dom selections among the remainder. Note that the highest
Quality score was turned in by library static11, while static8b
was ranked second.

Note that static11 represents a subset of the static25 li-
brary, and yet the average Quality score for static25 is not as
high as for static11. The presence of complex AOI/OAI cells
(with 3 transistors in series) in the static25 library affects the
synthesis. Although the minimum achieved delay for both li-
braries is comparable, the static25 implementation typically
consumes more power and hence does not produce as good of a
power-delay curve.

We also plot the power-delay product (PDP) versus delay
for benchmark circuit C6288 in Fig. 10 for the various libraries.
The PDP points were taken from the optimal points on the
power vs. delay curve.

 Since libraries static11 and static8b were the two top per-
forming libraries across all benchmarks, we therefore suggest
merging the optimal points generated by the two libraries to
obtain a new power-delay curve for the approach we call
static8b_11. We perform separate synthesis and sizing runs for
both libraries static8b and static11. Even though the static8b
library is a subset of static11, its power-delay curve may be
superior to static11’s curve for some benchmarks. In this way,
the user is not limited to the set of power-delay points generated
by a single library.

The Quality scores, given in Fig. 11, suggest that the
static8b_11 approach is almost twice as effective as any other
library and in fact captures an average of 80% of the envelope.

To confirm that our Quality metric provides meaningful re-
sults, we performed two additional measurements averaged over
11 benchmarks. Fig. 12 shows the average power deviation
from the overall optimal curve for 7 libraries and the
static8b_11 approach. (Note that the average power deviation is

0% 10% 20% 30% 40% 50% 60% 70%

static7

static8a

static8b

static9a

static9b

static11

static25

C6288 benchmark - (7 libraries)

2.25
2.5

2.75
3

3.25
3.5

3.75
4

4.25

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
Normalized delay

N
or

m
al

iz
ed

 p
ow

er
-d

el
ay

pr

od
uc

t

static7
static8a
static8b
static9a
static9b
static11
static25
envelope

Figure 10. Normalized power-delay product curves

0% 5% 10% 15% 20% 25%

static7

static8a

static8b

static9a

static9b

static11

static25

static8b_11

Figure 12. Average power deviation for 7 different
libraries and static8b_11 approach

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

static7

static8a

static8b

static9a

static9b

static11

static25

static8b_11

Figure 13. Minimum energy-delay product deviation for
7 different libraries and static8b_11 approach

static8b_11

0% 60% 80% 100%

static7

static8a

static9a

static9b

static25

Figure 11. Quality scores (static8b and static11 combined)

40%

Figure 9. Quality scores for 7 different libraries

in fact the average power increase for a library versus the over-
all optimal curve, and that this is essentially a measure of the
area between the curves for the delay span of that particular
library.) The drawback of this metric is that it doesn’t capture
the entire optimal power-delay curve like our Quality score. In
other words, two libraries may have the same deviation, while
one of them actually captures more of the optimal power-delay
curve. For example, the static25 library has a similar average
power deviation compared to static7, while its Quality score is
twice as good. This is because the delay-span of static25’s
power-delay curve is larger, and is in fact similar to the overall
optimal curve.

Fig. 13 shows the minimum energy-delay product deviation
from the overall minimum energy-delay product for 7 libraries
and the static8b_11 approach. Libraries static11 and static8b
remain the top two performers for both comparisons. The aver-
age power deviation was 4.17% and 7.79% respectively,
whereas the static8b_11 approach had a 2.24% deviation.
Meanwhile, the minimum energy-delay product deviation was
3.44% and 8.66% respectively, whereas the static8b_11 ap-
proach had 1.82% deviation.

5. Results versus Design Compiler

Thus far we have determined that static8b_11 yields (on
average) the best power-delay curve by a significant margin. Of
interest now is how this power-delay curve compares to a
power-delay curve obtained using Design Compiler (DC) from
Synopsys and a commercial library.

We used the state-of-the-art Artisan SAGE-X standard cell
library for the TSMC 0.18um, 1.8V process, [12]. The total
number of cells (including sequential cells) in the Artisan li-
brary was 478. The library had 51 different base combinational
functions and some complex arithmetic functions for adder and
multiplier design. Most of the cells were provided in four dif-
ferent drive strengths. Inverters and buffers were available in

two versions (symmetrical for clock signals and non-
symmetrical) and 9 drive strengths. The total number of combi-
national cells in the library was 228.

 To obtain a reasonable set of points in (power, delay) de-
sign space using DC, two constraints were altered: maximum
fanout and maximum delay. DC tries to achieve the target delay
while minimizing the area. We performed about 25-30 synthesis
runs using DC, whereas our optimization flow includes only two
synthesis runs, each followed by 20-25 AMPS optimization runs
for the static8b_11 approach.

Fig. 14 shows representative comparisons for two of the
larger benchmark circuits (des and C7552) of the power-delay
curves generated by our optimization flow for the static8b_11
approach and the power-delay curves generated using DC for
the Artisan SAGE-X library. Table 2 summarizes results for six

des benchmark

6
10
14
18
22
26
30
34
38
42
46
50

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
delay (ns)

po
w

er
 (m

W
)

our optim. -
static8b_11

Des. Comp. -
Artisan library

Figure 14. Our optimization (static8b_11 approach)
vs. Design Compiler (Artisan SAGE-X library)

for C7552 and des benchmarks

C7552 benchmark

4
8

12
16
20
24
28
32

1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4
delay (ns)

po
w

er
 (m

W
) our optim. -

static8b_11

Des. Comp. -
Artisan library

des benchmark

1
1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25

1 1.25 1.5 1.75 2 2.25 2.5
Normalized delay

N
or

m
al

iz
ed

 P
D

P

our optim. -
static8b_11

Des. Comp. -
Artisan library

C7552 benchmark

1

1.5

2

2.5

3

1 1.25 1.5 1.75 2 2.25
Normalized delay

N
or

m
al

iz
ed

 P
D

P our optim. -
static8b_11

Des. Comp. -
Artisan library

Figure 15. Normalized power-delay product vs. delay for
our optimization vs. Design Compiler

Benchmark
circuit

Minimum
energy-

delay prod.
static8b_11
(mW *ns2)

Minimum
energy-

delay prod.
Artisan lib.
(mW*ns2)

Minimum
energy-delay

prod.
improv.

Average
pow. savings
(Whole del.

range)

des 22.954 53.259 132.02% 132.37%

C7552 29.765 51.950 74.54% 102.96%

C3540 29.411 39.321 33.69% 44.72%

C5315 23.256 34.537 48.51% 97.56%

k2 2.618 5.016 91.56% 68.75%

C6288 1280.850 1677.853 31.00% 33.93%

adder_16 0.467 0.971 107.82% 96.01%

mult16x16 44.826 96.772 115.88% 230.54%

comp_mult16 466.962 872.531 86.85% 149.32%

NR FIR filter 2095.513 1233.165 69.93% 25.46%

Average improvement: 79.18% 107.09%

Table 2. Comparison of minimum energy-delay products and
average power savings for our optimization (static8b_11

approach) vs. Design Compiler (Artisan SAGE-X library)

larger benchmark circuits and four DSP macros (16-bit adder,
16x16 multiplier, 16-bit complex multiplier and a 32-tap FIR
filter). The DSP macros were synthesized using the DesignWare
library from Synopsys.

The average power savings for a circuit is computed for the
intersection of the delay ranges produced by the two power-
delay curves, where one of the curves is due to our optimization
and the other is due to DC/Artisan. We also show the minimum
energy-delay products for both curves and the average im-
provement achieved using our optimization flow.

 The results for these benchmarks indicate that our optimi-
zation flow yields the same delay points with an average savings
of 107% in power consumption. Furthermore, the energy-delay
product is on average 79% better for our optimization. We have
also noted, as shown in Fig. 15 for two circuits, that the average
improvement in PDP is about 2X better for our optimization.

The advantage of transistor-level optimization (TLO) over
gate-level optimization during synthesis is due to several fac-
tors. Perhaps the most important one is that the TLO tool has a
global view of the netlist while doing the optimization, unlike
the synthesis tool. Also, in TLO, it is possible to generate new
cells with a much larger number of drive strengths and beta ra-
tios. Finally, delay and power estimation at the gate level is less
accurate than at the transistor level.

5.1 AMPS computation time
The AMPS computation effort consists of two components:

static delay analysis and dynamic power simulation. The dy-
namic power simulation, performed using 400 test vectors, takes
20-30 times more computation time than the static delay analy-
sis. The overall computation time for the larger benchmarks can
be very significant (e.g. as high as 400 minutes for the largest
C6288 benchmark). One way to speed up the optimization is to
execute the dynamic power simulation with a reduced set of test
vectors.

Another approach that can significantly reduce the compu-
tation time while yielding comparable results is to perform a
static power simulation during the optimization. This approach
takes toggling activity information into account. Prior to optimi-
zation, the toggling count information was generated for each
node based on the set of 400 test vectors. AMPS uses this in-
formation to estimate the power during the optimization. We ran
AMPS for the same set of target delay and power values as be-
fore, and generated a number of points in (power, delay) space.
Using static power simulation, the reported power values are
only estimates (compared to dynamic power simulation). There-

fore, after the extraction of the power-delay curve we performed
dynamic power simulation (using NanoSim) only for points on
the curve to obtain more accurate power values. The actual
power values obtained from the dynamic power simulation can
be higher or lower than the estimated values. Thus, some domi-
nant points may become non-dominant, so they can be dis-
carded.

Fig. 16 shows that the power-delay curves generated using
dynamic and static power simulation are comparable. However,
the computation time is drastically reduced by using static
power simulation, in fact by a factor of about 20X. Fig. 17
shows the relationship between the average computation time
(including both delay and power computations) for one
power/delay run and the number of cells. The average runtime
depends not only on the cell count, but also on the design
structure. Benchmark circuits des and C6288 have a similar
number of the cells, but the C6288 optimization takes almost
4X longer.

6. Supply Voltage Scaling

We now consider the use of supply voltages less than the
specified 1.8 V for this process. The procedure begins with the

C3540 benchmark

2
3
4
5
6
7
8
9

2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2
delay (ns)

po
w

er
 (m

W
)

static11 -
stat. power
opt.

static11 -
dyn. power
opt.

Figure 16. Power-delay curves for static and dynamic
power optimization – C3540 benchmark

0

4

8

12

16

20

C62
88 des

C75
52

C53
15 k2

C35
40 i8 ro

t

dalu
_c x3

too_la
rg

e

average
runtime (min)

0

800

1600

2400

3200

4000

number of cells

computation time number of cells

Figure 17. Average computation time vs. number of cells for
one AMPS run using static power simulation

Figure 18. Single optimization method –
(a) power-delay curves for different VDD

(b) power-delay and area-delay curves

2
4
6
8

10
12
14
16
18
20

1 1.5 2 2.5 3 3.5
delay (ns)

po
w

er
 (m

W
)

15
20
25
30
35
40
45
50
55
60 *103area (um)

static11 -
0.9V
static11 -
1.2V
static11 -
1.5V
static11 -
1.8V
area

Power- D elay Op t imal Curves (4 sup ply vo lt ag es) - des

2
4
6
8

10
12
14
16
18
2 0 st at ic11

- 0 .9 V
st at ic11
- 1.2 V
st at ic11
- 1.5V
st at ic11
- 1.8 V

optimized power-delay curve (e.g., for approach static8b_11)
generated for a circuit for 1.8 V as described previously. We
then run PathMill (for delay) and NanoSim (for power) for each
point on the original power-delay curve using a different supply
voltage. We used 1.5 V, 1.2 V and 0.9 V. In this manner we
produce 3 additional power-delay points for each point on the
original power-delay curve, as shown in Fig. 18(a). The overall
dominant points are then extracted, as shown in Fig. 18(b),
where the area-delay curve is also shown. Each supply voltage
proves to be optimal for a particular delay or power range. The
highest supply voltage (1.8 V) covers the narrowest delay range.
Conversely, the delay range for the lowest supply voltage is
relatively large. We observed similar behavior for all of the
benchmarks. Notice that the highest VDD should be reserved
only for the absolute fastest desired implementations.

Note the area rise at the boundary points of two different
VDD’s. It is evident that a higher VDD point should be chosen if
the target delay is at the VDD boundary. An optimized curve
with less area variation can be generated if smaller VDD incre-
ments are used (e.g., 0.1 V instead of 0.3 V).

7. Conclusion

An effective way to compare logic techniques, logic fami-
lies, or cell libraries is by means of power (or area) versus delay
plots, since the efficiency of achieving a particular delay is of
crucial significance. An approach was developed to produce an
optimized power versus delay curve for a combinational circuit.
A method was developed for comparing the relative merits of a
set of power versus delay curves for a circuit, each generated
with a different cell library. We showed that the static8b_11
curve, obtained by merging data points from the best two
curves, static11 and static8b, performs almost twice as well as
any other library curve. This suggests that very few combina-
tional functions need to be in a cell library (8 to 11).

We also showed that the power-delay points achievable by
Design Compiler from Synopsys using the state-of-the-art Arti-
san SAGE-X library compare unfavorably to our approach. We
demonstrated that the specified VDD for a process technology
should only be used for the absolute fastest implementations of
a circuit.

Our ultimate objective is to provide an optimized power (or
area) versus delay plot for a circuit, in which the user can
“click” on a particular point and the layout having those power
(or area) and delay characteristics will be provided. Quite often
the desired delays are either in fact not achievable, or are
achievable but at a significant increment in cost (power or area).
With power (and area) versus delay curves, feasibility and cost
are easy to determine.

Another objective is to achieve full-custom circuit efficien-
cies (in terms of power, area and delay) while providing a fully
automated design flow typical of semi-custom design.

Acknowledgements

We are grateful for the financial support provided by the
National Science Foundation (NSF), the Semiconductor Re-
search Corporation, MARCO, the NSF Center for the Design of
Digital and Analog ICs (CDADIC), Boeing/DARPA, and Intel
Corporation.

We also acknowledge Larry McMurchie for his useful sug-
gestions.

References

[1] K. Scott, and K. Keutzer, “Improving Cell Libraries for Synthe-
sis”, Proc. of Custom Integrated Circuit Conference (CICC), pp.
128-131, 1994.

[2] K. Keutzer, K. Kolwocz, and M. Lega, “Impact of Library size
on the Quality of Automated Synthesis”, Proc. IEEE Int. Conf.
on Computer-Aided Design (ICCAD), pp. 120-123, 1987.

[3] J.L.Noullet, and A. Noullet, “Do We Need So Many Cells for
Digital ASIC Synthesis?”, Int. Conf. on Mixed Design of Inte-
grated Circuits and Systems (MIXDES), Lodz, Poland , 1998.

[4] K. Keutzer, and E. Girczyc, “Panel: Cell libraries - build vs. buy;
static vs. dynamic”, Proc. of Design Automation Conference
(DAC), pp. 341-342, 1999.

[5] G. Northrop, and P.F. Lu, “A Semi-Custom Design Flow in
High-Performance Microprocessor Design”, Proc. of Design
Automation Conference (DAC), pp. 426-431, 2001.

[6] E. Yoneno, and P. Hurat, “Power and Performance Optimization
of Cell-Based Designs with Intelligent Transistor Sizing and Cell
Creation”, IEEE/DATC Electronic Design Processes Workshop,
Monterey CA, April, 2001.

[7] M. Hashimoto, and H. Onodera, “Post-Layout Transistor Sizing
for Power Reduction in Cell-Base Design”, IEICE Trans. Fun-
damentals, Vol.E84-A, pp. 2769-2777, November 2001.

[8] S. Gavrilov, A. Glebov, S. Pullela, S.C. Moore, A. Dharchoud-
hury, R. Panda, G. Vijayan, and D.T. Blaauw, “Library-Less
Synthesis for Static CMOS Combinational Logic Circuits”,
Proc. IEEE Int. Conf. on Computer-Aided Design (ICCAD), pp.
658-662, 1997.

[9] M.R.C.M. Berkelaar, P.H.W. Buurman, and J.A.G. Jess, “Com-
puting the entire active area/power consumption versus delay
tradeoff curve for gate sizing with a piecewise linear simulator“,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits, Vol. 15, pp. 1424-1434, November 1996.

[10] O.Coudert, R. Haddad, and K. Keutzer, “What is the state of the
art in commercial EDA tools for low power?”, Proc. of Int.
Symp. on Low Power Electronics and Design (ISLPED), Mon-
terey CA, 1996.

[11] AMPS User Guide 5.4, Synopsys, 2000.

[12] TSMC 0.18um Process 1.8-Volt SAGE-X Standard Cell Library
Databook, Artisan Components, Inc., 2001.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

