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Abstract 

An effective way to compare logic techniques, logic fami-
lies, or cell libraries is by means of power (or area) versus de-
lay plots, since the efficiency of achieving a particular delay is 
of crucial significance. In this paper we describe a method of 
producing an optimized power versus delay curve for a combi-
national circuit. We then describe a method for comparing the 
relative merits of a set of power versus delay curves for a cir-
cuit, each generated with a different cell library. Our results 
indicate that very few combinational functions need to be in a 
cell library, at most 11. The power-delay points achieved by 
Design Compiler from Synopsys using the state-of-the-art Arti-
san Sage-X library compare unfavorably to our approach. In 
terms of minimum energy-delay product, our approach is supe-
rior by 79% on average. Our approach yields the same delay 
points with a 107% savings in power consumption, on average.  
We also show that the specified VDD for a process technology 
should only be used for the absolute fastest implementations of 
a circuit.  

1. Introduction 

The standard cell design style has been an important ap-
proach for application-specific integrated circuits (ASICs) for a 
long time. The quality of a synthesized design depends on three 
components: the synthesis tool, the place and route tools and the 
target cell library [1]. Choosing the right cell library can have a 
significant impact on the characteristics of a designed circuit.  

General principles of cell library design, aimed to improve 
final circuit speed, have been proposed, such as providing each 
cell in a variety of drive strengths or including cells with dual 
polarity [1]. It was shown that relatively simple modifications in 
a cell library could lead to 20-30% speed improvements. An-
other study investigated the impact of library size on the quality 
of automated synthesis [2]. The results have indicated that an 
incrementally larger library size could considerably reduce area 
while meeting comparable timing requirements. On the other 
hand, the experimental study presented in [3] has confirmed that 
a great number of cells in typical libraries are not essential.  

In high performance applications, the use of fixed, pre-
defined cell libraries is becoming unattractive. Fixed libraries 
prevent device tuning for delay/power optimization [4]. Their 

physical features are rarely optimal for all applications, and 
therefore the performance of such designs is limited. The solu-
tion to these problems is the use of on-the-fly cell generation. 
These libraries are often referred to as fluid or liquid cell librar-
ies.  

A semi-custom design methodology, which exploits a fluid 
cell approach, has been reported in [5]. The basic building 
blocks used in this methodology are a set of parameterized static 
CMOS gates (around 10 different gates), suitable for circuit 
tuning. A cell generation tool was used to create a conventional 
library of discrete sizes. There were from 10 to 25 power levels 
and from 1 to 4 beta ratios for each gate type. The library con-
sisted of approximately 1200 cells, and is referred to as a “tall 
thin” library. 

A similar flow called the Power and Performance Optimi-
zation (PPO) flow was developed to achieve higher perform-
ance and reduce the power consumption in cell-based designs 
[6]. The PPO flow starts from an implemented design and opti-
mizes the transistor sizes in each cell within a design to increase 
the performance and/or reduce the power dissipation. Also, in 
[7] a post-layout transistor sizing method for power reduction 
aims to reduce the redundancy of cell-based design and to ob-
tain performance close to full-custom quality.  

Transistor-level optimization can also be performed by re-
structuring. It can be combined with sizing of the individual 
transistors to optimize performance of a given structure. The 
proposed technique is called transistor-level resynthesis [8]. 
Results show that transistor-level resynthesis can achieve delay 
improvements up to 20%, along with a smaller transistor count 
and a power reduction. Efficient way to obtain the cost versus 
delay trade-off curve of combinational circuits by mapping of 
the gate-sizing problem onto piecewise linear model is pre-
sented in [9]. 

2. Motivation 

The drawbacks associated with existing approaches to stan-
dard cell IC synthesis are as follows. 
1) There has not been clear evidence as to which combina-

tional cells should be in a library when optimized power 
versus delay trade-offs are the objective.  

2) Typically only a single point in power-delay or area-delay 
space is produced when comparing cell libraries. 
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3) Fluid cell approaches have been used primarily to try to 
improve one aspect of the original power-delay point (typi-
cally to improve the delay). 

4) Thus far different circuit synthesis approaches have been 
compared based on single points in power-delay or area-
delay space. 
An effective way to compare logic techniques, logic fami-

lies, or cell libraries is by means of power (or area) versus delay 
plots, since the efficiency of achieving a particular delay is of 
crucial significance. In Fig. 1, it is apparent that whatever tech-
nique was used to produce curve A is clearly superior to the 
technique used to produce curve B. When two curves intersect, 
as do curves B and C in Fig. 1, it is possible to specify delay 
ranges (for example) where one technique outperforms the 
other.  

Fig. 2 illustrates very typical power (and area) versus delay 
curves for a benchmark circuit. Note that a very wide range of 
power (factor of 4), area (factor of 9) and delay (factor of 3) are 
readily available. 

In this work:  
1. We identify a method to produce an optimized power ver-

sus delay curve for a combinational circuit.  
2. We describe a method for comparing the relative merits of 

a set of power versus delay curves for a circuit, each gener-
ated with a different cell library. 

3. We show which logic functions should be in a cell library 
to achieve the best power versus delay curves, analyzed 
over a set of benchmark circuits. 

4. We show that the power-delay points achievable by Design 
Compiler from Synopsys using the state-of-the-art Artisan 
Sage-X library compare unfavorably to our approach. 

5. We show that the specified VDD for a process technology 
should only be used for the absolute fastest implementa-
tions of a circuit.  

  
Our ultimate objective is to provide an optimized power (or 

area) versus delay plot for a circuit, in which the user can 
“click” on a particular point and the layout having those power 
(or area) and delay characteristics will be provided. Quite often 
the desired delays are either in fact not achievable, or are 
achievable but at a significant increment in cost (power or area). 
With power (and area) versus delay curves, feasibility and cost 
are readily available. 

Another objective is to achieve full-custom circuit efficien-
cies (in terms of power, area and delay) while providing a fully 
automated design flow typical of semi-custom design.  

The focus of this paper is on the steps leading up to the lay-
out phase.  

3. Design Flow 

Our fluid cell design flow included the following steps: cell 
characterization, technology library generation, design synthe-
sis, and transistor-level optimization. We used simulation para-
meters for the TSMC 0.18-micron technology, with lambda-
based design rules, featuring a drawn channel length of 0.20 
microns and a fanout-of-four inverter delay of 84ps. The initial 
set of transistor sizes was such that all nMOS widths were the 
same (1.4 µm), as were the pMOS widths (2.1 µm). The cells 
were characterized for input slews ranging from 50-400 ps, and 
fanouts ranging from one to ten (the unit load is inverter1x). 

Design Compiler (DC) from Synopsys was used for synthe-
sizing the benchmark circuits into optimized, technology-
dependent, gate-level designs. The benchmark circuits were 
mapped to a given technology library – generated by Library 
Compiler. Four scripts with different logic-level optimization 
steps (flattening and timing-driven structuring) were used. We 
found that in all cases the best results were obtained using 
Script1 (structuring enabled, flattening disabled). Consequently, 
only results obtained using Script1 will be presented.  

Based on prior layout experience, the wire load model we 
used was 17 µm per fanout. Since the wire capacitance for the 
target technology was 0.2 fF/µm, this implies 3.4 fF per fanout. 

3.1 Transistor-Level Optimization 
AMPS (Automatic Minimization of Power through Sizing) 

from Synopsys was used for transistor-level optimization within 
the three-dimensional optimization space delay/area/power [10]. 
AMPS takes a circuit netlist in spice format, in addition to a set 
of input patterns that will be used for power estimation, and 
runs a static delay analysis and a dynamic power simulation, 
based on the PowerMill/Nanosim and PathMill tools [11]. The 
power/delay optimization was performed using the three rele-
vant optimization modes:  

• Cost-function mode (CFM) 
• Delay-requirement mode (DM) 
• Power-requirement mode (PM) 

Figure 1. Comparison of  power-delay curves 
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Figure 2. Power (area) vs. delay plot – each point    
represents one possible implementation 



Table 1. Overview of standard cell libraries 

First, AMPS was run for each benchmark in CFM. The 
weighting factors for the delay and power analysis were varied 
in range 1-32 by powers of two, for example, (delay cost, power 
cost) ∈{(1,32), (1,16), ...(1,1), ...(32,1)}. The goal of this step 
was solely to obtain a range of delay/power values for each 
benchmark. After that, a group of target delay values was se-
lected from the obtained delay range, and similarly, a set of tar-
get power values was chosen from the power range. The cost-
function optimization rarely achieves the minimum power and 
delay values. Therefore, some target values were selected below 
the minimum of the range.  

Our actual power vs. delay optimization is performed with 
AMPS in DM and PM, using the selected group of target delay 
and power values, respectively. In delay-requirement mode, 
AMPS resizes the circuit to achieve the specified delay and then 
continues to reduce the power while preserving the worst-case 
delay. In power-requirement mode, the specified power was 
achieved first followed by the attempt to reduce the delay while 
not exceeding the required power. The AMPS optimization 
process consists of a series of DM runs (dmr1, dmr2…) and PM 
runs (pmr1, pmr2…) for a wide range of target delay and power 
values, as shown in Fig. 3. Each AMPS run consists of 10 itera-
tions. While it is possible to do more iterations, we found no 
advantage in doing so.  

During the optimization process AMPS generates a large 
number of points in (power, delay) space. Among them, only the 
dominant points are retained to define the optimized power vs. 
delay curve. A point (x1, y1) dominates a point (x2, y2) if and 
only if x2 is greater than or equal to x1 and y2 is greater than or 
equal to y1. In other words, both points are retained if and only 
if each of the points has exactly one attribute (power or delay) 
that is superior to the other point’s corresponding attribute. 

PS was provided with a discrete set of allowable transistor 
sizes. The allowable transistor sizes for our 0.18-micron process 
were between 0.7 µm and 14 µm, in steps of 0.7 µm, and be-
tween 0.3 µm and 0.7 µm in steps of 0.1 µm. 

The transistor-level optimization can be performed using 
two different sizing schemes: tx and pn. In the tx scheme, every 
transistor in a cell can be independently sized, while in the pn 
scheme, all n-devices for a cell are sized as a group, and all p-
devices are sized as a separate group. We found that the pn 
scheme produced equally good power-delay curves in far less 
time, and produced far fewer cell instances. 

3.2 Overview of Cell Libraries 
In our research we have investigated a very large number of 

libraries, where a given library is characterized by the different 
combinational logic functions it provides. Our experience sug-
gests that the static25 library (Table 1), containing 25 different 
logic functions and including most of the functions that have up 
to 3 transistors in series, represents approximately one of the 
most complex (in terms of function count) libraries that is in use 
today. 

While we have investigated a very large number of subsets 
of this 25-cell library, Table 1 contains the best performing six 
subsets (where a subset with fewer cells is considered better 
than a larger subset that produces essentially the same power-
delay curves). Furthermore, we observed that libraries contain-
ing multi-level cells and/or pass-transistor-based cells, such as 
XOR and MUXs, consistently yielded worse results than the 
libraries in Table 1 (due to space limitations we are not able to 
show this data). 

4. Library Evaluation 

For a given circuit, we generate a power vs. delay curve for 
each of the cell libraries shown in Table 1. The complete set of 
power-delay curves for benchmark circuit C6288 is shown in 
Fig. 4. For each library in Fig. 4, among all power-delay points 
generated, only the dominant points are retained to produce the 
shown curve. 
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Figure 3. AMPS optimization process consists of target 
delay (dmr) and target power (pmr) optimization runs 
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Figure 4. Power-delay curves for 7 static libraries          
(whole range) – C6288 benchmark 

Cell name static7 static8a static8b static9a static9b static11 static25
inverter X X X X X X X
nand2 X X X X X X X
nand3 X X X X X
nand4 X X X X X
nor2 X X X X X X X
nor3 X X X X
nor4 X
xor2 X X X X X X
xnor2 X
aoi21 X X X X X
aoi22 X X X X X X X
oai21 X X X X
oai22 X X X X X X
aoi31-aoi33 (3) X
aoi211-aoi222 (3) X
oai31-oai33   (3) X
oai211-oai222  (3) X



A (zoomed in) portion of the power-delay curves for 
theC7552 benchmark is shown in Fig. 5. Note that the largest 
library, static25, did not produce the best results for either 
benchmark circuit in Figs. 4 and 5.  

A potentially unpleasant aspect of using a transistor and/or 
gate sizer on a random logic block is that it might touch a sig-
nificant percentage of the cell instances in the block. We there-
fore measured the number of different library cells (unique in-
stances) used in a design implementation. Cells are considered 
different, if they differ in size or functionality. Fig. 6 shows the 
different cell count versus target delay for various libraries for 
circuit des. The number of different cells generated during the 
optimization process generally increases with the number of 
functionally different cells in the starting library. As shown 
later, the static11 library yields good power-delay performance, 
and yet as indicated in Fig. 6, uses a modest number of different 
cells.  

4.1 Library comparison 
Although a manual inspection of a family of power-delay 

curves can often lead to the identity of the best performing li-
brary for a given circuit, this is not always easy. Further, it is 
difficult to manually ascertain the relative behavior over a wide 
range of circuits. We therefore developed a method for deter-
mining the relative performance of the libraries. 

After the family of power-delay curves is generated for a 
circuit, the next step is to identify the overall optimal power-
delay curve. This is accomplished by retaining only the domi-

nant points among all points produced by all libraries. 
One possible measure of library quality is the number of 

points on the overall optimal curve due to that particular library. 
However, with this approach, non-dominant points do not con-
tribute even if they lie in the vicinity of the optimal curve. This 
would be unfortunate since the accuracy of the tools used to 
obtain the points is at best within a few percent.  

We therefore defined an envelope curve that lies above the 
optimal curve by a small margin and parallel to it (as shown in 
Fig. 7). In order to measure Euclidean distance on a plot with 
two types of units (power and delay), the power and delay val-
ues were normalized to their minimum values. The small margin 
we happen to use is 2.5%, but our conclusions were invariant 
for margins at least as high as 5%. 

 For a given circuit, a possible quality metric for a library 
would then be the total number of points from its power-delay 
curve that lie on or below the envelope. However, this may not 
be a good metric if groups of points tend to lie close to one an-
other. In other words, five points that are grouped together in a 
particular portion of power-delay space would not be of the 
same quality as the case in which the five points are more sepa-
rated and span a greater portion of the power-delay space. We 
believe that a better metric of library performance is the per-
centage of a library’s power-delay curve that lies at or below the 
envelope. To accomplish this, a library’s power-delay curve is 
decomposed into a piecewise linear representation. Note that 
each power-delay point is associated with two linear segments, 
as illustrated in Fig. 8. The curve length assigned to a power-
delay point is defined as one-half of the length of each of the 
two linear segments (one to the left li-1 and one to the right li) 
associated with the power-delay point. 

 curve_length(i) = li-1 /2 + li/2 (1)  
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Figure 8. Curve length calculation 
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Figure 5. Power-delay curves for 7 static libraries      
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In order to include the influence of points that lie a very 
small distance outside the envelope, we developed a weighting 
function weight(i) for each power-delay point. A point i on 
or inside the envelope gets a weight of one, and the weight de-
creases quadratically with distance d(i) from the envelope. We 
used the following analytical formula for the weight function for 
a power-delay point i: 
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Higher values of coef create a steeper curve for the weight 
function, which lowers the impact of points above the envelope. 
A reasonable value of coef is 15, and the subsequent results 
comparing the relative qualities of the different libraries are 
unchanged if coef is within a factor of 2 or 3 from our choice of 
15. 

The Quality score (or goodness) of a particular library lib 
can therefore be expressed as:  

∑
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The Quality scores were computed for 7 libraries, averaged 
over 11 ISCAS combinational benchmark circuits, as shown in 
Fig. 9. We selected the largest available benchmarks, plus ran-
dom selections among the remainder. Note that the highest 
Quality score was turned in by library static11, while static8b 
was ranked second. 

Note that static11 represents a subset of the static25 li-
brary, and yet the average Quality score for static25 is not as 
high as for static11. The presence of complex AOI/OAI cells 
(with 3 transistors in series) in the static25 library affects the 
synthesis. Although the minimum achieved delay for both li-
braries is comparable, the static25 implementation typically 
consumes more power and hence does not produce as good of a 
power-delay curve. 

We also plot the power-delay product (PDP) versus delay 
for benchmark circuit C6288 in Fig. 10 for the various libraries. 
The PDP points were taken from the optimal points on the 
power vs. delay curve.   

 Since libraries static11 and static8b were the two top per-
forming libraries across all benchmarks, we therefore suggest 
merging the optimal points generated by the two libraries to 
obtain a new power-delay curve for the approach we call 
static8b_11. We perform separate synthesis and sizing runs for 
both libraries static8b and static11. Even though the static8b 
library is a subset of static11, its power-delay curve may be 
superior to static11’s curve for some benchmarks. In this way, 
the user is not limited to the set of power-delay points generated 
by a single library.   

The Quality scores, given in Fig. 11, suggest that the 
static8b_11 approach is almost twice as effective as any other 
library and in fact captures an average of 80% of the envelope.  

To confirm that our Quality metric provides meaningful re-
sults, we performed two additional measurements averaged over 
11 benchmarks. Fig. 12 shows the average power deviation 
from the overall optimal curve for 7 libraries and the 
static8b_11 approach. (Note that the average power deviation is 
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in fact the average power increase for a library versus the over-
all optimal curve, and that this is essentially a measure of the 
area between the curves for the delay span of that particular 
library.) The drawback of this metric is that it doesn’t capture 
the entire optimal power-delay curve like our Quality score. In 
other words, two libraries may have the same deviation, while 
one of them actually captures more of the optimal power-delay 
curve. For example, the static25 library has a similar average 
power deviation compared to static7, while its Quality score is 
twice as good. This is because the delay-span of static25’s 
power-delay curve is larger, and is in fact similar to the overall 
optimal curve. 

Fig. 13 shows the minimum energy-delay product deviation 
from the overall minimum energy-delay product for 7 libraries 
and the static8b_11 approach. Libraries static11 and static8b 
remain the top two performers for both comparisons. The aver-
age power deviation was 4.17% and 7.79% respectively, 
whereas the  static8b_11 approach had a 2.24% deviation. 
Meanwhile, the minimum energy-delay product deviation was 
3.44% and 8.66% respectively, whereas the static8b_11 ap-
proach had 1.82% deviation. 

5. Results versus Design Compiler 

Thus far we have determined that static8b_11 yields (on 
average) the best power-delay curve by a significant margin. Of 
interest now is how this power-delay curve compares to a 
power-delay curve obtained using Design Compiler (DC) from 
Synopsys and a commercial library. 

We used the state-of-the-art Artisan SAGE-X standard cell 
library for the TSMC 0.18um, 1.8V process, [12]. The total 
number of cells (including sequential cells) in the Artisan li-
brary was 478. The library had 51 different base combinational 
functions and some complex arithmetic functions for adder and 
multiplier design. Most of the cells were provided in four dif-
ferent drive strengths. Inverters and buffers were available in 

two versions (symmetrical for clock signals and non-
symmetrical) and 9 drive strengths. The total number of combi-
national cells in the library was 228.     

 To obtain a reasonable set of points in (power, delay) de-
sign space using DC, two constraints were altered: maximum 
fanout and maximum delay. DC tries to achieve the target delay 
while minimizing the area. We performed about 25-30 synthesis 
runs using DC, whereas our optimization flow includes only two 
synthesis runs, each followed by 20-25 AMPS optimization runs 
for the static8b_11 approach.  

Fig. 14 shows representative comparisons for two of the 
larger benchmark circuits (des and C7552) of the power-delay 
curves generated by our optimization flow for the static8b_11 
approach and the power-delay curves generated using DC for 
the Artisan SAGE-X library. Table 2 summarizes results for six 
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Benchmark   
circuit 

Minimum 
energy-   

delay prod.  
static8b_11 
(mW *ns2) 

Minimum  
energy-    

delay prod. 
Artisan lib. 
(mW*ns2) 

Minimum 
energy-delay 

prod. 
improv. 

Average     
pow. savings 
(Whole del. 

range) 

des 22.954 53.259 132.02% 132.37%

C7552 29.765 51.950 74.54% 102.96%

C3540 29.411 39.321 33.69% 44.72%

C5315 23.256 34.537 48.51% 97.56%

k2 2.618 5.016 91.56% 68.75%

C6288 1280.850 1677.853 31.00% 33.93%

adder_16 0.467 0.971 107.82% 96.01%

mult16x16 44.826 96.772 115.88% 230.54%

comp_mult16 466.962 872.531 86.85% 149.32%

NR FIR filter 2095.513 1233.165 69.93% 25.46%

Average improvement: 79.18% 107.09%

Table 2. Comparison of minimum energy-delay products and 
average power savings for our optimization (static8b_11       

approach) vs. Design Compiler (Artisan SAGE-X  library)  



larger benchmark circuits and four DSP macros (16-bit adder, 
16x16 multiplier, 16-bit complex multiplier and a 32-tap FIR 
filter). The DSP macros were synthesized using the DesignWare 
library from Synopsys.  

The average power savings for a circuit is computed for the 
intersection of the delay ranges produced by the two power-
delay curves, where one of the curves is due to our optimization 
and the other is due to DC/Artisan. We also show the minimum 
energy-delay products for both curves and the average im-
provement achieved using our optimization flow. 

 The results for these benchmarks indicate that our optimi-
zation flow yields the same delay points with an average savings 
of 107% in power consumption. Furthermore, the energy-delay 
product is on average 79% better for our optimization. We have 
also noted, as shown in Fig. 15 for two circuits, that the average 
improvement in PDP is about 2X better for our optimization. 

The advantage of transistor-level optimization (TLO) over 
gate-level optimization during synthesis is due to several fac-
tors. Perhaps the most important one is that the TLO tool has a 
global view of the netlist while doing the optimization, unlike 
the synthesis tool. Also, in TLO, it is possible to generate new 
cells with a much larger number of drive strengths and beta ra-
tios. Finally, delay and power estimation at the gate level is less 
accurate than at the transistor level.  

5.1 AMPS computation time 
The AMPS computation effort consists of two components: 

static delay analysis and dynamic power simulation. The dy-
namic power simulation, performed using 400 test vectors, takes 
20-30 times more computation time than the static delay analy-
sis. The overall computation time for the larger benchmarks can 
be very significant (e.g. as high as 400 minutes for the largest 
C6288 benchmark). One way to speed up the optimization is to 
execute the dynamic power simulation with a reduced set of test 
vectors. 

Another approach that can significantly reduce the compu-
tation time while yielding comparable results is to perform a 
static power simulation during the optimization. This approach 
takes toggling activity information into account. Prior to optimi-
zation, the toggling count information was generated for each 
node based on the set of 400 test vectors. AMPS uses this in-
formation to estimate the power during the optimization. We ran 
AMPS for the same set of target delay and power values as be-
fore, and generated a number of points in (power, delay) space. 
Using static power simulation, the reported power values are 
only estimates (compared to dynamic power simulation). There-

fore, after the extraction of the power-delay curve we performed 
dynamic power simulation (using NanoSim) only for points on 
the curve to obtain more accurate power values. The actual 
power values obtained from the dynamic power simulation can 
be higher or lower than the estimated values. Thus, some domi-
nant points may become non-dominant, so they can be dis-
carded.   

Fig. 16 shows that the power-delay curves generated using 
dynamic and static power simulation are comparable. However, 
the computation time is drastically reduced by using static 
power simulation, in fact by a factor of about 20X. Fig. 17 
shows the relationship between the average computation time 
(including both delay and power computations) for one 
power/delay run and the number of cells. The average runtime 
depends not only on the cell count, but also on the design 
structure. Benchmark circuits des and C6288 have a similar 
number of the cells, but the C6288 optimization takes almost 
4X longer. 

6. Supply Voltage Scaling 

We now consider the use of supply voltages less than the 
specified 1.8 V for this process. The procedure begins with the 

C3540 benchmark 
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Figure 18. Single optimization method –                   
(a) power-delay curves  for different VDD                  

(b) power-delay and area-delay curves 
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optimized power-delay curve (e.g., for approach static8b_11) 
generated for a circuit for 1.8 V as described previously. We 
then run PathMill (for delay) and NanoSim (for power) for each 
point on the original power-delay curve using a different supply 
voltage. We used 1.5 V, 1.2 V and 0.9 V. In this manner we 
produce 3 additional power-delay points for each point on the 
original power-delay curve, as shown in Fig. 18(a). The overall 
dominant points are then extracted, as shown in Fig. 18(b), 
where the area-delay curve is also shown. Each supply voltage 
proves to be optimal for a particular delay or power range. The 
highest supply voltage (1.8 V) covers the narrowest delay range. 
Conversely, the delay range for the lowest supply voltage is 
relatively large. We observed similar behavior for all of the 
benchmarks. Notice that the highest VDD should be reserved 
only for the absolute fastest desired implementations. 

Note the area rise at the boundary points of two different 
VDD’s. It is evident that a higher VDD point should be chosen if 
the target delay is at the VDD boundary. An optimized curve 
with less area variation can be generated if smaller VDD incre-
ments are used (e.g., 0.1 V instead of 0.3 V). 

7. Conclusion 

An effective way to compare logic techniques, logic fami-
lies, or cell libraries is by means of power (or area) versus delay 
plots, since the efficiency of achieving a particular delay is of 
crucial significance. An approach was developed to produce an 
optimized power versus delay curve for a combinational circuit. 
A method was developed for comparing the relative merits of a 
set of power versus delay curves for a circuit, each generated 
with a different cell library. We showed that the static8b_11 
curve, obtained by merging data points from the best two 
curves, static11 and static8b, performs almost twice as well as 
any other library curve. This suggests that very few combina-
tional functions need to be in a cell library (8 to 11).  

We also showed that the power-delay points achievable by 
Design Compiler from Synopsys using the state-of-the-art Arti-
san SAGE-X library compare unfavorably to our approach. We 
demonstrated that the specified VDD for a process technology 
should only be used for the absolute fastest implementations of 
a circuit. 

Our ultimate objective is to provide an optimized power (or 
area) versus delay plot for a circuit, in which the user can 
“click” on a particular point and the layout having those power 
(or area) and delay characteristics will be provided. Quite often 
the desired delays are either in fact not achievable, or are 
achievable but at a significant increment in cost (power or area). 
With power (and area) versus delay curves, feasibility and cost 
are easy to determine. 

Another objective is to achieve full-custom circuit efficien-
cies (in terms of power, area and delay) while providing a fully 
automated design flow typical of semi-custom design. 
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