
Dynamic Compilation for Energy Adaptation �

P. Unnikrishnan, G. Chen, M. Kandemir
Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802, USA

funnikris,gchen,kandemirg@cse.psu.edu

D. R. Mudgett
School of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

drm1@psu.edu

ABSTRACT
While previous compiler research indicates that significant improve-
ments in energy efficiency may be possible if properly optimized code
is used, the energy constraints under which a given application code
should be optimized may not always be available at compile-time.
More importantly, these constraints may change dynamically during
the course of execution. In this work, we present a dynamic recompi-
lation/linking framework using which the energy behavior of a given
application can be optimized while the application is being executed.
Our preliminary experiments indicate that large energy gains are pos-
sible through dynamic code recompilation/linking at the expense of a
relatively small increase in execution time.

1. Introduction and Problem Motivation
The results from previous compiler research (e.g., [2]) indicate that

significant improvements in energy efficiency may be possible if prop-
erly optimized code is used; however, in some cases, there may be in-
herent conflicts between optimizations for energy efficiency and those
designed purely for maximum execution-time speedup. Furthermore,
the information needed to make a decision between these two goals
is not necessarily known a-priori at compile time. To the contrary,
such information is likely to depend on the changing system operat-
ing environment, available only by feedback of operating conditions at
run-time. Hence, it appears that dynamic recompilation of an execut-
ing application, in response to a run-time status signal, may be a useful
way to achieve a reasonable balance between different goals such as
execution time and energy efficiency.

Fundamentally, any dynamic recompilation and binary modification
system for energy optimization should answer the following questions:
� In practice, how can a given target code be dynamically recom-

piled or directly loaded (linked) from precompiled modules in an effi-
cient, safe, and reasonably transparent way?
� What is a reasonable tradeoff between the fixed overhead involved

in dynamically recompiling/linking code segments versus the variable
cost of continuing to run suboptimal code when energy constraints
change?
� When is it better to delay recompilation of code until needed (i.e.,

lazy recompilation, with its attendant high reconfiguration overhead
but lower memory requirement) versus simply loading multiple, pre-
compiled, cached codes?
� What is the potential energy/performance gain achievable through

such a reconfigurable, dynamic software environment?
The first question is a practical issue of what software is available

or can be developed to instrument code, that is dynamically on-the-fly
replace old code with new code, without recompiling the entire ap-

�This work is supported by the NSF Awards 0093082 and 0103583,
and by an award from the PDG.

plication. Fortunately, this problem has already been studied to some
extent and some software infrastructure is available for use. The an-
swers to the second, third, and fourth questions, on the other hand,
depend heavily on the situation; however, we believe that there are
two important principles that might guide us:
� Changes to the code of a running application should not be made

unless one is sure that they will payoff. In other words, unless one is
reasonably confident that an energy level will be maintained for a suffi-
ciently long period that the overhead of dynamic recompilation/linking
will be amortized by the longer-term energy benefits, no change should
be made.
� The optimizations made to the application code should be compat-

ible with the current energy constraints. In cases where the potential
runtime energy constraints can be predicted at compile-time and there
is sufficient instruction memory, multiple versions of the same code
can be precompiled and the most suitable version can be activated at
runtime. In cases where dynamic constraints cannot be predicted or a
memory space problem exists, on the other hand, the code should be
recompiled at runtime.

This paper is primarily concerned with the implementation of a
dynamic recompilation/linking system for runtime energy optimiza-
tion. We focus on an operating environment where energy constraints
change from time to time. Examples of these changes are running low
in battery, a thermal emergency signal, and battery being recharged.
We demonstrate how our dynamic recompilation/linking framework
reacts to these runtime variations in energy constraints and show that
the cost of dynamic recompilation is not very high. While there has
been some recent work on compilation for reducing energy consump-
tion, to the best of our knowledge, this is the first study that investigates
the use of dynamic recompilation/linking for energy reduction. Our
work is a first step in investigating the suitability of dynamic code com-
pilation for energy. Consequently, it focuses on some of the important
issues only and postpones complete treatment of individual problems
to future studies.

In the last eight years or so, there has been significant interest in dy-
namic recompilation and on-the-fly executable reconfiguration. Groups
at IBM Watson Research Center [5], MIT/University of Arizona [6],
University of Washington [8] as well as two different groups at the
University of Wisconsin [10, 12] have developed infrastructures for
dynamic recompilation. All these projects, however, aim at reducing
execution time of the application at hand rather than improving its en-
ergy behavior.

The rest of the paper is organized as follows. In Section 2, we intro-
duce our dynamic recompilation/linking environment for energy and
describe its implementation. In Section 3, we present experimental
data showing the effectiveness of our approach. Finally, in Section 4,
we present our conclusions.

0-7803-7607-2/02/$17.00 ©2002 IEEE

Application

API

Dyninst
Code

Mutator

Code
Dependent

Machine

ptrace/procfs

Mutator

Runtime Library

Snippets

Application

Figure 1: Abstractions used in the Dyninst API.

2. Dynamic Recompilation/Linking for Energy

2.1 Dyninst Software
To implement our dynamic compilation infrastructure for energy,

we examined several binary reconfiguration tools such as DAISY [5],
VCODE [6], DyC [8], EEL [10]. We decided not to use any of these
tools due to reasons such as platform limitations, complex low-level
implementations, license problems, or insufficient features supported.
The Dyninst software from the University of Maryland [1] was chosen
for our study. Dyninst is a post-compiler program manipulation tool
which provides an Application Program Interface (API) called Dynin-
stAPI for program instrumentation. Dyninst also provides Dyner, a
TCL-based interactive command-line tool based on DyninstAPI li-
brary. The Dyner command set implements the functionality of the
DyninstAPI. In this work, we chose to use the C++ interface of Dynin-
stAPI directly rather that using the TCL-based Dyner. This choice
gives our implementation maximum flexibility. This also reduces the
overhead incurred due to the intermediate TCL layer.

Using the DyninstAPI library, it is possible to instrument and mod-
ify application programs during execution (i.e., as they are running).
DyninstAPI is itself a C++ class library which can be included and di-
rectly called from a C++ program. This API is based on the idea of
dynamic instrumentation technology developed as part of the Paradyn
Parallel Performance Tools project [12] at the University of Wisconsin.
A key feature of the DyninstAPI interface is that it permits insertions
and alterations in a running program unlike other post-compiler instru-
mentation tools such as EEL [10] or ATOM [13] that permit code to
be inserted into the binary before it starts to execute. Using this API, a
program can create a new piece of code and insert it into another pro-
gram while the latter is executing. The program being modified is able
to continue execution and does not need to be recompiled entirely. This
is ideal for the operating environment considered in this paper where
dynamic changes in energy constraints enforce modifying parts of a
running application. There has been previous work involving Dyninst
for performance steering of programs. In contrast to those studies, in
this work, we employ Dyninst for energy optimization.

The overall structure of the API and its implementation are shown
in Figure 1 (taken from [1]). There are two processes, called themuta-
tor and theapplication(or mutatee). The left side of the figure shows
the code for the mutator process that contains calls into the Dyninst
API. It also contains the code that implements the runtime compiler
and the utility routines to manipulate the application process (shown
below the rectangle labeled API) as well as profiling/tracing tools. The
right half of the figure shows the application process with the original
code of the program shown in the top part of the figure. The bottom
two parts of the application are the snippets that are inserted into the
program, and the runtime library that supports the Dyninst API. To
perform our experiments, we installed Dyninst on Sun Solaris. All ex-
periments reported in this paper are performed on this platform, using
a Sun Sparc-based machine running at 400 MHz with 512 MB main
memory and 2 MB cache.

E-Script

E-Optimizer E-Compiler

(...........)

(...........)

(...........)

(...........)

Runtime
Energy
Constraints

(...........)

(...........)

(...........)

(...........)

(I)

Original
Code

Modified
Code

(I)

(II)

(III)

(IV)
(V)

(VI)

Compiled Code Repository

Figure 2: Updating an executable in response to a change in energy
constraints. The numbers attached to arrows indicate the order of
events.

2.2 Execution Model
We explain our execution model using Figure 2. In this model, the

application source code is augmented usingsensitivity lists. Each sen-
sitivity list is attached to a loop or subprogram (function) and indicates
the energy components that the following subprogram or loop is sen-
sitive to. For example, a sensitivity list may indicate that whenever
there is a change in energy constraints a specific subprogram needs
to be recompiled for optimizing off-chip memory energy. In general,
a sensitivity list can contain constraints that involve energy consump-
tions of other system components as well. Since a sensitivity list can
be attached to a loop nest and function, our approach can work with
both loop-based applications and function-intensive codes.

In the original code shown in Figure 2, there are four separate loop
nests enclosed by a timing loop that iterates a certain number of times
or till a termination condition is satisfied. Suppose that when a change
in the energy constraint occurs, the execution thread reaches the sec-
ond nest. Assuming that the sensitivity list of this nest indicates that
the nest needs to be recompiled when such a change occurs, the execu-
tion thread temporarily stops and E-Optimizer is invoked. E-Optimizer
is a decision-making module which checks E-Script to determine the
compilation strategy to choose, given the new energy constraint. E-
Script is a list that contains for each nest (or subprogram) the compi-
lation strategies that should be activated based on energy constraints.
Its details will be explained later in the paper. After determining the
optimization strategy, E-Optimizer asks E-Compiler whether there is
already a compiled module in the Compiled Code Repository that cor-
responds to the new energy constraint. If there is, then E-compiler
supplies that module, which is subsequently inserted by E-Optimizer
in the code and execution resumes. If no such a precompiled mod-
ule exists in the repository, E-Compiler generates such a module and
forwards it to E-Optimizer which then proceeds as explained above.

Let us now discuss a typical execution scenario where such a dy-
namic compilation framework can be useful. Suppose that a subpro-

gram has been precompiled for the best performance (i.e., for mini-
mum execution cycles). We assume that this optimized code uses a
large number of memory banks during execution for data manipula-
tion. Suppose that after some execution, the battery power is reduced
significantly, which means that it is not possible to maintain power to
the entire memory space used and complete application execution be-
fore battery is dead. That is, active memory space should be reduced
by shutting off a number of infrequently used memory banks. In other
words, the subprogram code should be modified to make it work with
a smaller data space. Assuming that this variation in battery power
triggers a signal which is sensed when we are checking the sensitiv-
ity list just before entering our subprogram (that is, within the routine
that implements the sensitivity list check), the execution stops and E-
Optimizer is invoked. Using E-Compiler, it obtains a new compiled
code that has the same semantics as the previous one but can work with
a smaller data memory space. This new code also shuts off the mem-
ory banks that will not be needed during execution. It should be noted
that it is not sufficient to just turn off some memory banks as this can
cause data loss. Instead, first, we need to apply data space minimizing
optimizations, and then turn off the unused banks. E-Optimizer inserts
(links) this new subprogram code into the application code and execu-
tion resumes. This version is executed until a new variation in energy
constraint occurs. For example, if battery is recharged, E-Optimizer is
invoked again and the previous version of the subprogram is restored.
We believe that in a dynamic environment where energy constraints
change during execution, such dynamic compilations and executable
modifications might be extremely useful.

It should be noted that, in our implementation, the variation in en-
ergy constraint is checked only when a sensitivity list check is being
done (i.e., when a sensitivity list is reached during execution). This
makes our implementation easy at the expense of a longer reaction
time. This dynamic recompilation/linking framework has been im-
plemented using Dyninst. In this implementation, E-Optimizer is a
separate supervisory program that controls the code modifications to
be performed on the target application. In a sense, E-Optimizer cor-
responds to the mutator process in Dyninst and contains calls into the
DyninstAPI library, whereas the application program being modified
is analogous to the the mutatee process. E-Optimizer contains code to
invoke our runtime compiler, E-Compiler, and the utility routines to
manipulate the application process.

2.3 Tasks
The only modification to the application code is the addition of sen-

sitivity lists to the appropriate parts of the code. Our current imple-
mentation allows sensitivity lists to be added at the beginning of sub-
programs and loops. For example, the sensitivity list in the following
code fragment indicates that the loop nest that follows it is sensitive to
off-chip memory energy (E-mem); that is, whenever there is a change
in energy constraint, the loop nest should be recompiled for optimizing
off-chip memory energy.

list (E-mem);

for (N=1;N<=4;N++)

{

DW[J][I][N] = 0;

for (J=2;J<=JL;J++)

for (I=2;I<=IL;I++)

DW[J][I][N] += DW[J][I][N]-DU[I][J];

}

In this code fragment, E-mem is termed as a specifier. In general, a
sensitivity list may involve several specifiers. Our current implementa-
tion allows the following specifiers: E-mem (off-chip memory energy),
E-dcache (data cache energy), E-icache (instruction cache energy),
E-core (processor energy), E-interconnect (interconnect energy). A

sensitivity list such as list(E-mem,E-core), for example, indicates that
whenever there occurs a change in energy constraint, the subprogram
(or loop) that follows this sensitivity list in the program text should be
recompiled for off-chip memory energy and core energy. In our cur-
rent approach, the sensitivity list has been implemented as a call to a
runtime library.

In order to use our dynamic compilation environment, the user needs
to perform the following tasks:
� Identifying energy-critical regions:The first step that needs to be

performed is to identify the energy-critical regions within the applica-
tion code. A region can be a subprogram or a loop. Once a region
has been identified, it should be augmented by adding a sensitivity list
with suitable specifiers. While identifying energy-critical regions and
selecting suitable specifiers is a very important problem, it is beyond
the scope of this paper. In this paper, we are mainly interested in exe-
cuting an application in a dynamic recompilation/linking environment
taking into account changing energy constraints.
� Creating different versions for each critical region:Once the

energy-critical sections have been determined, the user needs to create
different versions of each energy-critical region. Each version cor-
responds to a code which is suitable for a specific energy constraint.
As an example, suppose that, for the code fragment above, the user
supplies two versions: one corresponding to E-mem< 500mJ and the
other corresponding to E-mem� 500mJ. What this means is that when
a change in energy constraints occur if the remaining energy budget
that can be allocated to off-chip main memory is less than 500mJ, the
first version will be used; otherwise, the second version will be used. If
the user wants, she can precompile these versions and place the com-
piled codes into the Compiled Code Repository. Alternately, she can
just indicate in E-Script the name of the source file (all files referred
in this paper are assumed to be stored in memory) and the location
where the source file can be found. In the first case, using a version
involves just dynamic linking, whereas in the second case, it involves
both dynamic recompilation and linking.
�Preparing an E-Script file:The association between source codes/

compiled codes and the constraints such as E-mem� 500mJ is done
through E-Script. Each entry in the E-Script file is a tuple of the fol-
lowing form: [Constraints, File Name]. In such an entry, Constraint
denotes the energy constraints that are written in terms of specifiers
and File Name is the pointer to the source file or to the linkable (pre-
compiled) code.
� Initiating the mutator execution: The mutator process should

identify the application process that has to be modified. If the pro-
cess is already in execution, the mutator attaches the mutatee process
using the executable name and the process id. If, on the other hand,
the application process has not yet been started, the mutator specifies
the pathname and the argument list of the mutatee. The format of the
command that activates mutator is:

mutator [-attach]<E-Script File> <Compiled Code Repository>
<Application File>.

Here, the attach flag enables the mutator to supervise a process already
in execution.

2.4 Version Generation
An important problem in our framework is generating different ver-

sions of an energy-critical region given an E-Script file. This is an
environment-specific problem; in this study, we discuss our current
version generation strategy. Our current version generation strategy
is based on a compiler-assisted energy estimation model and targets a
system with a banked main memory architecture. In this model, the
compiler takes a loop or a subprogram, creates different versions, es-

timates energy consumption of each version, and associates these esti-
mates with the runtime energy constraints using the E-Script entries.

Our main objective in using a compiler for creating multiple ver-
sions is to obtain several optimized versions of the same code quickly.
We address the optimized code generation problem for two types of
embedded codes: array-dominated applications and applications with
more irregular data access patterns (e.g., so called integer codes). All
our optimizations have been implemented using the SUIF compiler in-
frastructure from Stanford University [14].

In order to create different optimized versions of array-dominated
loops, our compiler uses different combinations of three widely-used
compiler optimizations: loop tiling, loop unrolling, and linear loop
transformations [15]. We selected these optimizations as they have
been shown to be effective in optimizing execution time as well as en-
ergy consumption [2]. In tiling, arrays that are too big to fit in the
cache are (logically) broken up into smaller pieces (to fit in the cache)
and the loop nest is restructured accordingly. Loop unrolling reduces
the iteration count of a given loop by duplicating loop body (with ap-
propriate loop iterator increments). By doing so, it aims at reducing
the number of memory accesses and promoting register reuse. Linear
loop transformations (e.g., loop interchange) attempt to improve cache
performance, instruction scheduling, and iteration-level parallelism by
modifying the traversal order of the iteration space of the loop nest.

Since innermost loop is the most critical loop in a given nest as far
as energy consumption and performance of the nest are concerned, our
version generator enumerates all possible innermost loops. The only
loops that are not considered are the ones that violate one or more
data dependences when they are placed into innermost position. All
remaining loops are tried as the innermost loop. Linear loop trans-
formations are used when it is possible to bring a loop into innermost
position without violating data dependences. It should be noted that
the order of outer loops is less important compared to that of the inner-
most loop. Consequently, in our implementation, while trying a loop
in the innermost position, the order of the outer loops is kept as close
to their original order as possible. For each such version, we next ap-
ply tiling to all the loops in the code (except the outermost one) that
carry some form of data reuse (i.e., spatial reuse or temporal reuse).
In selecting the tile size, our approach uses the strategy proposed by
Coleman and McKinley [3]. Then, we focus on the outermost loop
and unroll it. In this study, we use a limited set of unrolling factors
(2, 4, 6, 8). Most of the codes encountered in practice work best with
one of these unrolling factors. Note that this optimization strategy is
a reasonable one. This is because tiling in general generates best re-
sults when it is applied to inner loops with data reuse. Similarly, loop
unrolling results in the best energy and performance behavior when it
is applied to the outermost loop. We also add the original loop to our
version repertoire. Consequently, for a nest that containsL loops, this
approach creates a maximum of 4L+1 different versions.

For integer codes, we use different optimization strategies (for a
loop or subprogram) which are similar to the optimization levels used
by several commercial compilers. Our optimization levels are:
� Level-I includes local optimizations such as common subexpres-

sion elimination and strength reduction (e.g., converting multiplication
to additions).
� Level-II includes optimizations that use data-flow analysis such as

code motion, strength reduction, split-lifetime analysis, and instruction
scheduling.
� Level-III includes all optimizations in the previous two levels as

well as loop unrolling, code replication to eliminate branches, and
padding certain power-of-two array sizes for more efficient use of cache.
� Level-IV includes all optimizations in Level-III plus a set of global

optimizations such as inline expansion of small procedures.
� Level-V is Level-IV plus loop pipelining.

Next, for each different version, we estimate the data address re-
gions accessed and turn off memory banks that are not accessed by
that version. The objective here is to save memory energy by shutting
off unused memory banks. The strategy that we use for shutting of
unused memory banks is discussed in [4] and its details are beyond the
scope of this paper. During this phase of version generation, the source
code is also modified to insert memory bank turn off commands at the
beginning of the code and bank reactivation commands at the end of
the code.

After generating different versions, we estimate energy consump-
tion of each version using the compiler. Our compiler-directed energy
estimation model uses three types of parameters: technology parame-
ters (specific constant values which depend on the process technology
used), configuration parameters (e.g., memory capacity, cache topol-
ogy), and program-specific parameters. The program-specific param-
eters are obtained by analyzing the code. The compiler estimates the
number of cache misses (using the method discussed in [11]) and the
number of accesses to each hardware component. Using these three
parameters, the compiler then estimates the energy consumption of
the code version being considered for off-chip memory, caches, in-
terconnect, and processor core. The accuracy of this compiler-based
energy estimation strategy has been shown to be within 6% of a cycle-
accurate energy simulator for a single-issue, five-stage pipelined ar-
chitecture. To compute (estimate) the datapath energy consumption,
this compiler-based strategy estimates the number and types of assem-
bly instructions that would be generated. The energy consumed in
the caches is largely independent of the actual data accessed from the
caches, and the prior work has shown that the number of cache ac-
cesses is sufficient to model energy accurately [7]. The cache hit/miss
information along with the cache configuration that determines the
length of the bitlines and wordlines, and the size of decoders and sense
amplifiers is used to evaluate the energy consumption. The compiler
also estimates the number of bus transactions and the number of ac-
cesses to the banked memory, and uses this information to estimate
bus and main memory energies. The details of this compiler-based en-
ergy estimation strategy can be found elsewhere [9]. It should be noted
that while it is also possible to use a simulator to obtain energy behav-
ior of each version, that would be very time-consuming. It should also
be emphasized that without estimating the energy consumption of each
version, it is almost impossible to rank different versions of the code
from the energy perspective. This is because different optimizations
can impact energy consumption of different hardware components in
complex ways [9].

After computing energy values for each version, we drop some ver-
sions from further consideration if their energy behavior is very similar
to some other version. The remaining versions have different energy
(and performance) behaviors and can be used to fill the entries in the
E-Script file. For example, suppose that after dropping some versions,
we ended up with three different versions for a given nest:v1, v2, and
v3. Assume that we focus on off-chip memory energy consumption
and the memory energy consumptions of these three versions are (esti-
mated to be) 200mJ, 400mJ, and 800mJ, respectively. In this case, we
can insert four entries to the E-Script file:[E-mem� 200,v1], [200
< E-mem� 400, v2], [400< E-mem� 800, v3], and [E-mem>
800, Default], where Default corresponds to the default version when
no other match occurs in E-Script.

It should be stressed that while our current version generation strat-
egy is targeted towards a system with banked memory architecture, dy-
namic compilation for energy can target any embedded architecture. In
general, a version generation strategy can generate different versions
of a given code with different performance/energy tradeoffs and based
on the runtime constraints can select the best version.

Benchmark Source/Type Input File/Size
btrix Spec 721 KB
g721encode MediaBench clinton.pcm
epic MediaBench test image.pgm
full search Motion Estimation 310 KB
hier Motion Estimation 310 KB
tomcatv Spec 836 KB
vpenta Spec 770 KB

Figure 3: Benchmark characteristics.

2.5 Implementation of Sensitivity Lists
As mentioned earlier, sensitivity list is implemented as a library

routine. This library routine performs the following functionality. It
first obtains the new energy constraint and, then using a predetermined
energy budget distribution profile, it computes the estimated new en-
ergy constraint for each specifier in the list. It then makes a call to
E-Optimizer passing this information. Our current implementation is
flexible in the sense that it can be made to work with different en-
ergy budget distribution profiles. An energy budget distribution profile
specifies how the new energy budget should be divided among dif-
ferent hardware components such as main memory, caches, processor
core, and interconnect. For example, an energy budget distribution
profile can indicate that the cache memories in the system should con-
sume about 20% of the remaining battery energy. Based on this infor-
mation, when a change occurs in energy constraints, the compiler cal-
culates a target energy consumption (in absolute terms) for the caches
and optimizes the code accordingly.

3. Experiments and Results
To evaluate our dynamic recompilation/linking environment, we con-

ducted experiments using seven benchmark programs from different
domains. Figure 3 gives important characteristics of these benchmark
codes. In this paper, we focused only on optimizing the overall energy
consumption for each code segment targeted. That is, the sensitivity
list that we use contains specifiers of all hardware components con-
sidered in this work (i.e., processor core, main memory, caches, and
interconnect). So, when we mention ‘energy consumption’ in this sec-
tion, we mean the sum of the energies consumed in these components.

The energy consumptions reported in this section have been ob-
tained (estimated) using the approach explained earlier. The energy
spent during dynamic recompilation and linking have also been esti-
mated by the compiler by feeding it the code that performs linking
and compilation as well as the source program. In other words, our
approach takes into account the overhead energy as well. The energy
values are computed for a simple embedded architecture whose im-
portant parameters are listed in Figure 4. We assume that the leakage
energy per cycle of the entire cache is equal to the dynamic energy
consumed per access. This assumption tries to capture the anticipated
importance of leakage energy in the future. We also assumed that the
main memory is an SRAM and divided into 16 banks. Each bank can
be individually leakage-controlled when it is not in active use. As men-
tioned earlier, the energy-efficient versions of the applications used in
this study typically shut off some portion of the main memory. In
optimizing leakage energy for the SRAM memory, we modified the
voltage down converter circuit already present in current memory chip
designs to provide a gated supply voltage to the memory bank. When
a bank in the inactive mode is accessed to allocate a new data, it in-
curs a penalty of 350 cycles to service the request (a reasonable value
for power supply gating). Control energy is the amount of energy re-
quired to come back from the leakage control mode. For consistency,
we also assumed the same leakage energy/dynamic energy ratio for
components other than main memory as well.

Simulation Parameter Value

Processor Core
Issue Width 1 instruction/cycle

Pipeline Width 5 stages
Functional Units 1 integer ALUs

1 integer multiplier/divider
1 FP ALUs

1 FP multiplier/divider
Cycle Time 20ns

Cache & Memory Hierarchy
Instruction Cache 16KB, direct-mapped

32 byte blocks, 1 cycle latency
Data Cache 16KB, 2-way

32 byte blocks, 1 cycle latency
Memory 1MB, 100 cycle latency

16 banks (each is 64KB)
Energy Parameters

Dynamic Energy per Cache Access (0.1µ) 0.80nJ
Leakage Energy per 32 Bytes 0.66pJ

Control Energy 0.02nJ

Figure 4: Simulated configuration.

Figure 5 presents the energy consumption of our benchmarks un-
der three different execution scenarios. In the first scenario (the left-
most bar for each application), no dynamic recompilation or linking
is performed. The application compiled and linked statically and ex-
ecuted. In the second scenario (the middle bar), two precompiled
versions have been prepared for each benchmark: one correspond-
ing to the default, high energy-consuming code (that works with large
data memory space) and one corresponding to the energy-efficient ver-
sion. Under this scenario, the execution starts with the default version.
When a change in energy constraint is detected (indicating that bat-
tery energy is going down), we dynamically link the energy-efficient
version. In the third scenario (the rightmost bar for each application),
we have the same two versions as in the second scenario; but, this
time, only the default version has been precompiled. When the en-
ergy constraint changes, we first dynamically recompile the energy-
efficient version and then link it. As mentioned earlier, it is not pos-
sible to just shut off some memory banks for saving energy. We also
need to restructure the program such that its data memory requirements
are reduced. In Figure 5, Execution, Linking, and Recompilation por-
tions correspond, respectively, to the energies spent during execution,
dynamic linking, and dynamic recompilation (including the E-Script
check). In obtaining these results, we applied dynamic compilation
to the entire code in array-dominated applications and to the most
frequently used functions in other codes. More specifically, in epic,
we applied dynamic recompilation/linking to only internalfilter() and
quantizeimage(), which together constitute 88.9% of the overall exe-
cution time. In g721encode, on the other hand, we applied our strat-
egy to three time-consuming functions: fmult(), update(), and predic-
tor zero().

We observe from Figure 5 that dynamic recompilation/linking has
different impacts on energy behavior of different applications. In g721
encode, epic, tomcatv, and vpenta, it brings large energy benefits even
if we recompile and link during execution. In hier, on the other hand,
it does not perform well, primarily because the energy-efficient ver-
sion does not reduce energy consumption of the default version sig-
nificantly, and since dynamic recompilation and linking themselves
consume energy, we see an increase in overall energy consumption. In
full search, we witness an interesting behavior. Our approach brings
an energy benefit provided that we perform only dynamic linking at
runtime. If we try to do both dynamic recompilation and linking,
the overall energy consumption becomes larger than the original ver-
sion (i.e., the one without recompilation/linking). A similar behavior
is observed in btrix. In this code, the second scenario generates the

Figure 5: Energy consumptions (in millijoules) of our benchmarks
under different execution scenarios.

Figure 6: Increase in execution cycles (%) of our benchmarks un-
der different execution scenarios.

same overall energy consumption as the first scenario. However, the
third scenario increases the energy consumption due to extra energy
expended in dynamic recompilation. Overall, these results indicate
that, in some codes, large energy savings are possible (even taking into
account the extra energy cost of dynamic recompilation and linking)
when our approach is employed. In some other codes, on the other
hand, it may not be beneficial to adopt our optimization strategy. In
these cases, it might be a good idea either to energy-optimize code
more aggressively, or to try to reduce the energy consumed during dy-
namic recompilation/linking. On average (across all benchmarks), the
Linking version and the Recompilation version (in Figure 5) bring,
respectively, 24.9% and 15.5% energy savings over the Execution ver-
sion.

Figure 6 shows the percentage increase in execution cycles. The first
two bars for each benchmark correspond to the cases dynamic linking
alone and dynamic recompilation and linking used together. The in-
creases are with respect to the default scenario where no dynamic re-
compilation or linking is done. We see that the average increase in exe-
cution cycles is 1.9% and 3.6% with the linking only and recompilation
plus linking versions, respectively. Based on these results, we can con-
clude that the execution time cost of dynamic recompilation/linking is
affordable. However, running a less performance-efficient version also
increases the execution cycles. The third bar in Figure 6 shows the in-
crease in execution cycles when this factor is also included (i.e., in
addition to the extra cost of dynamic recompilation/linking). We ob-
serve that the overall increase in execution cycles is always less than
10% (averaging on 7.7%). We also performed experiments with vary-
ing system parameters and found that our strategy is very robust. The
detailed results are omitted due to lack of space.

4. Conclusions
The results obtained so far from using our dynamic recompilation/

linking strategy are encouraging. Our preliminary experiments indi-
cate that large energy gains are possible at the expense of a relatively
small increase in execution time. We strongly believe that dynamic
recompilation/linking is the next step in addressing the growing en-
ergy problem in dynamic environments where energy constraints are
frequently changing.

5. REFERENCES
[1] B. R. Buck and J. K. Hollingsworth. An api for runtime code

patching.Journal of High Performance Computing
Applications,14(4):317–329, Winter 1994.

[2] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H.
DeMan. Global communication and memory optimizing
transformations for low power signal processing systems. In
Proc. the IEEE Workshop on VLSI Signal Processing,pages
178-187, 1994.

[3] S. Coleman and K. S. McKinley. Tile size selection using cache
organization and data layout. InProc. the SIGPLAN Conference
on Programming Language Design and Implementation,La
Jolla, CA, June 1995.

[4] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A.
Sivasubramaniam, and M. J. Irwin. DRAM energy management
using software and hardware directed power mode control. In
Proc. the 7th International Conference on High Performance
Computer Architecture,Monterrey, Mexico, January 2001.

[5] K. Ebcioglu and E. R. Altman. DAISY: dynamic compilation for
100% architectural compatibility. InProc. the International
Symposium on Computer Architecture,1997.

[6] D. R. Engler. VCODE: a retargetable, extensible, very fast
dynamic code generation system. InProc. the 23rd ACM
Conference on Programming Language Design and
Implementation,1996.

[7] K. Ghose and M. B. Kamble. Reducing power in superscalar
processor caches using subbanking, multiple line buffers, and
bit-line segmentation. In1999 Proc. the International
Symposium Low Power Electronics and Design,1999, pages
70–75.

[8] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. J.
Eggers. An evaluation of staged run-time optimizations in DyC.
In Proc. Conference on Programming Language Design and
Implementation,May 1999.

[9] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A
Sivasubramaniam. EAC: a compiler framework for high-level
energy estimation and optimization. InProc. the 5th Design
Automation and Test in Europe Conference,Paris, France, 4–8
March, 2002.

[10] J. R. Larus and E. Schnarr. EEL: machine-independent
executable editing. InProc. SIGPLAN Conference on
Programming Language Design and Implementation,1995.

[11] K. McKinley, S. Carr, and C.-W. Tseng. Improving data locality
with loop transformations.ACM Transactions on Programming
Languages and Systems,18(4):424–453, July 1996.

[12] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K.
Kunchithapadam, and T. Newhall. The Paradyn parallel
performance measurement tools.IEEE Computer,28(11), 1995,
pp. 37–46.

[13] A. Srivastava and A. Eustace. ATOM: a system for building
customized program analysis tools. InProc. the SIGPLAN
Conference on Programming Language Design and
Implementation,May 1994, Orlando, FL, pp. 196–205.

[14] R. Wilson et al. SUIF: an infrastructure for research on
parallelizing and optimizing compilers.ACM SIGPLAN Notices,
29(12):31–37, December 1994.

[15] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

