
AQUASUN : adaptive window query processing in CAD
applications for physical design and verification

Michiel De Wilde
∗

mdewilde@elis.rug.ac.be
Dirk Stroobandt

†

dstr@elis.rug.ac.be
Jan Van Campenhout

jvc@elis.rug.ac.be
Ghent University, ELIS Department

Sint-Pietersnieuwstraat 41
9000 Gent, Belgium

ABSTRACT
CAD applications for physical design and verification very
often require enumerating all layout objects whose bounding
box intersects an axis-aligned rectangular area. A number
of multidimensional access methods exist to process such
window queries. The performance of some important design
and verification algorithms heavily depends on the process-
ing speed of the used access method. For complex layouts,
these methods require huge amounts of resident memory to
attain this speed.

In this paper, we present a new access method called
aquasun, which brings a significant query processing perfor-
mance improvement over other adaptive methods—methods
which can cope with a continuously changing layout. These
methods generally descend from the database world and are
designed to perform the equivalent query in n-dimensional
space. Our method is specifically tailored to two dimen-
sions, exploiting 2D optimisations that significantly acceler-
ate window queries within oblong objects like PCB tracks.
Furthermore, aquasun makes use of an efficient compres-
sion technique which greatly cuts down on memory usage.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Graphics;
H.2.2 [Database Management]: Physical Design—Access
methods; E.1 [Data Structures]: Trees

General Terms
Algorithms, Performance

∗Research Assistant of the Fund for Scientific Research –
Flanders (Belgium)(F.W.O.)
†Post-doctoral Fellow of the Fund for Scientific Research –
Flanders (Belgium)(F.W.O.)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’02,April 18-19, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-462-2/02/0004 ...$5.00.

Keywords
Multidimensional access methods, Rectangle indexes

1. INTRODUCTION AND MOTIVATION
In a PCB or chip layout, a request to find all objects

that overlap a given axis-aligned rectangular area is called
a window query. CAD applications for physical design and
verification heavily use such queries. Amongst these are
the onscreen layout drawing procedures and some important
algorithms like automatic placement and design rule checks.

Fast processing of window queries is required for interac-
tive zooming to keep the application responsive to the user.
Furthermore, design rule check algorithms spend substan-
tial processing time issuing a large amount of queries with
small windows, typically as many as the number of objects
the layout contains. Therefore, it is of the utmost impor-
tance that the window query processing method be as fast
as possible.

In general, a window query processing method which op-
erates directly on a collection of arbitrarily shaped objects is
not feasible: iterating an intersection check over the entire
object collection would simply be too slow. Furthermore,
taking the detailed object shape into consideration is too
time-consuming; the use of a simpler shape like the bound-
ing box of the object is much faster. Only when a bounding
box (just called box hereafter) overlaps the window, further
inspection of the corresponding real boundary of the object
needs to conclusively confirm or deny window intersection.
This approach works fine in practice and is widely accepted
as the most feasible method of work.

To reduce the search scope, window query processing meth-
ods require a special data structure containing all boxes,
called a box index. The development of a box index and
the corresponding searching algorithm is not an easy task.
The plethora of existing linear searching methods is of no di-
rect use, as generally no total ordering of boxes exists which
preserves spatial proximity. Luckily, a number of methods
specially targeting window query processing have been de-
veloped: Gaede et. al. [5] and Ahn et. al. [1] present
some broad surveys. As some methods are suited to process
the equivalent of window queries in n dimensions, they are
commonly referred to as multidimensional access methods
(MAMs).

In methods used in older CAD applications, the box in-
dex had to be rebuilt from scratch after each layout change

root node

of
quadtree

(eliminated 1

sibling grid)

root node

of
qtis tree

(a) quadtree (b) qtis tree

Figure 1: Quadtree and QTIS tree examples

(when it was needed). However, some newer layout verification-
correction algorithms continuously issue layout changes dur-
ing operation, invalidating the original index. Hence, newer
adaptive methods must be able to adapt the box index to
layout changes.

Most current adaptive methods are designed to handle
an arbitrary number of dimensions. As a result of their
generality, they are suboptimal with respect to some typical
2D CAD features, such as searching in collections of oblong
objects like PCB tracks.

Our method, called aquasun,1 specifically optimises 2D
window query processing for use in (interactive) CAD ap-
plications (point and enclosement queries are optimised too,
but they are not handled in this paper). In addition, it uses
a simple but effective compression technique to cut down on
the resident memory requirements, a scarce resource which
is too greedily consumed by the existing indexing methods.

In the next section, starting from a generic 2D MAM sys-
tem, we extend the overall structure of its box index to that
of aquasun. In section 3, we discuss how a layout is rep-
resented in this structure. With this knowledge, an efficient
searching algorithm is developed in section 4. In section 5,
we deal with structural maintenance of the box index to as-
sure permanent optimal query processing performance. In
section 6, our contribution is related to prior work. Finally,
in section 7, real-life performance is examined.

2. DESIGNING THE SEARCH INDEX
The object box index for any 2D MAM is a data structure

consisting of nodes, each associated with a set of nearby
boxes. This data structure is set up in such a way that as
few as possible sets need inspection during a window query.
For instance, if a window happens to enclose a point common
to all boxes associated with a node, we know that each box
in the set will overlap the window. On the other hand, if the
global bounding box of the entire set happens to be disjoint

1
adaptive quadtree skipping underpopulated levels

W

N

(a) no oblong children yet

W

A

B

C

D

(b) oblong children of N

dark nodes require inspection

light nodes are contained by W

white nodes are disjoint of W

Figure 2: Oblong nodes are beneficial

of the window, none of the boxes will overlap it.
In both cases, the node can be handled as a whole with

respect to the query, which speeds up processing enormously.
The slow case is then limited to situations similar to the
one where the set of object boxes associated with a node is
partially disjoint of the window. In this case, all boxes have
to be individually inspected for window intersection, which
is a slow linear operation.

The technique of creating different nodes of nearby boxes
can be recursively applied to the set of boxes that a node
contains, by creating smaller nodes that are attached as chil-
dren to their parent. In this way, a tree structure is created.
All major non-hashing 2D MAMs operate this way; only
the precise way in which boxes associate with nodes and in
which the tree structure is managed differs.

2.1 Quadtrees
aquasun’s box index is most easily explained starting

from a generic structure for regular planar decomposition:
the quadtree [12] (figure 1(a)). A quadtree is a tree structure
in which each node represents a square in the plane. Each
internal node has four children, constructed by cutting the
node both horizontally and vertically in half.

When quadtrees are used as a box index in the most
straightforward way, boxes are associated with the smallest
enclosing node. This is called the tightest enclosure associa-
tion rule. Window queries can then be processed with a sim-
ple procedure: the tree is traversed in a top-down fashion,
at each node only descending to children that overlap with
the window. When the window fully encloses a given node,
all boxes associated with the node and its offspring can be
directly reported without further inspection. All boxes as-
sociated with nodes intersecting the window boundary have
to be individually inspected.

2.2 Reducing the tree height
A major disadvantage of the naive use of quadtrees is

their unnecessary large tree height. For example, suppose
that a large collection of boxes have dimensions some 100
times smaller than the bounding box of the entire layout.
Then, most boxes would be at depth 6 = blog2 100c in the
quadtree. As a result, processing a window query would
cause significant tree descending and ascending over the
mostly empty intermediate-depth nodes, an overhead that
we want to avoid.

(eliminated 1
square grid)

horizontal
children

vertical
children

root node

of
aquasun tree

Figure 3: Example of an AQUASUN tree

To overcome this, De Pauw’s [3] qtis
2 structure allows

to eliminate a node’s four children by directly attaching it
to its sixteen grandchildren. This locally decreases the tree
height by one (figure 1(b) shows an example). The few boxes
which may have been associated with the removed nodes are
re-associated with their common parent.

Since in this way multiple offspring levels can be elimi-
nated, in general any internal node contains a square grid
of 22n children, for any positive integer n.

2.3 Oblong nodes
Like current box indexes for adaptive MAMs, quadtrees

(including qtis) don’t cope well with very oblong objects.
Specifically, if many of them are packed together (e.g., the
tracks on a PCB layout) query performance decreases signif-
icantly. To illustrate this problem, figure 2(a) shows a set of
oblong boxes associated with some node N . This node will
be large, because of the large width of the objects involved,
and contains many boxes, because of their small height. A
window query W that only encloses the upper half of N has
to individually inspect the long list of all boxes.

If N would be able to give birth to four horizontally ob-
long child nodes, all boxes would be re-associated with these
children, as shown in figure 2(b). Re-issuing the same query
W , only the two boxes associated with node B, which inter-
sects the window’s edge, have to be individually inspected.
Both boxes associated with node A can be directly included
into the query result, since A is fully window-enclosed.

To structurally incorporate oblong nodes, we extend qtis

with optional oblong node subtrees, resulting in the aqua-

sun box index structure (figure 3). Here, a square node is
allowed to have an optional single-column grid of 2h horizon-
tal children and another optional single-row grid of 2v ver-
tical children, both covering the full area of the node. This
grid may possibly coexist alongside the 22n square children.
Both oblong node types are created by cutting their parent’s
rectangle into equal parts using cuts in one direction. Ob-
long nodes can have even more oblong children themselves,
by further cuts in the same direction. We will call square,
horizontal and vertical the three different shape types. Items
of the same shape type are called shape-corresponding.

Siblings of a given shape type are always organized in a

2
quadtrees with internal storage

(a) square (b) horizontal (c) vertical

Figure 4: Minimal child grids

regular grid, albeit a single-row or single-column one for ob-
long nodes. We will keep them together in a data structure
representing the grid ordering, called a sibling grid. From
the viewpoint of the common parent of the nodes, we will
also call this structure a child grid. A sibling grid is called
minimal if it contains the lowest possible number of nodes,
given its shape type: 4 square nodes or 2 oblong nodes (fig-
ure 4). Furthermore, whenever we mention the shape type
of a sibling grid, we are actually referring to the shape type
of its nodes.

3. BOX-NODE ASSOCIATION RULES
The tightest enclosure association rule treats small boxes

positioned on the border between two adjacent nodes sub-
optimally.

For instance, if some very small box happens to contain
the center of the root node, it can be fully enclosed only by
the root node, as it would be outside or crossing the edge
of any other node. Therefore, we would have no choice but
to associate this box with the root node, which is intended
to store much larger boxes. Since the boxes associated with
the root have to be individually inspected for every win-
dow query, this approach is clearly not optimal. We would
rather like to find some way to associate the small box with
some node deeper in the tree, as smaller nodes have lower
probability to need individual box inspection.

Since the index performance relies on the grouping of
nearby rectangles, we cannot entirely dispose of the rule
that a box is associated with its smallest enclosing node.
Therefore we will only weaken this requirement, imposing a
box-node association rule commonly used in MAMs:

Association rule 1: Nodes can only associate
with boxes whose lower left corner (LLC) is lo-
cated in the node.

In this way, a kind of box proximity is still guaranteed only
using a simple reference point constraint. Rule 1 by itself
only identifies the possible candidate nodes to be associated
with the rectangle. Size is not used, but will be incorporated
in the following rules. Since boxes can now protrude beyond
the top and right edges of the associated node, our method
falls into the overlapping regions approach category of MAM

taxonomy [11].
With respect to node association, leaving box size uncon-

strained would cause some problems if we attempt to devise
a top-down query processing algorithm. To see what would
happen, consider figure 5, which shows part of a sibling grid
at a given tree level. The indicated window query does not
have to consider the white nodes at all: the constraint on
the LLC of boxes associated with them or their offspring
prohibits any window overlap. Searching the nodes of the
dark window-intersecting area I is obviously inevitable. The
nodes in region L ∪ N and their offspring, however, could
contain large boxes overlapping the window as well, since at
this stage we have no indications as to their sizes.

window

I

L

N

Figure 5: Rectangle size limitation

We want to minimize the area to be inspected for per-
formance reasons. Entirely forbidding boxes in L ∪ N to
intersect I would be too strict, as this would fully reimpose
the suboptimal tightest enclosure rule. The best we can do
is to limit the extra nodes to be inspected for boxes overlap-
ping with I to the L region of one node wide. This can be
done by putting limits on the height and width of the boxes
associated with any node. To this end, we impose rule 2:

Association rule 2: Nodes can only associate
with boxes the dimensions of which do not exceed
the corresponding dimensions of the node.

Furthermore, as a node can potentially have three dif-
ferent child grids, we want to ensure that boxes of a given
aspect ratio end up in the proper grid:

Association rule 3: Oblong nodes can only as-
sociate with boxes which are oblong in the same
direction. In addition, the longer side of the box
must be larger than half of the longer side of the
node.

The fourth and final rule exploits the obvious fact that
smaller nodes have lower probability to require individual
box inspection, and aims at locating boxes at the lowest
possible level:

Association rule 4: A smaller node takes prece-
dence over a larger one regarding association with
a given box.

It can be shown that all rules jointly cause every box to
associate with exactly one node. When a new box is to be
inserted into the index due to layout changes, its associated
node can also easily be found. Starting at the root node, it
can be shown that only a single descending path composed
of nodes fulfilling rules 1–3 exists. As the deepest node on
this path will be the smallest one, it will also comply with
rule 4 with respect to the box.

4. WINDOW QUERY PROCESSING
Given our new association rules, we can now devise an

efficient recursive window query processing algorithm. The
root node is interpreted as the single-node sibling grid R.
The following function overlap set(R, W) returns the set
of boxes that overlap a given window W :

function overlap set(G: sibling grid, W : window) {
result ← ∅
N1 ← nodes of G enclosed by W
foreach(n ∈ N1) {

result ← result ∪ all boxes associated with

all nodes of the subtree rooted at n
}
N2 ← all nodes of G intersecting

the boundary of W ∪
all nodes in the L region

foreach(n ∈ N2) {
foreach(b ∈ boxes(n)) {

if overlap(b, W) {
result ← result ∪ {b}

}
}
foreach(g ∈ child grids(n)) {

result ← result ∪ overlap set (g, W)
}

}
return result

}

5. TREE MAINTENANCE
The precise composition of an aquasun tree does not af-

fect the ability to insert new boxes and the correctness of
the window query processing algorithm. However, process-
ing performance depends heavily on the specific tree compo-
sition. For optimal performance, we should be able to adapt
the tree construction to the layout at hand. To this end, a
notion of optimality of the tree composition of is derived.
Furthermore, a method is developed to permanently hold
on to this optimality while dealing with layout changes.

5.1 Optimality of tree composition
As a first step towards optimal searching performance, we

can minimize the number of individual box inspections for
a random query. To this end, for each box the tree should
contain the smallest structurally conceivable node obeying
association rules 1–3 with regard to the box.

It is possible to devise a tree structure whose nodes only
have minimal child grids (figure 4). Because of this, we can
assure that for a given layout both dimensions of each node
will be smaller than twice the corresponding dimensions of
any of its associated boxes. In this way, each box is associ-
ated with the smallest conceivable node.

However, other effects come into play. On the one hand, in
the overlap set searching algorithm the iteration over N2

causes a depth-first tree traversal. A breadth-first traversal
is not feasible, as that would require huge memory amounts.
Because of this and the 2D tree nature, it is not possible
to place subsequently considered nodes in nearby memory.
Jumping from one node to the next is therefore coupled with
some overhead—a page fault in the worst case.

On the other hand, the inspection of a single node can
be implemented as a fast iteration, which typically only ac-
cesses a single virtual memory page. Therefore, if the nodes
of a sibling grid are associated with very few boxes, over-
all performance can be improved by eliminating this grid if
it decreases the total number of nodes. After elimination,
the few boxes that were associated with the removed nodes
are re-associated with their common parent, increasing their
individual inspection probabilities.

An implementation target specific box threshold c (typi-
cally 15–75) can be derived on the total amount of boxes
associated with the nodes of one sibling grid. If this value
drops below c, the performance increase coming from a node-
decreasing grid elimination will outweigh the increased in-

spection probabilities. It can be shown that c is not depen-
dent on the sibling grid size [4].

In summary, we formulate the optimal composition of a
tree as follows:

The aquasun box index tree is optimally com-
posed when the number of nodes is minimal un-
der the following restriction:

If we would—in any possible way—add a child
grid to a leaf node or insert a sibling grid be-
tween an internal node and a non-minimal child
grid of the latter, the box threshold of the new
sibling grid would not be reached after box re-
association.

5.2 Holding on to optimality
In an empty layout, the optimal tree structure is obviously

a sole root node that does not associate with any boxes.
When the layout is changed, boxes are inserted or removed
by imposing or withdrawing the box-node association that
obeys the rules.

As aquasun applies regular space decomposition, sibling
grid creation and elimination can be implemented very ef-
ficiently. Still, such an operation is much more costly than
a simple box insertion or removal. When the number of
boxes that are associated with the nodes of some grid os-
cillates around the box threshold, the tree will need unduly
repeated restructuring. To avoid this, we will allow some
small hysteresis c− ≤ c ≤ c+ with regard to the box thresh-
old c. This bounded deviation from ‘real’ optimality is called
practical optimality.

We want to continuously hold on to practical optimal-
ity. After every box insertion or removal this optimality
can be disturbed, which needs to be verified and corrected
if necessary. Since this check occurs often, it must be very
low-overhead.

Sibling grid insertion. To verify whether insertion of
some new sibling grid is needed, we need to know the amount
of boxes that would associate with the new grid nodes if we
inserted it. To this end, we attach to each node n some
named node-box count values that amount to the total num-
ber of associated boxes fulfulling a particular condition:

n: node of size wn × hn
b: box of size wb × hb associated with n

Name Attached to Condition

square sq. wb ≤ wn/2 and hb ≤ hn/2
horizontal sq. and hor. wb > wn/2 and hb ≤ hn/2

vertical sq. and vert. wb ≤ wn/2 and hb > hn/2

It can be shown that when any of these counters reaches
c+, we need to give n a new child grid whose shape type
corresponds to the name of the counter [4].

The new grid will be a minimal one (figure 4) if the
node does not already have a shape-corresponding child grid.
Otherwise, the new grid must be inserted between the node
and the existing child grid. The correct node size of the new
grid can be inferred from the dimensions of the c+ boxes
that are referred to by the overflowing counter; more pre-
cise details on this are out of the scope of this paper [4].
In any case, after insertion some of the referred boxes will
be re-associated with nodes of the new grid, decreasing the
overflowing counter value below c+.

Furthermore, a grid also needs to be inserted if doing so
would decrease the total number of nodes. To this end, we

(a) square (b) horizontal (c) vertical

Figure 6: Clustering adjoining nodes

attach a cluster counter grid to each sibling grid. As shown
in figure 6, each cluster counter refers to an adjoining group
of four square or two oblong nodes. The cluster counters
amount to the number of boxes associated to the clustered
nodes plus c− for each child grid of these nodes.

To each grid, an additional insertion count value is at-
tached that amounts to the number of cluster counter values
below c−. It can be shown a grid insertion exists that de-
creases the total number of nodes when the insertion counter
of some grid exceeds the fraction 1

16
(square grid) or 1

4
(ob-

long grid) of the number of nodes in that grid [4]. If this is
the case, we need to insert a new grid—between the current
grid and its parent—whose nodes are of double size in both
dimensions (square grid) or only in the shorter dimension
(oblong grid).

Sibling grid elimination. When the elimination of some
sibling grid G is needed, it can be shown its nodes will only
have shape-corresponding child grids [4]. If G consists only
of leaf nodes, elimination is straightforward as G is easily
removed and only some box re-associations are needed.

Otherwise, elimination is somewhat more elaborate. As
an elimination example, if figure 1 represented two aqua-

sun trees, tree 1(b) would result from 1(a) after removing
the sibling grid at depth 1. In general, a sibling grid G is
eliminated as follows:

1. Each non-minimal child grid g of G is equally divided
in 4 square or 2 oblong pieces, which are attached as
child grids to the nodes of a fresh shape-corresponding
minimal grid replacing g.

2. To nodes of G without children an empty shape-corre-
sponding minimal child grid is attached. (figure 4)
After this step, each node of G is parent of a single
shape-corresponding minimal grid.

3. All boxes associated with the nodes of G are re-associ-
ated with their common parent.

4. All minimal child grids of nodes of G are collected into
a new—finer—grid, which replaces G.

After layout changes, we need to verify whether such elim-
ination is necessary somewhere in the tree. To this end, we
attach to each sibling grid the grid-box count value, which
amounts to the sum of (1) the shape-corresponding node-box
counter value of its parent, (2) the total number of boxes as-
sociated with the nodes of the grid, and (3) only for a square
grid: c− for each oblong child grid.

It can be shown that a sibling grid should be eliminated
if its grid-box counter value drops below c− [4]. Still, we are
only allowed to do this if the total number of nodes would
decrease as a result.

To this end, to each sibling grid we attach the elimination
count value, which amounts to the number of grid nodes

having shape-corresponding children. It can be shown that
when this counter value exceeds the fraction 3

4
(square grid)

or 1
2

(oblong grid) of the number of grid nodes, eliminating
the grid will decrease the total number of nodes [4].

Counter optimisation. All counter values can be incre-
mentally updated. The threshold value by which any of our
counters overflows is already known at the point where the
grid or node containing the counter is created. Because of
this, we can already subtract this threshold from the counter
value when it is first initialized. In this way, each counter
only needs a fast zero value check after it has changed.

When a fully built-up layout is only incrementally changed,
the overhead of verifying practical optimality is very low:
the average box insertion/removal will only require between
2 and 3 counter values in the entire box index to be incre-
mented/decremented and compared to zero.

6. RELATION TO PRIOR WORK

6.1 Pre-existing work
The techniques of regular spatial decomposition and sib-

ling grid elimination are derived from quadtrees [12], and
qtis [3], respectively. However, qtis is not adaptive and its
conditions for sibling grid elimination are much too strict to
be useful.

A huge amount of other spatial indexing techniques exist,
and since enumerating them results in a tutorial paper in its
own right, we will not mention them here. On this subject,
we are much obliged to the surveys by Gaede et. al. [5]
and Ahn et. al. [1] for helping to understand the problems
connected with spatial indexing.

6.2 Original work
Low-overhead structural optimality. aquasun is the
first indexing structure employing regular spatial decompo-
sition with sibling grid elimination whose tree representation
is fully dynamically maintainable. This is done in such a way
that very few data items need to be inspected or changed to
permanently assure efficient searching performance.

Oblong nodes. Our method uses a tree structure whose
main nodes are square, but with oblong subtrees (grafted
onto square nodes) whose nodes are increasingly oblong with
rising tree depth. As a result, our method can cope very
well with layouts containing objects whose aspect ratios are
spread within a wide range. This optimisation is not effi-
ciently extensible to higer dimensions, yet for two dimen-
sions it proves to be a fine solution.

Reduced memory needs. Boxes associated with a node
need to be stored in some way. We have chosen to organize
them in chains of fixed-size arrays. Each array is preceded
by a small header containing the coordinates of the LLC of
its associated node. The arrays themselves store offsets from
this LLC to the four boundary coordinates of each box. In
addition, a reference to the real object is memorized.

The size and position of boxes which can associate with
some node is restricted by association rules 1 and 2. There-
fore, the number of bits necessary to represent their coordi-
nate offsets is limited as well. We obtain substantial data
reduction if we exploit this limitation, by providing different
array types using 8, 16, 32 and —perhaps— 64 bits to rep-
resent the coordinate offsets. Using this simple compression
technique, an entire aquasun box index can occupy even

Figure 7: Window query processing performance

less memory than the equivalent full-precision array of all
box coordinates.

7. PERFORMANCE
We have compared the searching performance of aquasun

to the R*-tree [2] box indexing method, which is based on
irregular planar decomposition. Although the original R-
tree has been conceived almost two decades ago [6], its more
recent variants are currently widely used in the field [8], and
consititute the prime box indexing methods of most software
tools for spatial indexing, e.g., libGiST of UC Berkeley (v2.0:
April 2000) [7]. We used the original C implementation
of the R*-tree by Seeger [2], because it turned out to be
the fastest implementation available, yet the least versatile
as to its usage. We also wanted to include a performance
comparison with the Segment R-tree (SR-tree) [10], which
is currently believed to be the fastest adaptive MAM that
is suitable for our purposes [9]. Unfortunately, as currently
only a (slow) java implementation of the SR-tree seems to be
available, including it in our benchmarks would be unfair.

We collected our benchmarking data from magplot, an ap-
plication that converts Magic VLSI layout files into a print-
able PostScript file. The major part of this conversion con-
sists of a stepwise insertion of all chip layout objects into
a box tree. At each layout object insertion, the box tree
needs to be searched for all objects that intersect the new
one. The intersecting objects are then removed from the in-
dex, cut into pieces totally disjunct from or enclosed by the
new object, and the pieces are reinserted into the box in-
dex. This process causes a lot of window queries with small

Figure 8: Insertion performance

windows, which is typical for layout applications such as a
design rules check.

The benchmarks were carried out on a Pentium II 233MHz
(96MB RAM) using gcc 3.0.3 with maximal optimisation
and involve the conversion of a rather complex RSA de-
coder chip layout. Figure 7 shows that the searching perfor-
mance is very dependent on the size of the result, but almost
not on the index size. For larger search results (larger win-
dows), performance is asymptotically equal for both struc-
tures. However, very small search results occur much more
often in practice, and here aquasun is about 5 times faster
than the R*-tree implementation. In figure 8, the process-
ing time for the insertion of one box into the index is shown.
The results show that aquasun is about 8 times faster than
the R*-tree; this is most likely a result of the low-overhead
optimality checking mechanism that we detailed in section
5. As to memory usage, almost all of the original 32-bit box
coordinates were automatically truncated to 8 bits without
any loss of precision.

As a final performance remark, the use of aquasun results
in a significant reduction in wall clock running time: while
the duration of the entire conversion process is 6’33” for the
R*-tree, the use of our method reduces this to 2’08”, which
is faster by a factor of more than 3.

8. CONCLUSION
In this paper, we have introduced aquasun, a new method

to process window (and enclosement) queries on PCB and
chip layouts. The method maintains a tree structure, the box
index, which stores the bounding boxes of all layout objects.
The boxes in this index are organized according to a chosen
set of rules. As a result of our choice, we have been able to
derive both an efficient searching algorithm and a technique
which significantly cuts down on memory requirements.

In addition, we have made provisions to efficiently cope
with layouts containing very oblong objects, like the tracks
on a PCB. In this case, searching performance is guaranteed
by a controlled grafting onto the box index of subtrees in
which both dimensions are unequally treated.

Furthermore, our box index is fully adaptable to layout
changes. To this end, we use a number of reference coun-
ters which are updated and checked with very low over-
head at every object addition or removal: on average, only
2 or 3 counter values in the entire box index need updating.
When a counter value reaches zero, the tree may need re-

structuring to accelerate forthcoming window queries. Each
restructuring operation by itself only makes very incremen-
tal adjustments to the box index structure and can hence
be performed with low cost.

We have field-tested our method in a VLSI tool that con-
verts a chip layout into PostScript; aquasun was compared
herein to a fast R*-tree implementation and our test results
show a reduction of the wall clock processing time by a fac-
tor of more than 3.

9. ADDITIONAL AUTHORS
Peter Verplaetse (pvrplaet@elis.rug.ac.be) kindly pro-

vided the C++ code of magplot and the RSA decoder layout.

10. REFERENCES
[1] H. K. Ahn, N. Mamoulis, and H. M. Wong. A survey

on multidimensional access methods. Lecture
COMP630c, “Spatial, Image and Multimedia
Databases”, University of Science and Technology,
Clearwater Bay, Hong Kong, Oct. 1997.

[2] N. Beckmann, H. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In ACM SIGMOD
Int. Conf. on Management of Data, pages 322–331,
May 1990.

[3] W. De Pauw. (in Dutch) Datastructuren voor grafische
informatie bij CAD (Data structures for graphical
information in CAD). PhD thesis, Ghent University,
Belgium, ELIS D9144, 1991–1992.

[4] M. De Wilde. The internals of the adaptive box
indexing method AQUASUN (in progress). Technical
Report PARIS 02-01, Ghent University/ELIS, 2002.

[5] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
June 1998.

[6] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In ACM SIGMOD Int. Conf. on
Management of Data, pages 47–54, 1984.

[7] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer.
Generalized search trees for database systems. In
International Conference on Very Large Databases,
pages 562–573, Sept. 1995.

[8] Y.-W. Huang, N. Jing, and E. A. Rundensteiner.
Spatial joins using r-trees: Breadth-first traversal with
global optimizations. In International Conference on
Very Large Databases, pages 396–405, Aug. 1997.

[9] G. Kollios, D. Gunopulos, V. Tsotras, A. Delis, and
M. Hadjieleftheriou. Indexing animated objects using
spatiotemporal access methods. IEEE Transactions on
Knowledge and Data Engineering, Sept. 2001.

[10] C. Kolovson and M. Stonebraker. Segment indexes:
Dynamic indexing techniques for multidimensional
interval data. In ACM SIGMOD Int. Conf. on
Management of Data, pages 138–147, June 1991.

[11] B. Ooi, R. Sacks-Davis, and J. McDonell. Spatial
indexing by binary decomposition and spatial
bounding. Information Systems Journal,
16(2):211–237, 1991.

[12] H. Samet. The quadtree and related hierarchical data
structure. ACM Computing Surveys, 16(2):187–260,
1984.

	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

