
An Enhanced Multilevel Routing System*
Jason Cong, Min Xie, Yan Zhang

Computer Science Department, UCLA
Los Angeles, CA 90095

cong, xie, zhangyan@cs.ucla.edu

*This research is partially supported by the MARCO/DARPA Gigascale Silicon Research Center (GSRC) and the
National Science Foundation under the award CCR-0096383.

Abstract
In this paper, we present several novel techniques that

make the recently published multilevel routing scheme [19]
more effective and complete. Our contributions include: (1)
resource reservation for local nets during the coarsening
process, (2) congestion-driven, graph-based Steiner tree
construction during the initial routing and the refinement
process and (3) multi-iteration refinement considering the
congestion history. The experiments show that each of
these techniques helps to improve the completion rate
considerately. Compared to [19], the new routing system
reduces the number of failed nets by 2× to 18×, with less
than 50% increase in runtime in most cases.

1. Introduction
The continuous increase of the problem size of IC

routing has become a great challenge to existing routing
algorithms. The traditional method for handling the large
problem size is to “divide-and-conquer,” which breaks the
routing problem into two successive steps, global routing
and detailed routing.

Global routing partitions the entire routing region into
tiles or channels, and tries to find a tile-to-tile path for each
net with congestion and performance optimization. There
are two kinds of global routing algorithms. Sequential
methods route the nets one-by-one in a predetermined
order, using either the maze searching algorithm [1][2] or
the line-probe algorithm [3][4]. However, the solution
quality is often affected by the routing order. Iterative
methods try to overcome the net ordering problem by
performing multiple iterations. The negotiation-based
iterative global routing scheme was proposed in [5], and
later on used in FPGA routing [6]. The flow-based iterative
methods were also proposed [7][8], where the global
routing problem is modeled as a multi-terminal, multi-
commodity flow problem and approximate solutions are
computed iteratively. A more recent work used a
combination of maze searching and iterative deletion for
solving the performance-driven global routing algorithm
[9].

After global routing is completed, detailed routing is
performed within each tile or channel, where the exact
geometric layout of all nets is determined. There are two

types of detailed routing approaches, grid-based or gridless
routing. A gridless detailed router allows arbitrary widths
and spacings for different nets, which can help to optimize
the circuit performance and to reduce noise [10][11].
However, the design size that a gridless router can handle is
usually limited, due to the high complexity of the routing
problem.

Since most global routing algorithms run directly on a
2-D or 2.5-D array of routing tiles, such flat approaches
may not scale well to large designs. In [12], a 3-level
routing scheme with an additional wire-planning phase
between the performance-driven global routing and the
detailed routing was proposed. The additional planning
phase improved both the completion rate and the runtime.

Hierarchical approaches with multiple levels of
hierarchy have also been used to handle large routing
problems. The first hierarchical method [13] was proposed
for channel routing by Burstein. Heisterman and Lengauer
proposed a hierarchical integer programming-based
algorithm for global routing [14]. Wang and Kuh proposed
a hierarchical (α, β)* algorithm [15] for the MCM global
routing. The problems with the hierarchical approaches are:
(1) the higher level solutions will constrain the lower level
solutions, and (2) the lack of detailed information at the
higher levels makes it difficult to make good/well-informed
decisions at the higher levels. Therefore, when an unwise
decision is made at some point, it would be very costly
(through rip up and reroute) to revise it later at a finer level.

The first multilevel routing framework was proposed in
[19], inspired by the recent successes of the multilevel
technique in VLSI physical designs, including multilevel
circuit partitioning [16][17] and multilevel placement [18].
The experimental results showed that this multilevel router,
named MRS in this paper, is 1.5× to 15× faster than the 3-
level routing system [12] with a 6.7% average completion
rate improvement.

In this paper, we present an enhanced multilevel router,
named MARS (Multilevel Advanced Routing System),
which incorporates several new techniques to improve the
quality of the multilevel routing algorithm in [19],
including resource reservation, a graph-based Steiner tree
heuristic and a history-based multi-iteration scheme.

The rest of the paper is organized as follows. In Section
2, we review the MRS router in [19] and discuss its

0-7803-7607-2/02/$17.00 ©2002 IEEE

limitations. In Section 3, we describe the MARS router with
new techniques used in different multilevel planning
phases. Section 4 presents comprehensive experimental
evaluations of the individual algorithms as well as the
overall performance of the MARS router. In Section 5, we
conclude our paper with some discussion about the possible
future work in this direction.

2. Review of the MRS router
The MRS router [19] is composed of a recursive

coarsening and a recursive refinement process, and features
a “V-shaped” work flow, as shown in Figure 1, which is the
typical multilevel optimization scheme. The “downward
pass” of recursive coarsening builds up the representations
of routing regions at different levels, while the “upward
pass” of iterative refinement allows a gradual convergence
to a globally near-optimal solution.

Before the coarsening process starts, the routing region
is divided into an array of tiles of uniform height and width.
A 3-D routing graph G0 is built on top of these tiles, and the
routing resource on each edge of the routing graph is
calculated. All layout objects such as obstacles, pins and
pre-routed wires are counted in the calculation.
•Initial fine routing tile generation •Detailed routing

G1

•Tile coarsening

G0

•Route refinement

•Initial routing

Gk

Figure 1 Improved Multilevel Routing Framework

The same resource estimation model as in [12] is used
in the MRS router. Three kinds of edge capacities are
computed, including the wiring capacity, the interlayer
capacity and the through capacity.

The edge capacity C at the left boundary B of the tile in
Figure 2 is computed as

∑
=

=
4

1

/*
i

ii DDWC (1)

where D is the depth of the tile, and the widths and heights
of each empty rectangle are denoted as Di and Wi. To
calculate Di and Wi, we maintain a contour list of B, which
is defined as a sorted list of the boundaries of all the
rectangular obstacles that can be seen from B. In Figure 2,
the contour list of B is {C1, C2, C3, C4}.

The interlayer capacity, which corresponds to the
resource that is used by vias, is calculated by the sum of the
areas of all empty spaces in the tile. The through capacity,
which corresponds to the paths that go straight through a
routing tile, is the sum of the boundary capacity

contributions of those empty rectangles that span the whole
tile. In Figure 2, the through capacity Cth = W2+W4 .

All three kinds of capacities contribute to the path costs.
For the example in Figure 3, the total path cost Cpath =
c1,right + c2,left + c2,right + c2,through + c3,left + c3,up + c4,down +
c4,right + c5,left, where c1,right, c2,left, c2,right, c3,left, c4,right and c5,left
are the costs related to the wiring capacities of tiles 1, 2, 3,
4 and 5, c2,through is the cost corresponds to the through
capacity of tile 2, and c3,up, c4,down are the via costs related
with the interlayer capacities.

Given the routing graph G0 at the finest level, the
coarsening process generates a series of reduced graphs Gi
consecutively, each representing a coarsened level i routing
problem Pi with a different resolution.

MRS starts the routing process from the coarsest level k.
The corresponding coarsest level routing graph Gk has the
smallest number of nodes (usually less than 30×30×
number_of_routing_layer) and the fewest visible nets. A
multi-commodity, flow-based routing algorithm, as the one
in [8], is used during the initial routing at level k to avoid
the net ordering problem.

W1

W2

W3

D1

D2

D3

D

C1

C2

C3

B

C4W4 D4

Figure 2 The Boundary Capacity Calculation

1 2 3

4 5

Figure 3 Path Cost Example

With the initial routing result at level k, the refinement
process proceeds level-to-level toward the finest level 0. At
each move from a coarser to a finer level, a new sub-routing
problem needs to be solved with the guidance from the
previous solution. There are two classes of nets to be dealt
with at each refinement level. One class is the local nets
that just appear at the current level, and the other class is
the global nets that have already been planned. Global nets
are usually longer than local nets, but there are exceptions
due to the dividing line positions, which will be discussed
in 3.1. The planned paths at the previous coarser level are
projected to the finer routing graph, forming a preferred
region for each corresponding global net at the current
level. There would be an additional penalty assigned to the
paths that extend out of the preferred region. For local nets,
it would be the first time that they are in the routing
process, so they have to be routed from sketch. An A*
point-to-point maze-searching algorithm is used in the
refinement process at each level. Finally, the implicit
connection graph-based gridless routing algorithm in [23] is
applied to finalize all nets, each net routed within the
corridor of the planning result.

However, the MRS router has several limitations, which
prohibit the multilevel routing framework from further
improving the routing quality. First, the coarsening process
of the MRS is too primitive. When moving from a finer
level i to a coarser level i+1, the coarsening process simply
adds up the capacities of the small tiles and takes the sums
as the initial capacities for the edges of Gi+1. The problem
with this approach is that the resulting routing graph Gi
does not consider the routing capacity taken by the nets
local to level i. Therefore, during the refinement process,
the router would have no idea about the nets local to the
level, and may plan many nets in some area which is
already congested by many local nets, as shown in Figure
5(a). This problem is more obvious in standard cell circuit
designs, since there are more short local nets, as shown in
Table 2.

Second, a simple geometric-based minimum spanning
tree, which considers only the Manhattan distance but no
congestion, is used to decompose the multipin nets in MRS.
In modern IC designs, there may be IP blocks or macro
cells, which obstruct the routing region with very large
obstacles. It is important that the global routing engine
would be aware of the large obstacles as well as the
congested areas. The congestion-driven planning would
require a graph-based tree structure, which is helpful in
optimizing both the congestion and the total wire length.

Finally, in MRS, the refinement is processed one net at
a time in a fixed order only once at each level. This scheme
works well when nets are evenly distributed on each level.
However, the distribution of the nets may not always be
smooth. In some designs, a huge amount of local nets
would suddenly appear in a certain level, making the
refinement problem at that level particularly difficult. Also,
all nets are routed one-by-one in each level, adversely
affecting the net-ordering problem. Furthermore, once an
inferior solution is obtained at a coarser level, more
refinement effort is needed to correct it at finer levels.
Limiting to one round of refinement may not be enough to
guarantee satisfactory results.

3. Enhancement Techniques in MARS
The overall multilevel routing scheme of MARS is

based on that of the MRS router. However, we have
developed several novel techniques to overcome the
limitations of MRS. (1) For the coarsening process, we
develop a resource reservation technique, and also adopt a
more accurate resource model. (2) We develop a way of
constructing the congestion-driven Steiner tree structure
during the initial routing and the refinement stages to
replace the Manhattan-distance based MST. (3) For the
uncoarsening process, we adopt a history-based multi-
iteration refinement scheme.

3.1 Resource Reservation
During the coarsening process, every move from a finer

level i to a coarser level i+1 requires merging a certain
number (2×2 in our implementation) of adjacent small tiles,
which are called the component tiles, into a large one. In
MRS, the resource estimation of the merged tile is obtained

by the simple summation of those of the component tiles. In
order to improve the accuracy of the resource estimation,
we developed a more sophisticated estimation technique. A
new contour list for the merged tile is obtained by merging
the contour list of each component tile. The edge capacities
of the new tiles are computed by (1), according to the new
contour list. Figure 4 illustrates the merging process. T1, T2,
T3 and T4, whose left boundaries are B1, B2, B3 and B4
respectively, are the four tiles to be merged. The contour
lists of B1, B2, B3 and B4 are retrieved and merged into the
contour list of the new edge B. Since the contour lists are
sorted, the merging process can be accomplished in O(n)
time, where n is the number of line segments in the new
contour list. With the contour list of B, it is straightforward
to derive the empty rectangles abutting B and then calculate
the wiring capacity at B.

However, the estimation computed by the above
procedure still cannot precisely model the available routing
capacities at the coarser granularity, as when the planning
engine moves to a coarser level, a subset of the nets in level
i might become completely local to one tile, and thus
“invisible” at level i+1 and higher. In both hierarchical
methods and MRS, no effort was made to model these nets,
relying on the assumption that they are relatively short and
negligible. However, if the number of such local nets is
large, a solution to the coarse level problem may not be
aware of locally congested areas, which leads to poor
planning result.

B4

Contour Lists

B

B1

B2

B3

T1 T2

T3 T4

B

W1

W2

W3

W4
W5

Merged Contour List

Figure 4 Merging of Contour List

Figure 5(a) shows an example of the effect of the local
nets. Net 1 and net 2 are located within a level 1 tile, net 3
is located within a level 2 tile and net 4 spans through
several level 2 tiles. Each net is planned without any
consideration for the local nets. The paths for net 3 and net
4 will be planned as shown in Figure 5. It is obvious that
both path 3 and path 4 may be changed in the finer levels to
minimize local congestion. This not only places heavier
burden on the refinement procedure, but also wastes the
effort spent on the coarser level.

In order to cope with the above problem, we further
predict the portion of the resource that would be used by
nets that are local to each level, and then reserve the
corresponding amount for those nets explicitly in the
routing graph. This process is called resource reservation.

More specifically, suppose the coarsening process goes
through levels 0, 1, … k, with level 0 being the finest level.
Let ci,j denote the initial capacity of edge ei,j in routing
graph Gi, and the capacity vector Ci = [ci1 ci2 … cim]
represent all routing capacities at level i. Let Tn,i = {the set
of tiles in which the pins of net n are located on level i},
which is called the spanning tile set of net n on level i. The

level of net n, level(n), is defined as the level above which
all pins of n are within the boundary of one tile. level(n) can
also be calculated by

level(n) =

{ }

=>

=−

>

+ otherwise 1 and 1 max

0 if 1

1 if

1,,

0

,

inin

n,

kn

TTi

T

Tk
 (2)

Let Li = {n | level(n) = i}, Li is called the local net set on
level i. Let Mi = {n | level(n) > i}, Mi is called the global net
set on level i. To better estimate the local nets, we use the
maze routing engine to find a path for each net in Li at level
i. Then we deduct the routing capacity taken by these local
nets in resource reservation.

B’

1
2

3

4

A

A’

B O

D’ D

C’

C

O’

A’

B

D
2

3

4

1
A

B’
O

D’

C

C’

O’

 (a) Effect of Local Nets
(without resource
reservation)

 (b) After Resource
Reservation

Figure 5 The Effect of Resource Reservation

Figure 6 shows an example of the reservation
calculation at edge CD, AC and BD of a level i+1 tile. s
and t are pins on a horizontal layer. An L-shaped path
connects s and t. The capacities on CD, AC and BD are first
calculated by (1). After the horizontal wire is added, one
segment in the contour list of CD will be pushed right by h.
Therefore, the reserved capacity hhwr /* 1= , where w is
the wire width. Similarly, the vertical resource reservations
on AC and BD are vvw /* 1

 and vvw /* 2
, a respectively.

However, since pins are treated as obstacles in contour list
generation, the capacity reservation on AB remains zero. A
vector Ri+1 = [ri+1,1 ri+1,2 …ri+1,j] can be obtained by
repeating this process, each member corresponding to the
reservation on ei+1,j in Gi+1. The routing capacity of edges in
Gi+1 is then updated as

111 +++ −=′ iii RCC = [ci+1,1-ri+1,1 ci+1,2 – ri+1,2 … ci+1,j – ri+1,j]

A h

B

h1
s

t

C

D

v
v2 v1

Figure 6 The Reservation Calculation

Figure 5(b) shows the effect of the resource reservation.
Net 1 and net 2 are routed at level 0 with reservation made
for them on CO’ and AD’. On level 1, net 3 will take a
route different from that of Figure 5(a), since there is
resource reservation for local nets on level 0. For the same
reason, net 4 is routed on level 2 with a different route.

Since the spanning tiles of each net are at most two tiles
away from one another, the maze routing engine will not
explore many nodes before it reaches the destination, so the
reservation procedure is very fast.

One possible drawback would be that the local nets are
unnecessarily treated with higher priorities. However, the
routes taken during this phase are usually short and straight,
so the reservation amounts are probably only the lower
bounds of the resources actually needed by the nets.
Furthermore, the reserved routes are not taken as fixed.
They can be changed when necessary during the refinement
process.

3.2 Congestion-driven Steiner Tree
Construction

Instead of using the Manhattan distance-based minimum
spanning tree algorithm in MRS, MARS uses a congestion-
driven graph based Steiner tree structure to decompose the
multipin nets. The Steiner tree heuristic is enabled by a
point-to-path maze-searching algorithm both in the initial
routing and in the refinement phase. The Steiner tree-based
net decomposition results in better wirelength and
routability than the MST based decomposition.

Usually, the rectilinear Steiner trees (RST) are used in
the decomposition of the multipin nets in the global routing
phase. Since the problem of minimum RST has been proved
to be NP-hard, many heuristic algorithms (such as [24][25])
were proposed to find the approximate solutions. Most of
the Steiner tree approximation algorithms are geometric
distance based. However, it is important that the global
routing engine be aware of the large obstacles as well as the
congested areas. Congestion-driven planning requires
computing Steiner tree on a routing graph, which encodes
the routing capacity and length information, so that both the
congestion and wirelength are optimized. This is much
more difficult than computing a simple Manhattan distance-
based tree, as the commonly used graph-based Steiner
heuristic requires computing all-pair shortest paths which
has the time complexity of O(n3).

In [20][21], Steiner tree approximation algorithms that
consider congestion were proposed, yet the topologies
generated are limited to the initial geometric distance-based
spanning tree structure and may not work well for circuits
with large obstacles. A graph-based A-tree algorithm is
proposed in [22], which could avoid large obstacles. The
runtime is also reasonable, since all-pair shortest paths are
not necessary for the construction of an A-tree. However,
an A-tree is limited to optimize the paths from the source to
all targets and the total wire length of an A-tree depends on
the position of the source. Therefore, the graph-based A-
tree topology may not be suitable for the decomposition of
the non-critical nets.

In our routing system, the congestion-driven Steiner tree
is constructed during the initial routing and refined in an
incremental way starting from level(n) to level 0. The maze
search engine is used to find the congestion-driven Steiner
tree edges.

The tree for net n is initially constructed at level(n),
where n first spans more than one tile. Let Pn, i denote the

set of nodes in Gi corresponding to the tiles that the pins of
n are located at level i. The first step is to find a geometric-
based MST TMST for Pn, i in Gi. Then the edges of TMST are
sorted by their geometric distances. For each of the TMST
edge, we use a maze search algorithm to find a shortest path
on the routing graph. Instead of the point-to-point routing,
the search process would stop whenever any existing paths
connecting to the target point are visited and the hit point
becomes a Steiner point. If there are multiple minimum
paths, we choose the one that is closest to the center of all
pins of the net. The Steiner tree is composed of all paths of
the edges of TMST .

After initial tree construction at level(n), we further
continue the construction by connecting the newly appeared
nodes of the net to the tree through the modified point-to-
path maze searching algorithm at each refinement level.

In the spanning tree decomposition method, the exact
locations of the two end points of each edge are fixed.
Therefore, the decomposition of the multi-pin nets into
several two-pin nets is straightforward. The resulting two-
pin nets, which correspond to the MST edges, are
independent of each other. However, in our Steiner tree
decomposition method, the Steiner point locations are
floating, which means we have edges (two-pin nets) whose
one end is not a pin, but another edge (two-pin net).
Therefore, that edge is constrained by its target edge of the
same tree. To solve this problem, within each multi-pin net,
we keep an ordering of all Steiner tree edges (two-pin nets)
based on the routing order of their first route. During the
refinement, the newly appeared nodes are connected first,
and the new edges are inserted to the head of the ordering.
Then the global nets are refined according to the ordering
we get from the previous levels. Using this method, we can
gradually construct a Steiner tree without a priori fixing the
Steiner points.

Figure 7 shows an example of the formation of a Steiner
tree from level 2 to level 0. The label beside each edge
shows the ordering of that edge. At level 2, there are three
pins, a, b and c, the Steiner tree is ab(1), cb(2) (the numbers
in the parentheses are the orderings of the edges). At level
1, two new pins, d and e appear. We first connect the two
new pins to the tree, resulting ae(1) and db(2), then we
refine the global nets, be(3), cT’(4), where T’ is the Steiner
point. At level 0, no new pins appear, and the nets are
refined by the ordering, ae(1), db(2), eT’’(3), cT’(4), where
T’’ is the new Steiner point is added in the tree.

(2)

(1)

(3)

level 2 level 1 level 0

T’
T’’

T’
(1)

(2) (4)

(1)

(2)

(3)
(4)

a

b c

a

b c

d

e

Figure 7 The Gradual Construction of a Steiner Tree

3.3 Multi-iteration Refinement
MARS uses a history-based iterative refinement similar

to the one in [6] at each level of refinement. The main idea
of the history-based method is to iteratively update the edge

routing cost with the consideration of historical congestion
information and re-route all nets based on the new edge cost
functions. The cost of edge e during the ith iteration is
calculated by:

),(*),(*),(iehistoryiecongestionieCost βα += (3)
)1,(*)1,(),(−+−= iecongestioniehistoryiehistory γ (4)

where congestion(e,i) is a three-tier slope function of the
congestion on e, history(e,i) is the history cost, indicating
how congested that edge was during the previous iterations,
and α, β, γ are scaling parameters.

The congestions of the routing edges are updated every
time a path of a net is routed. Since routing tile at coarser
levels can be quite large compared to a normal global
routing tile size, special attention needs to be paid to
resource updating. The common way is to map all pins to
the center of a routing tile, and deduct the same routing
resource for all paths passing the same routing graph edge.
When the routing tile is large as the case in the top levels in
multilevel routing approach, this kind of rough abstraction
may introduce too much error. Let us look at the example in
Figure 8. The routing region is divided into 16×16 tiles at
level 0. Suppose there are 4 levels for the design, so at the
coarsest level 3, the routing region is divided into 2×2 tiles.
Though N1 is short, it may still be visible at level (level 3)
because of the diving line position. When updating the
resource after routing N1 at the initial routing phase, 1/16 of
the total resource will be subtracted from both e1 and e2 by
the rough method according to our resource model. But the
actual resource deduction, by considering the real pin
locations, would only be 1/64 of the total edge capacity. In
MARS, the precise real pin locations are used in resource
updating to avoid such inaccuracy.

After each iteration, the history cost of each edge is
increased according to (4). Then the congestions of all
edges are scanned to determine whether another iteration is
necessary. If so, all edge usage are reset to zero and the
refinement process at the same level is restarted.

Multiple iterations at every level may be time
consuming when the routing graph is large. We try to
control the planning runtime by the level number. We also
make the planning engine iterate more rounds at the coarser
levels than at the finer levels to improve the quality and the
run-time.

N1

 8 9

 1 16

e2 e1

Figure 8 The Accurate Resource Deduction

3.4 Other Enhancements
As in MRS, MARS uses the implicit connection graph-

based gridless routing algorithm in [23] to finalize and
evaluate the multilevel planning result. However, we made
two changes to the detailed routing algorithm to better

cooperate with the current multi-level routing scheme. First,
we added a local rip-up and reroute routine to handle the
failed nets. This local modification can alleviate part of the
local net ordering problem, so that the final routing results
will better correlate with the planning quality. Second, to
support the Steiner tree construction, we modified the
detailed router from a pin-to-pin router to a pin-to-pin or
pin-to-path router. This method provides a simple yet
effective method to find the best location of the Steiner
points, at slight increase of runtime due to additional target-
hit check after each expansion.

4. Experimental Results
We implemented our routing system, MARS, on a Sun

Blade 750 using C++. This system has been tested on a
wide range of test cases. Table 1 lists the detailed
information of our testing examples. Among them, s5378 to
s38584, and struct are standard cell circuits, Mcc1, Mcc2
and Raytheon are MCM circuits. The column labeled
“#Div.” shows the finest tiles number at the finest level of
each example. Our comparisons of different techniques are
mainly based on the number of nets that fail to complete
after the detail routing phase.

Table 2 shows the net distribution on each planning
level. For standard cell circuits, there is an average of 35%
nets residing in the finest level, or even lower (i.e. can not
be seen at the finest level). Starting from the finest level,
the number of global nets decreases at a steady pace when
going from the finer to the coarser levels. The distribution
of nets on each level is quite smooth. However, for the
MCM test cases, most of the nets are located on the coarsest
level. Having a clear picture of the net distribution on each
level is helpful in understanding the effects of the
techniques discussed in this paper.

4.1 Impact of Resource Reservation
We first evaluate our resource reservation algorithm

during the coarsening phase. Table 3 compares the results
that are generated with and without resource reservation. It
shows that the resource reservation technique is effective
for the standard cell cases. It helps to decrease the number
of failed nets for all standard cell cases with less than 20%
increase of runtime. This is because that standard cell cases
have a rather smooth distribution of connections, and that
resource reservation helps to get a more global picture of
the whole routing problem at the coarser levels. However,
when applied to MCM cases, resource reservation does not
show improvement. The reason is that the number of local
nets on finer levels is very small, so making reservation for
them does not help much.

4.2 Impact of the Use of Congestion-driven
Steiner Tree

We then compare the effect of different tree structures
in multipin net decomposition. We implemented three
different types of tree structures. All three methods start
from a simple Manhattan distance-based MST. The
geometric based-MST (S-MST) method only uses the
Manhattan distance-based minimum spanning tree

topologies as the candidates for the coarsest level flow-
based algorithm. The graph-based MST (G-MST) version
then uses a maze-searching algorithm to search for paths at
top level to minimize congestion. The graph-based Steiner
tree (G-ST) is generated by the method in Section 3.2.

Table 4 shows the results of the three different tree
decompositions. In most cases, the use of a graph-based
tree leads to better completion rate. Also, G-ST further
reduces the wirelength and improves the completion rate.
The G-MST and G-ST algorithms are more complicated,
and the tradeoff for the improvement might be runtime.
However, in our experiments, G-MST and G-ST are
actually faster than S-MST as shown in Table 4. The reason
is that the uses of G-MST and G-ST result to better
planning results, so the detailed routing engine spends less
time to find the paths for all nets.

4.3 Impact of the Use of Multi-iteration
We try MARS with and without multi-iterations and

compare the results in Table 5. For standard cell circuits,
the improvement due to multi-iterations is less than that by
the resource reservation method. However, for the MCM
cases, where the resource reservation method is not so
effective, multi-iteration can still reduce the number of
failed nets after detail routing. This is because multiple
iterations on the same planning level would reduce the
influence that routing order has on solution quality. Again,
since we are running more times of maze searching during
each refinement level, the runtime would grow with the size
of chip area.

4.4 Overall Improvement
We integrate all the above enhancement techniques

discussed in Section 3 into the MARS router. The results
are compared with that of MRS [19]. We run the test cases
both with and without ripup and reroute at the detailed
routing phase. As we have discussed before, the ripup and
reroute procedure can alleviate the local net ordering
problem during the detailed routing phase, and make the
final results more related with the planning quality.
However, since we use the Steiner tree structure in MARS,
in order to make the problem easier, we fixed some pre-
routed nets that contain a Steiner point of other nets. This
approach to some extent restricts the searching range of the
ripup and reroute process.

Table 6 shows the results without ripup and reroute, and
Table 7 shows the results with ripup and reroute. The
MARS router can decrease the failed nets by 2× to 18× with
roughly 50% increase of runtime. Our techniques are also
effective in reducing wirelength and via number. It is
understandable that the overall improvement can not be as
much as the sum of the individual technique improvements,
since the different techniques would have similar effects.

5. Conclusions
We proposed several new techniques to improve the

multilevel routing system, and developed the enhanced
router, MARS. The resource reservation and exact resource
calculation allow the coarsening process to generate a set of

smaller sub routing problems that accurately reflect the
original routing problem. We also developed a heuristic to
gradually generate a graph-based Steiner tree, which can
help to reduce both the wirelength and the congestion. For
the refinement process, we introduced a history-based
multi-iteration algorithm to further optimize the final
results. These techniques make the multilevel routing
system more complete and powerful.

There are several research directions for further
enhancements. One possible improvement is a more clever
and systematic way of routing region division and routing
graph generation. Both the routing tile size and the number
of tiles to be merged during the coarsening process can vary
according to the actual circuit design. We tried some ideas
of non-uniform merging during the coarsening process.
Though we have not achieved consistently better results
yet, we still believe that non-uniform coarsening may be a
good way to reasonably distribute the computing resource
to different regions of the layout according to the actual
needs. Also, since the multilevel framework has been
successfully applied to partitioning, placement, and routing,
it is interesting to investigate if there exists a unified way of
integrating these algorithms into a single powerful
multilevel optimization flow for VLSI physical design.

Reference
[1] S. Akers, “A modification of Lee’s path connection
algorithm,” IEEE Trans. on Computers, vol. EC-16, pp. 97-98,
Feb.1967.
[2] J. Soukup, “Fast maze router,” Proc. 15th Design Automation
Conference, pp. 100-102, 1978
[3] K. Mikami and K. Tabuchi, “A computer program for optimal
routing of printed circuit connectors,” IFIPs Proc, vol. H-47,
pp.1475-1478, 1968.
[4] D. Hightower, “A solution to line routing problems on the
continuous plane,” Proc. IEEE 6th Design Automation workshop,
pp. 1-24, 1969.
[5] R. Nair., “A simple yet effective technique for global wiring, ”
IEEE Trans. on Computer-Aided Design, CAD-6(2), 1987.
[6] L. McMurchie and C.Ebeling, “Pathfinder: a negotiation-based
performance-driven router for FPGAs”, Proc. of 3rd International
ACM/SIGDA Symposium on Field-Programmable Gate Arrays,
Feb. 1995, pp.111-117.
[7] R. Carden, J. Li, and C.-K.Cheng, “A global router with a
theoretical bound on the optimal solution,” IEEE Trans.
Computer-Aided Design, vol.15, pp. 208-216, Feb.1996
[8] C.Albrecht, “Provably good global routing by a new
approximation algorithm for multicommodity flow,” Proc.
International Symposium on Physical Design, pp. 19-25, Mar.
2000.
[9] J. Cong and P. Madden, “Performance driven multi-layer
general area routing for PCB/MCM designs,” Proc. 35th Design
Automation Conference, pp. 356-361, Jun.1998
[10] J. Cong, L. He, C.-K. Koh, and P. Madden, “Performance
optimization of VLSI interconnect layout,” Integration, the VLSI
journal, vol.21, no. 1-2, pp. 1-94, 1996
[11] C. Chang and J. Cong, “Pseudo pin assignment with crosstalk
noise control,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol.20, pp. 598-611, Mar. 2001.
[12] J. Cong, J. Fang, K. Khoo, “DUNE: A multi-layer gridless
routing system with wire planning,” Proc. International
Symposium on Physical Design, pp. 12-18, Apr. 2000

[13] M. Burstein and R. Pelavin, “Hierarchical channel router,”
Proc. of 20th Design Automation Conference, pages 519-597,
1983.
[14] J. Heisterman and T. Lengauer, “The efficient solution of
integer programs for hierarchical global routing,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems,
vol.10,pp. 748-753, Jun.1991.
[15] D. wang and E. Kuh, “A new timing driven multiplayer
MCM/IC routing algorithm,” Proc. IEEE Multi-Chip module
Conference, pp. 89-94, Feb. 1997.
[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: Applications in VLSI
domain,” IEEE Trans. on Very large Scale Integration Systems,
vol. 7, pp.69-79, Mar. 1999
[17] J. Cong, S. Lim, and C. Wu, “Performance driven multilevel
and multiway partitioning with retiming,” Proc. 37th Design
Automation Conference, pp. 274-279, Jun.2000.
[18] T. Chan, J. Cong, T. Kong, and J. Shinnerl, “Multilevel
optimization for large-scale circuit placement,” Proc. IEEE
International Conference on Computer Aided Design, pp. 171-
176, Nov.2000.
[19] J. Cong, J. Fang and Y. Zhang, “Multilevel Approach to Full-
Chip Gridless Routing,” Proc. IEEE International Conference on
Computer Aided Design, San Jose, California, pp. 396-403, Nov.
2001
[20] C. Chiang, M. Sarrafzadeh, and C.K, Wong, “A powerful
global router: Based on Steiner min-max trees,” Proc. IEEE
International Conference on Computer-Aided Design, pp. 2-5,
Nov. 1989.
[21] C. Chiang, M. Sarrafzadeh, and C.K., Wong, “A weighted-
Steiner-tree-based global router,” Manuscript, 1992.
[22]. J. Cong, A. B. Kahng and K.-S. Leung, "Efficient algorithms
for the minimum shortest path Steiner arborescence problem with
applications to VLSI physical design," IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol.17, no. 1,
pp. 24-39, Jan. 1999
[23] J. Cong, J. Fang, K. Khoo, “An implicit connection graph
maze routing algorithm for ECO routing,” Proc. International
Conference on Computer Aided Design, pp. 163-167, Nov. 1999.
[24].M. Borah, R. M. Owens, M. J., Irwin, “An edge-based
heuristic for Steiner routing,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol.13, (no.12), Dec.
1994. p.1563-8
[25] J. Griffith, G. Robins, J. S. Salowe, Tongtong Zhang,
“Closing the gap: near-optimal Steiner trees in polynomial time,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol.13, (no.11), Nov. 1994. p.1351-65

Circuits #Nets
#2 pin
nets

#
Lay-
ers

#Lev-
els

#Div.

S5378 1694 3124 3 3 61x34
S9234 1486 2774 3 3 57x32
S13207 3781 6995 3 4 92x51
S15850 4472 8321 3 4 98x55
S38417 11309 21035 3 3 159x86
S38584 14753 28177 3 4 180x94
Struct 1920 3551 3 5 273x273

Primary1 904 2037 3 3 53x35
Primary2 3029 8197 3 6 73x46

Mcc1 802 1694 4 2 25x22
Mcc2 7118 7541 4 3 43x43

Raytheon 249 430 4 4 28x16

Table 1 Test Circuit

Circuits
<level

0
Level

0
Level

1
Level

2
Level

3
Level

4
S5378 593 374 648 1509 0 0
S9234 624 362 591 1197 0 0
S13207 1522 880 1445 1187 1961 0
S15850 1814 1086 1835 1434 2152 0
S38417 4732 2940 4220 9143 0 0
S38584 6103 3821 6362 4833 7058 0
struct 37 196 364 494 671 1752
Primary1 1 466 465 1105 0 0
Primary2 15 648 163 7371 0 0
Mcc1 97 221 1376 0 0 0
Mcc2 0 663 163 7371 0 0

Raytheon 12 44 113 53 108 108

Table 2 Net Distributions at Each Level

With no RR With RR
Circuits #Failed

nets
Runtime
(s)

#Faied
nets

Runtime
(s)

S9234 38 18.4 23 19.8

S13207 131 70.3 89 79.8

S15850 144 98.8 92 116.0
S38417 371 349.3 312 401.8
S38584 490 1012.9 331 1090.6

Struct 26 321.5 12 297.6
Primary1 16 19.9 16 20.4
Primary2 23 154.3 23 152.7
Mcc1 55 140.0 68 212.3
Mcc2 148 2828.0 164 2738

Raytheon 29 18.4 17 17.5
Avg. 1.36 1 1 1.09

Table 3 Impact of Resource Reservation

S-MST G-MST G-ST

Circuits
#F.
net

Run
time
(s)

#F.
net

Runtime
(s)

#F.
net

Run-
time
(s)

S5378 108 23.7 81 20.72 65 24.8
S9234 81 16.4 53 15.44 38 18.4
S13207 334 58.5 143 55.36 131 70.3
S15850 301 89.6 163 80.42 144 98.8
S38417 879 374.2 467 303.16 371 349.3
S38584 1294 583.0 573 946.12 490 1012.9
Struct 29 148.5 31 204.6 26 321.5
Primary1 1 137 20 20.7 16 19.9
Primary2 4 541 60 163 23 154.3
Mcc1 43 412.9 65 109.7 55 140.0
Mcc2 982 13562 197 2680.4 148 2828.0

Raytheon 21 16.1 35 17.3 29 18.4
Avg. 1.91 1 1.34 0.79 1 0.95

Table 4 Impact of Different Tree Structures

No iteration
With multi-
iterationCircuits

#Failed
Nets

Runtime
(s)

#Failed
Nets

Runtime
(s)

S5378 65 24.8 37 30.9
S9234 38 18.4 32 21.6
S13207 131 70.3 93 73.3
S15850 144 98.8 71 138.4
S38417 371 349.3 256 481.1
S38584 490 1012.9 341 1218.7
Struct 26 321.5 26 576.8
Primary1 16 19.9 16 22.2
Primary2 23 154.3 23 165.4

Mcc1 55 140.0 17 165.0
Mcc2 148 2828.0 92 3611.5

Raytheon 29 18.4 15 15.8
Avg. 1.56 1 1 1.23

Table 5 Impact of Multi-iterations in each Refinement

MRS MARS
Circuits

#Failed
Nets

Runtime
(s)

Wire
length

#Vias
#Failed
Nets

Runtime
(s)

Wire
length

#Vias

S5378 108 23.7 8.8e7 7116 44 34.3 7.9e7 7112
S9234 81 16.4 6.7e7 6012 13 24.4 5.9e7 6133
S13207 334 58.5 2.5e8 15160 66 115.4 1.9e8 15691
S15850 301 89.6 2.9e8 18206 70 152.1 2.3e8 18644
S38417 879 374.2 7.7e8 44614 274 567.6 5.1e8 45107
S38584 1294 583.0 1.2e9 59916 338 1327.4 6.9e8 56437
Struct 29 148.5 9.4e8 9540 12 525.4 8.5e8 8355
Primary1 1 136.9 1.0e9 6394 16 22.6 1.0e9 5447
Primary2 4 541.1 4.2e9 26900 23 170.8 4.2e9 23071
Mcc1 43 412.9 3.0e10 5127 27 153.7 2.7e10 4848
Mcc2 982 13562.3 5.2e11 26579 108 3801.9 4.0e11 34191

Raytheon 21 16.1 2.4e8 954 18 21.1 2.1e8 1109
Avg. 3.3 1.67 1.23 1.0 1 1 1 1

Table 6 The Results Compared with MRS (no ripup and reroute)

MRS MARS
Circuits

#Failed
Nets

Runtime
(s)

Wire
length

#Vias
#Failed
Nets

Runtime
(s)

Wire
length

#Vias

S5378 21 31.7 7.9e7 7408 8 34.3 8.0e7 7197
S9234 14 20.4 5.9e7 6238 3 24.4 5.9e7 6155
S13207 80 85.9 2.0e8 15958 12 115.4 1.9e8 15832
S15850 89 171.2 2.4e8 18960 10 154.6 2.3e8 18778
S38417 177 459.7 5.5e8 46614 42 567.6 5.0e8 45620
S38584 304 791.9 8.1e8 62862 46 1308.2 7.0e8 63205
Struct 4 154.7 8.8e8 9616 2 529.0 8.5e8 8353
Primary1 1 135.8 1.0e9 6394 1 22.6 1.0e9 5481
Primary2 0 533.5 4.2e9 26910 2 173.5 4.2e9 23037
Mcc1 17 521.3 3.0e10 5147 17 182.5 2.7e10 4874
Mcc2 826 28833 5.2e11 27444 46 4367.4 4.1e11 34463

Raytheon 16 28.0 2.3e8 976 13 28.3 2.2e08 1128
Avg. 4.74 2.07 1.07 1.02 1 1 1 1

Table 7 The Results Compared with MRS (with ripup and reroute)

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

