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Abstract
We provide a definition of undetectable faults in partial scan cir-
cuits under a test application scheme where a test consists of pri-
mary input vectors applied at-speed between scan operations.
We also provide sufficient conditions for a fault to be undetect-
able under this test application scheme. We present experimen-
tal results on finite-state machine benchmarks to demonstrate the
effectiveness of these conditions in identifying undetectable
faults.

1. Introduction
Under a commonly used test application scheme for scan cir-
cuits, a test consists of a scan-in operation followed by a
sequence of primary input vectors that are applied at-speed. At-
speed application of primary input vectors implies that a next-
state computed through the circuit logic is captured and used as a
present-state for the application of the next primary input vector.
A test ends with a scan-out operation. We denote a test by
τ = (SI ,T ), where SI is the scan-in vector and T is the primary
input sequence. We refer to this test application scheme as
scan −per −test . In the case of a partial scan circuit, we assume
that SI specifies the scanned state variables, and that the values
stored in the unscanned state variables are unknown after a scan
operation. This ensures that a set of tests τ1,τ2, . . . ,τm can be
applied in any order, which facilitates test compaction. For
example, one can use reverse order fault simulation to reduce the
number of tests. In addition, the circuit does not need to be
simulated during a scan operation to determine the states of the
unscanned flip-flops at the end of the scan operation, nor is there
a need to hold the circuit state during a scan operation. Further-
more, for efficiency reasons, when generating a test for a new
fault, test generation procedures typically assume an all-
unknown initial state for the unscanned flip-flops rather than a
specific known state for these flip-flops. Test generation pro-
cedures that use the scan-per-test scheme were described in [1]-
[4]. Commercial tools also use this test applications scheme.

A different test application scheme for partial scan cir-
cuits consists of using the scan chain to scan-in a new state
before every primary input vector is applied. In this case, the
option of assigning unspecified values to unscanned state vari-
ables is not viable, since these state variables will be unspecified
at every time unit. Instead, the following options may be used. If
the state of the unscanned flip-flops is allowed to change during
scan, the fault simulation and test generation processes need to
keep track of the changes in the state of these flip-flops that
occur during a scan operation. For this purpose, it is necessary to
use sequential circuit fault simulation over a number of time
units proportionate to the number of scanned flip-flops. To avoid
� ���������������������������������������
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this computational overhead, it is typically implied in this test
application scheme that the state of the unscanned state variables
is held during a scan operation. The result is that the circuit is
equivalent (for the purposes of fault simulation and test genera-
tion) to a circuit where the scanned state variables are replaced
by controllable inputs and observable outputs. We refer to this
test application scheme as scan −per −vector . This test applica-
tion scheme was used, for example, in the scan selection pro-
cedure of [5]. Thus, the procedure of [5] achieves the full scan
fault coverage by using partial scan assuming that there is a hold
mode for the unscanned state variables.

The scan-per-test scheme has several advantages over the
scan-per-vector scheme, including (1) the removal of the need
for holding the circuit state during scan, (2) the ability to test the
circuit at-speed by applying more than one primary input vector
between scan operations, and (3) a reduced test application time
because of the use of fewer scan operations. However, it was
shown in [4] that for partial scan circuits (where the set of
scanned flip-flops is a proper subset of the circuit flip-flops), a
fault which is detectable under the scan-per-vector scheme may
not be detectable under the scan-per-test scheme. Because of the
advantages listed above of the scan-per-test test application
scheme and its use in commercial and academic tools, it is
important to rigorously study the sets of undetectable faults
under this scheme. Such a study was not performed in [4], and
we undertake such a study in this work. Studies of undetectable
faults in non-scan sequential circuits were described in [6]-[15].

We are interested only in the faults that are uniquely
undetectable due to the use of partial scan. Specifically, if a fault
is detectable in the non-scan sequential circuit, it is guaranteed to
be detectable under partial scan. Similarly, if a fault is undetect-
able using full scan (the fault is combinationally redundant), it is
guaranteed to be undetectable under partial scan. Thus, we are
interested in the undetectable faults in the combinational logic of
a partial scan design that are undetectable in the non-scan
sequential circuit, but are detectable using full-scan. Figure 1
demonstrates the above sets of faults. Outside the large box we
have the faults that are detectable in the non-scan sequential cir-
cuit. The set of faults that are undetectable in the non-scan cir-
cuit (marked by the large box) contains the set of combination-
ally redundant faults (marked by the small box). Between the
two boxes we have the set of faults we are interested in. These
faults may be detectable or undetectable in a given partial scan
circuit.

We provide for the first time a rigorous definition of
undetectable faults in a partial scan circuit under the scan-per-
test test application scheme. We also provide sufficient condi-
tions for a fault in a partial scan circuit to be undetectable under
this scheme. We use these conditions to identify undetectable
faults in finite-state machine benchmark circuits with partial
scan. The results presented provide data regarding the numbers
of undetectable faults in partial scan benchmark circuits that are
not due to combinational redundancy.
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Figure 1: Target faults
2. Definitions
In this section, we introduce the notation used throughout this
paper and provide a definition of detectable and undetectable
faults in partial scan circuits under the scan-per-test scheme
using tests of the form τ = (SI ,T ).

To simplify the notation, we write state vectors such that
the values of the scanned state variables are given first, followed
by the values of the unscanned state variables. We denote the
number of scanned state variables by k , and the total number of
state variables by K . For example, for a circuit with two scanned
state variables and one unscanned state variable, we have k = 2
and K = 3. The state 110 for this circuit implies that the scanned
state variables are in state 11, and the unscanned state variable is
in state 0.

We denote primary input vectors by t or ti , primary out-
put vectors by z or zi , and states by s or si . Sets of states are
denoted by S or Si .

When we consider fault free and faulty circuits simultane-
ously, we use si /sj to denote that the fault free circuit is in state
si and the faulty circuit is in state sj . Similarly, we use zi /zj to
denote that the fault free circuit produces a primary output vector
zi and the faulty circuit produces a primary output vector zj .

We denote by Si the set of states s such that the values of
the first k state variables (the state variables corresponding to the
scanned flip-flops) are assigned the binary representation of i .
For example, for a circuit with two scanned state variables and
one unscanned state variable, S 0 = {000, 001}, S 1 = {010, 011},
S 2 = {100, 101} and S 3 = {110, 111}. We can also represent Si
as an incompletely specified state, for example, S 0 = 00x ,
S 1 = 01x , and so on.

The importance of the sets of states Si is related to the
fact that if the scan-in vector is equal to the binary representation
of i , Si is the set of possible states of the (fault free as well as
faulty) circuit after scan. When we consider fault free and faulty
circuits simultaneously and the scan-in vector is equal to the
binary representation of i , the set of states after scan is Si /Si =
{sp /sq :sp ,sq ∈ Si }. For example, for a circuit with two scanned
state variables and one unscanned state variable, if i = 1, we
have S 1 = {010, 011}, and S 1/S 1 = {010/010, 010/011, 011/010,
011/011} is the set of possible states of the fault-free/faulty cir-
cuits after scan.

We denote by D the set of states such that if the fault free
and faulty circuits are brought to a state in D , the fault can be
detected by a scan-out operation. A state sp /sq ∈ D satisfies the
following condition. Let sp ∈ Si (i.e., the values of the first k
state variables form the binary representation of i under sp ), and
let sq ∈ Sj (i.e., the values of the first k state variables form the

binary representation of j under sq ). Using this notation,
sp /sq ∈ D (i.e., a fault can be detected by scanning out the state
when the circuits are in state sp /sq ) if and only if i ≠ j . For
example, for a circuit with two scanned state variables and one
unscanned state variable, we have the following states in D . For
sp ∈ S 0 and sq ∈ S 1, we have in D the four states covered by
the partially specified state 00x /01x , or 000/010, 000/011,
001/010 and 001/011. For sp ∈ S 0 and sq ∈ S 2, we obtain the
states 000/100, 000/101, 001/100 and 001/101 in D . Similarly,
we obtain in D four states for every one of S 0/S 1, S 0/S 2, S 0/S 3,
S 1/S 2, S 1/S 0, . . . , S 3/S 2.

We denote by Z (T ,sp ) the output sequence produced by
the fault free circuit in response to a primary input sequence T
when its initial state is sp . We denote by Zf y (T ,sq ) the output
sequence produced by the faulty circuit in response to a primary
input sequence T when its initial state is sq . We denote by
s (T ,sp ) the final state reached by the fault free circuit if the pri-
mary input sequence T is applied when its initial state is sp . We
denote by sf y (T ,sq ) the final state reached by the faulty circuit if
the input sequence T is applied when its initial state is sq .

We can now define detectable and undetectable faults
under the scan-per-test scheme as follows. These definitions are
analogous to the ones used in [8] for non-scan circuits.
Definition 1: A fault f is said to be detectable under the scan-
per-test scheme if there exists an input sequence T and a scan-in
vector i such that for every initial state sp /sq ∈ Si /Si either
Zf y (T ,sq ) ≠ Z (T ,sp ) or s (T ,sp )/sf y (T ,sq ) ∈ D . If T and i
exist, τ = (i ,T ) is a test for f .

For initial states sp /sq ∈ Si /Si such that
Zf y (T ,sq ) ≠ Z (T ,sp ), fault effects can be observed on the pri-
mary outputs. For initial states sp /sq ∈ Si /Si such that
s (T ,sp )/sf y (T ,sq ) ∈ D , fault effects can be observed on the
scan-out vector at the end of the test.
Definition 2: A fault f is said to be undetectable if it is not
detectable.

3. Sufficient conditions for identification of
undetectable faults
In this section, we develop sufficient conditions for the
identification of undetectable faults based on Definitions 1 and 2.
In Subsection 3.1 we discuss the identification of undetectable
faults using a special type of pairwise distinguishing sequences.
In Subsection 3.2 we discuss the identification of undetectable
faults using an iterative logic array of the circuit.

3.1. Using pairwise distinguishing sequences
We define a variable d (p ,q ) for every initial state sp /sq of the
fault-free/faulty circuit. This variable indicates whether or not it
is possible to propagate a fault effect to a primary output or to a
scanned state variable starting from state sp /sq . We have
d (p ,q ) = 1 if there exists an input sequence Tp ,q such that
Z (Tp ,q ,sp ) ≠ Zf y (Tp ,q ,sq ) or s (Tp ,q ,sp )/sf y (Tp ,q ,sq ) ∈ D . Oth-
erwise, d (p ,q ) = 0. We refer to Tp ,q as a pairwise distinguishing
sequence for states sp /sq . This is different from the conventional
definition of pairwise distinguishing sequences since we allow
the two states to be distinguished on the scanned state variables.

Using d (p ,q ), the following is a necessary condition for a
fault f to be detectable.
Theorem 1: If a fault f is detectable, there exists an i such that
for every initial state sp /sq ∈ Si /Si , d (p ,q ) = 1.
Proof: From the definition of a detectable fault, there exists an



input sequence T and a scan-in vector i such that for every ini-
tial state sp /sq ∈ Si /Si , either Zf y (T ,sq ) ≠ Z (T ,sp ) or
s (T ,sp )/sf y (T ,sq ) ∈ D . The existence of T implies that
d (p ,q ) = 1 for every sp /sq ∈ Si /Si , with Tp ,q = T .

�

Note that according to the definition of d (p ,q ), we may
use a different sequence Tp ,q to set d (p ,q ) = 1 for different
states sp /sq . Therefore, Tp ,q may not define a test for f when
used with a scan-in state i . In fact, a test may not exist even if
d (p ,q ) = 1 for every state sp /sq ∈ Si /Si for some i . The follow-
ing example demonstrates this point.

We consider the circuit with the state table shown in
Table 1. Faulty values are shown to the right of a slash in Table
1. The state names are shown on the left in Table 1. We assume
that the first state variable is scanned and the second one is not
scanned. Thus, we have S 0 = {00,01} = {s 0,s 1} and S 1 = {10,11}
= {s 2,s 3}. It can be verified that d (2,2) = 0 (in addition, d (2,3) =
d (3,2) = d (3,3) = 0). Thus, the fault cannot be detected after
scanning in the vector i = 1. We have d (0,0) = 1 since s 0/s 0 pro-
duce different output values in response to T 0,0 = 0 (Z (0,s 0) = 1
and Zf y (0,s 0) = 0); d (0,1) = 1 since s 0/s 1 produce different out-
put values in response to T 0,1 = 0; d (1,0) = 1 since s 1/s 0 produce
different next state values on the scanned state variable in
response to T 1,0 = 1 (s (1,s 1) = 01 and sf y (1,s 0) = 11); and
d (1,1) = 1 since s 1/s 1 produce different next state values on the
scanned state variable in response to T 1,1 = 1. Thus, the neces-
sary condition of Theorem 1 is satisfied for the fault. However,
the fault is not detectable since we cannot find a single test
sequence T that will distinguish all the initial states simultane-
ously. Specifically, after applying the primary input vector 0,
state s 1/s 1 goes to state s 3/s 3, and we cannot detect the fault. If,
instead, we apply the primary input vector 1, state s 0/s 0 goes to
state s 3/s 3 and we cannot detect the fault. Thus, Theorem 1 does
not provide a sufficient condition for a fault to be detectable.

Table 1: Example fault

NS ,z
PS 0 1�����������������������������������������������

s 0 00 11,1/0 11,0
s 1 01 11,0 01/11,0
s 2 10 11,0 10,0
s 3 11 11,0 11,0
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It is interesting to note that for non-scan sequential cir-
cuits, it was shown earlier [8] that a fault is detectable if and
only if every pair of states sp /sq is distinguishable (by observing
primary output sequences). In the case of partial scan circuits,
the existence of pairwise distinguishing sequences (using
scanned flip-flops as well as primary output sequences for obser-
vation) is a necessary condition but not a sufficient one. The
example above illustrates this difference in the conditions for
detectability of faults in partial scan circuits and non-scan cir-
cuits.

In a vast majority of cases where a circuit has fault-
free/faulty states sp /sq such that d (p ,q ) = 0, it also has a state sm
such that d (m ,m ) = 0. Thus, we further simplify the necessary
condition given in Theorem 1 by considering states of the form
sm /sm .
Corollary 1: If a fault f is detectable, there exists an i such that
for every initial state sm /sm ∈ Si /Si , d (m ,m ) = 1.

From Theorem 1 and Corollary 1, we have the following
sufficient conditions for a fault to be undetectable.
Corollary 2: A fault f is undetectable if for every i there exists

an initial state sp /sq ∈ Si /Si such that d (p ,q ) = 0.
Corollary 3: A fault f is undetectable if for every i there exists
an initial state sm /sm ∈ Si /Si such that d (m ,m ) = 0.

3.2. Using an iterative logic array
One way to compute the variables d (p ,q ) required by Corollary
1 or the variables d (m ,m ) required by Corollary 3 is by using
the iterative logic array of the circuit. The iterative logic array is
used for test generation for scan as well as non-scan sequential
circuits [16]. It is also used for identification of undetectable
faults in non-scan sequential circuits [6], [7], [9]-[15].

The iterative logic array of length L of a partial scan cir-
cuit is shown in Figure 2. The top vertical lines stand for primary
inputs and the bottom vertical lines stand for primary outputs.
The top horizontal lines stand for scanned state variables and the
bottom horizontal lines stand for unscanned state variables. In
general, we inject the fault under consideration into every cell of
the iterative logic array, and attempt to detect the fault under the
following conditions.

x x x
1 2 L. . .

. . .

Figure 2: Iterative logic array of a partial scan circuit
(1) The present state variables of the first cell are controllable.
In addition, the primary inputs of all the cells are controllable.
(2) The scanned next state variables of the last cell are observ-
able, while the unscanned next state variables of the last cell are
not observable. In addition, the primary outputs of all the cells
are observable.
(3) The value of L is not restricted, and L can be increased as
necessary to detect the fault or prove that it is not detectable.

If the fault is detectable in the iterative logic array for ini-
tial state sm /sm , then d (m ,m ) = 1. Thus, the iterative logic array
provides a mechanism to compute d (m ,m ). However, comput-
ing d (m ,m ) for every state sm /sm or even sm /sm ∈ Si /Si for a
given i or a given m as required by Corollaries 1 or 3 may not
be feasible for large circuits. To alleviate this problem, we res-
trict the initial states of the iterative logic array to states denoted
by sa /sa , defined as follows.

Starting from sa /sa , there exists an input sequence Ta ,a
which is a pairwise distinguishing sequence for sa /sa , and in
addition, the fault under consideration is propagated to the next
state variables at every time unit until it is detected. In the itera-
tive logic array of Figure 2, if the initial state is sa /sa and the
input sequence is Ta ,a , there is a 0/1 or 1/0 on an unscanned next
state variable at time units 1, 2, . . . , L −1, and there is a 0/1 or
1/0 on a primary output or a scanned state variable at time unit
L . We refer to the sequence Ta ,a as a continuously propagating
pairwise distinguishing sequence.

Next, we show that if a fault f is detectable, a state sa /sa
with a continuously propagating pairwise distinguishing
sequence must exist. Thus, if it is not possible to find a state
sa /sa with a continuously propagating pairwise distinguishing
sequence, f is undetectable. The importance of this result is that
the requirement for a 0/1 or 1/0 on an unscanned next state vari-



able at every time unit until sa /sa are distinguished facilitates the
search for sa and the input sequence Ta ,a .
Theorem 2: If a fault f is detectable, there exists an initial state
sa /sa for f with a continuously propagating pairwise distin-
guishing sequence, i.e., an input sequence Ta ,a such that starting
from sa /sa , Ta ,a propagates a fault effect to an unscanned state
variable at every time unit except for the last one; at the last time
unit, Ta ,a propagates a fault effect to a primary output or to a
scanned state variable.
Proof: Suppose that f is detectable. According to Corollary 1,
there exists an initial state sm /sm such that d (m ,m ) = 1. From
d (m ,m ) = 1, there exists a pairwise distinguishing sequence for
sm /sm , i.e., a sequence Tm ,m such that
Z (Tm ,m ,sm ) ≠ Zf y (Tm ,m ,sm ) or s (Tm ,m ,sm )/sf y (Tm ,m ,sm ) ∈ D .
Let the length of Tm ,m be L , and suppose that Tm ,m distinguishes
sm /sm for the first time at time unit L on the primary outputs or
scanned next-state variables (otherwise, it is possible to use a
shorter sequence Tm ,m ). Let the state of the circuit at time unit u
under Tm ,m be su /sf y ,u . We have s 1/sf y ,1 = sm /sm . Starting from
time unit L , we find the highest time unit u where su = sf y ,u .
Such a time unit u must exist since s 1 = sf y ,1 = sm . From the
definition of su /su , we have that su +1 ≠ sf y ,u +1, . . . , sL ≠ sf y ,L
and su /su are distinguished at time unit L . Thus, the subsequence
of Tm ,m that starts at time unit u and ends at time unit L is a con-
tinuously propagating pairwise distinguishing sequence for
su /su . Thus, su /su is the required state sa /sa and the subse-
quence of Tm ,m that starts at time unit u and ends at time unit L
is the required sequence Ta ,a . �
Corollary 4: A fault f is undetectable if there does not exist an
initial state sa /sa for which there is a continuously propagating
pairwise distinguishing sequence Ta ,a .

4. Experimental results
In this section we describe the identification of undetectable
faults in partial scan benchmark circuits using Corollary 3 intro-
duced in Section 3. As discussed earlier, we are interested in
faults that are undetectable in the non-scan sequential circuit but
detectable using full scan (as illustrated by Figure 1).

In all our experiments, we use gate level descriptions of
finite-state machine synthesis benchmarks. We use arbitrary sets
of scanned flip-flops, as follows. For a circuit with K state vari-
ables y 1,y 2, . . . ,yK , if k state variables are scanned, we assume
that y 1, . . . ,yk are scanned and yk +1, . . . ,yK are unscanned.

We compute pairwise distinguishing sequences Tm ,m for
states sm /sm by using an exhaustive search procedure. The pro-
cedure starts from sm /sm and explores all the state pairs reach-
able from sm /sm until one of the following conditions is satisfied.
(1) The states are distinguished on a primary output. (2) The
states are distinguished on a scanned next-state variable. (3) No
new state pairs can be obtained. In Cases 1 and 2 we set
d (m ,m ) = 1. In Case 3 we set d (m ,m ) = 0.

The results obtained are given in Table 2. After the cir-
cuit name and the number of state variables, we show in Table 2
the following numbers of faults.
(1) The total number of faults.
(2) The number of faults that are detectable without using scan.
We compute this number based on the definition from [8].
(3) The number of combinationally redundant faults.
(4) The number of remaining faults that are not detectable
without scan and are not combinationally redundant. These faults
may be detectable using partial scan according to Definition 1.

Table 2: Undetectable faults using
pairwise distinguishing sequences

non
-sc cmb p.scan undet

circuit sv flts det red lft 1 2 3 4 5 6� ���������������������������������������������������������������������������������������������������������������������������
dk16 5 532 529 2 1 1 1 1 1 0
dvram 6 425 424 0 1 1 1 1 1 1 0
ex4 4 176 171 0 5 5 5 5 0
ex7 4 160 149 1 10 10 10 10 0
keyb 5 470 468 0 2 2 2 2 2 0
rie 5 552 545 4 3 3 3 3 3 0� ���������������������������������������������������������������������������������������������������������������������������
bbara 4 138 130 0 8 8 7 1 0
bbsse 4 238 235 0 3 2 2 1 0
bbtas 3 63 62 0 1 1 0 0
dk512 4 124 122 0 2 2 2 1 0
fetch 5 345 335 3 7 5 5 5 4 0
lion9 3 62 53 3 6 6 0 0
mark1 4 204 197 1 6 6 6 3 0
opus 4 181 180 0 1 0 0 0 0
train11 4 104 100 0 4 4 2 0 0� ���������������������������������������������������������������������������������������������������������������������������
bcount 3 112 110 2 0
cse 4 357 355 2 0
dk14 3 208 207 1 0
dk15 4 151 151 0 0
dk17 3 128 128 0 0
dk27 3 67 67 0 0
ex2 5 312 312 0 0
ex3 4 153 153 0 0
ex5 3 152 138 14 0
ex6 3 229 229 0 0
lion 4 40 40 0 0
log 5 313 312 1 0
mc 4 73 73 0 0
shftreg 3 28 28 0 0
tav 4 64 64 0 0
train4 4 34 34 0 0
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(5) For k = 1,2, . . . ,K , we show the number of faults that are
proved to be undetectable based on Corollary 3 if k state vari-
ables are scanned. Note that k = K corresponds to the case of
full-scan. Since we are considering under column p.scan undet
only faults that are combinationally detectable, and are thus
detectable under full scan, the number of undetectable faults
under column k = K is always zero.

The following points can be seen from Table 2.
(1) For the first six circuits in Table 2, full scan is necessary to
detect any one of the combinationally irredundant faults that are
not detectable in the non-scan sequential circuit. Some of these
faults may be detectable under a different partial scan selection,
but they are not detectable under the partial scan selection
scheme we used.
(2) For the 16 circuits shown at the end of Table 2, all the faults
are either detectable without using scan or combinationally
redundant. For these circuits there are no faults that can be
detected by using partial scan, which are not detectable without
using scan. Adding these 16 circuits to the six circuits that
require full scan, we have 22 circuits for which partial scan will
not allow us to detect any additional faults compared to a non-
scan circuit.
(3) The remaining nine circuits shown in the middle of Table 2
have faults that are undetectable in the non-scan circuit, but that



may be detected using partial scan without requiring full scan.
Some of these circuits also have faults that require full scan to be
detected.

Since the set of undetectable faults may depend on the
partial scan selection, we repeated the experiment above, this
time considering all possible selections of k scanned flip-flops.
The most testable partial scan circuit is obtained if K −1 flip-
flops are scanned. Therefore, we considered k = K −1 in this
experiment in order to provide information about the highest tes-
tability level that can be achieved using partial scan. For each
selection of K −1 scanned flip-flops, we find the number of
undetectable faults according to Corollary 3. The first selection
will give a number of undetectable faults that matches the
number under column p.scan undet subcolumn K −1 of Table 2.
Different numbers may be obtained with different selections of
K −1 scan flip-flops.

The results obtained for the first 15 circuits of Table 2 are
given in Table 3 (the remaining circuits do not have faults that
are undetectable uniquely under partial scan). After the circuit
name, we repeat the number of target faults (the number of faults
that are undetectable in the non-scan circuit but detectable using
full scan). We then show for every selection of K −1 scanned
flip-flops the number of faults that are undetectable according to
Corollary 3. Note that there are K such selections for a circuit
with K flip-flops, and they are marked ps 1,ps 2, . . . ,psK in
Table 3.

Table 3: Undetectable faults with K −1 scan flip-flops

p.scan undet
circuit left ps1 ps2 ps3 ps4 ps5 ps6���������������������������������������������������������������������������������������������
dk16 1 1 1 1 1
dvram 1 1 1 1 1 1 1
ex4 5 5 4 5 5
ex7 10 10 2 10 10
rie 3 3 3 3 3 3���������������������������������������������������������������������������������������������
bbara 8 1 2 1 2
bbsse 3 1 3 2 2
bbtas 1 0 0 1
dk512 2 1 2 2 2
fetch 7 4 6 4 4 4
keyb 2 2 2 1 1 1
lion9 6 0 0 6
mark1 6 3 6 6 6
opus 1 0 1 0 0
train11 4 0 0 2 2
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Table 3 shows that there are variations in the numbers of
undetectable faults in partial scan circuits depending on the scan
selection. However, in 11 out of 15 circuits, there are faults that
are combinationally irredundant and that cannot be detected
unless full scan is employed. This implies that, using the scan-
per-test scheme, one may have to accept reduced fault coverage
in partial scan designs relative to the fault coverage obtained
using full scan. Thus, it is important to develop procedures to
determine undetectable faults in partial scan designs when the
scan-per-test scheme is employed.

5. Concluding remarks
We provided a definition of undetectable faults in partial scan
circuits under the scan-per-test test application scheme, where a
test consists of primary input vectors applied at-speed between
scan operations. We also provided sufficient conditions for a
fault to be undetectable under this test application scheme. The
first condition was based on pairwise distinguishing sequences
computed for initial state pairs. The second condition was based
on a single initial state pair for which continuous propagation of
the fault was required. We presented experimental results on
finite-state machine benchmarks to demonstrate the effectiveness
of these conditions in identifying undetectable faults.
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