
Reconfigurable Repetitive Padding Unit

Georgi Kuzmanov
G.Kuzmanov@ET.TUDelft.NL

Stamatis Vassiliadis
S.Vassiliadis@ET.TUDelft.NL

Computer Engineering Lab, Electrical Engineering Department,
Faculty of Information Technology and Systems, Delft University of Technology,

P.O. Box 5031, 2600 GA Delft, The Netherlands

ABSTRACT
This paper proposes a reconfigurable processing unit, which
performs the MPEG-4 repetitive padding algorithm in real
time. The padding unit has been implemented as a scal-
able systolic structure of processing elements. A generic
array of PE has been described in VHDL, and the func-
tionality of the unit has been validated by simulations. In
order to determine the chip area and speed of the padding
structure, we have synthesized the structure for two FPGA
families - Xilinx and Altera. The simulation results indicate
that the proposed padding unit can operate in a wide fre-
quency range, depending on the implemented configuration.
It is shown that it can process from tens up to hundreds
of thousands MPEG-4 macroblocks per second. This allows
the real-time requirements of all MPEG-4 profiles and levels
to be met efficiently at trivial hardware costs. Finally, the
trade-off between chip-area and operating speed is discussed
and possible configuration alternatives are proposed.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles—logic arrays; parallel cir-
cuits; B.5.1 [RTL Implementation]: Design—arithmetic and
logic units; data-path design; styles

General Terms
Design, Performance

1. INTRODUCTION
The first versions of the MPEG standards, MPEG-1 and

MPEG-2, aimed at providing best visual quality at given bi-
trate ranges. This concept has been preserved for the next
standard versions as well. However, the inclusion of en-
tirely new content-based functionalities in MPEG-4 [8] has
made most of the specialists refer to it as a new standard
generation, rather than the next MPEG version. To allow
the efficient implementation of the standard, the MPEG-4
requirements define several application profiles. These pro-
files group the large set of required tools, according to the
targeted classes of applications. Within each profile, a num-
ber of levels constrain the computational complexity and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’02,April 18-19, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-462-2/02/0004 ...$5.00.

the required data bandwidth of the application. Each pro-
file level states the values for certain parameters, which are
used to judge whether an application meets the functional
and implementational requirements of the level.

In literature [10], complexity analyzis results indicate that
the computational requirements of the highest profiles and
levels of MPEG-4 are measured in billions of RISC-like oper-
ations per second. These numbers will significantly exceed
the capabilities of the general purpose processors, despite
the near future technology achievements. The work pre-
sented in this paper is a part of a research activity, in which
we focus on speeding up MPEG-4 applications. Our basic
approach is to extend general-purpose architectures with ap-
plication specific co-processing mapped on FPGAs and the
use of microcode to improve FPGA setting and execution
of instructions [15]. Due to the different requirements of
the MPEG-4 profiles and the requirements for cost-effective
implementations, a demand for high flexibility is essential.
Therefore we believe that reconfigurable (FPGA) implemen-
tations of application specific functions would be beneficial
for improving the cost/performance ratio of the whole sys-
tem. One important new feature in MPEG-4 is the padding
technique, defined at all Levels in the Core and Main Pro-
files of the standard. Software profiling results, reported in
[3, 10, 13, 14], indicate that padding is a computationally
demanding and time consuming process, which restricts the
real time operation of the MPEG-4 codecs.

In this paper we propose a scalable padding unit, capable
to perform the padding algorithm in real time. In principle,
the unit can be implemented either as a hardwired circuit
in a dedicated MPEG-4 codec, or as a reconfigurable accel-
erator in a Custom Computing Machine. For this paper, we
focused the reconfigurable implementation of the padding
unit, mapped onto FPGA chips and we have achieved the
following:

• Real time processing for all MPEG-4 profiles and lev-
els, utilizing the padding algorithm can be achieved.

• Scalable implementation, tunable to the different Pro-
files@Levels requirements. A worst-case scenario allow
data processing rates from 77 K up to 280 K mac-
roblocks/s and we show that even much higher speeds
are achievable.

• Reconfigurable (FPGA) implementations require triv-
ial hardware costs (low number of reconfigurable cells
- 419 Xilinx CLBs and 1024 Altera LCs for a 16-pixel
line processing) and low frequencies (varying between
11 and 25 MHz)

All these design achievements have been validated both
for Altera and Xilinx FPGA families. The reconfigurability
and scalability of the implementation allow higher flexibility
in tuning the unit for optimal performance of the processor.

The remainder of the discussion in this paper is organized
as follows. Section 2 gives some background information
and the motivation for the presented research including a
description of the repetitive padding algorithm. In Section
3, the design of the padding unit is proposed. Section 4
discusses some simulation results and evaluates the unit.
Finally, the conclusions are presented in Section 5.

2. BACKGROUND AND MOTIVATION
Generally speaking, MPEG-4 is the first standard to deal

with content-based coding. For content-based coding, the
concept of a Video Object Plane (VOP) is used [7]. A VOP
is an arbitrarily shaped region of a frame, which usually
corresponds to a semantic object in the visual scene. A se-
quence of VOPs in the time domain is referred to as a Video
Object (VO). Each VOP is described by its shape and tex-
ture.
Shape is mainly represented in binary format. This format
represents the shape as a bitmap, referred to as binary alpha
plane. Each pixel in this plane takes one of two possible val-
ues, which indicate whether the pixel belongs to the object
or not. The binary alpha plane is divided into 16x16-pixel
blocks called Binary Alpha Blocks (BAB). The texture of
a VOP represents its ”color” by macroblocks. Each mac-
roblock consists of one 16x16 array of luminance (grayscale)
pixels and two 8x8 arrays of chrominance (color) pixels,
which represent the full-color of the corresponding 16x16
area of a VOP.

As its preceding visual data compression standards,
MPEG-4 adopts motion compensation techniques to exploit
temporal redundancies in the encoded video sequences. Mo-
tion compensation is a process of coding differences (mo-
tion) between frames in a video sequence [12]. These differ-
ences are estimated as a displacement between pixel areas in
the current frame (being encoded) and a previously encoded
frame. The measurement of this displacement is the motion
vector. A process, called motion estimation, is performed to
determine the motion vectors for each macroblock. This pro-
cess includes a search algorithm for best matching between
the block to be encoded and an area of previously encoded
frame. In MPEG-4 the process is defined over VOPs instead
of frames.

The Repetitive Padding Algorithm For more accu-
rate block matching in motion compensation/ decompensa-
tion of VOPs, MPEG-4 adopts the padding process. The
purpose of padding in MPEG-4 is to ensure more accurate
block matching in motion compensation algorithms for ar-
bitrary shaped visual objects. The padding process defines
the full-color values (luminance + chrominance) for pix-
els outside the shape of a VOP. In padding, two types of
macroblocks are of interest. Macroblocks, which lie on the
boundary of the VOP are referred to as boundary blocks.
They are processed by the so called repetitive padding. Exte-
rior macroblocks (completely outside the VOP) are padded
using the extended padding method. Since repetitive padding
is the most demanding padding algorithm, in this paper we
will consider the padding of boundary macroblocks. The
standard repetitive padding algorithm, as defined in [7], has
the following steps:

1. Define any pixel outside the object boundary as a zero
pixel. Make a duplicate binary alpha map.

2. Scan each horizontal line of a block. Each scan line is
possibly composed of zero and nonzero line segments
(according to the shape bits in the binary alpha map).

(a) In zero segments, between an end point of the
scan line and the end point of a nonzero segment,
all zero pixels are replaced by the pixel value of
the end pixel of nonzero segment.

(b) In zero segments, between the end points of two
different nonzero segments, all zero pixels take the
average value of these two end points.

Nonzero segments are not processed. All shape bits,
corresponding to padded pixels are set in the duplicate
binary alpha map.

3. Scan each vertical line of the block and perform the
identical procedure as described for the horizontal line.
The updated shape information from the duplicate bi-
nary alpha map is used.

Figure 1 illustrates the repetitive padding algorithm with
a simplified examples of a 4x4 pixel BAB and a 4x4 pixel
luminance (chrominance) block. The original data struc-
tures (in the left of the Figure) are padded vertically and
horizontally and both the intermediate and final results are
indicated in this example.

2
D+E

2
D+E

2
D+E

2
D+E

2
D+E

2
D+E

1 1

1

1 1

0 0

0 0

0

0 0

0 0 0 0 0 0 0 0 1 1 11

1 1

1

1 1

1

111

1 1

1 1

1

1

1 1

11

1 1

1

1

1

S S’ S’

Horizontal Vertical

Repetitive
Padding

Repetitive
Padding

A B x x

x

x

x x x x

C xx

x ED

A B B B

ED

C CCC

A B B B

E

x x x x

D

C CCC

D E

O
ri

gi
na

l

R
es

ul
t

Figure 1: The Repetitive Padding Algorithm

Motivation. Unlike its predecessors, MPEG-4 is much
more demanding in terms of computational complexity with
even more data intensive algorithms. This is illustrated in
Table 1, which represents the required data processing speed
according to the MPEG-4 Visual Profiles@Levels definitions
[6]. We can consider that the performance demands of the
Simple MPEG-4 Profile are approximately the same as of
MPEG-2. Therefore, the challenge is to meet the require-
ments of the most-demanding Core and Main Visual Pro-
file Levels of MPEG-4. The software versus hardware im-
plementation discussion has been emerged during the stan-
dardization process of MPEG-4. A summary of the com-
putational complexity of the QCIF, Core Profile Level 1 of
MPEG-4 is reported in [10]. Since this is the lowest pro-
file level, utilizing the padding algorithm, we shall consider
its real-time requirements as the minimum for a hardware
implementation. At this level, the computational power, re-
ported for the software encoding of a single object [10] is in
the order of 4500 Million RISC-like Instructions Per Second
(MIPS). Assuming a software performance optimization by

Table 1: MPEG-4 Visual Profiles@Levels Defini-
tions and Required Data Processing Speed (in Mac-
roBlocks per second [MB/s])

Profile Le- Session # Max. Bounda-
vel Size VO MB/s ry MB/s

Main L4 1920x1088 32 489600 244800
L3 CCIR 601 32 97200 48600
L2 CIF 16 23760 11880
L1 N.A. N.A. N.A. N.A.

Core L2 CIF 16 23760 11880
L1 QCIF 4 5940 2970

Simple L2 CIF 4 23760 N.A.
Scalable L1 CIF 4 7425 N.A.
Simple L3 CIF 4 11880 N.A.

L2 CIF 4 5940 N.A.
L1 QCIF 4 1485 N.A.

a factor of up to 10, the total computational complexity is
just within the computational capabilities of the contempo-
rary general purpose processors(500-1000 MIPS). In the case
of 4 video objects (see Table 1), however, the real-time soft-
ware feasibility becomes problematic. Therefore, the need
of a hardware acceleration of MPEG-4 is evident, even at
this relatively low profile level. Further analyzis of the re-
quirements for the software implementation indicates that
the padding algorithm occupies some 175 MIPS for a single
video object, or around 700 MIPS for the maximum 4 video
objects, stated at Level 1 of the Core profile (Table 1). A
general purpose processor with such computational power is
still very expensive to be dedicated just for the repetitive
padding calculations. Considering Table 1, we can estimate
that the required speed of 5940 MB/s for the Core Pro-
file Level 1 is approximately 82 times lower than the speed
requirements of the highest - Main@Level4 Profile (489600
MB/s). A simple arithmetic estimation indicates that for
the highest MPEG-4 profile level, the non-optimized soft-
ware padding would require approximately 57 000 MIPS
and when extremely optimized (10 times speed-up) - in the
order of 6000 MIPS. Even for the significantly less com-
plex decoder part of MPEG-4, the padding algorithm will
require some 24 000 MIPS for non-optimized software im-
plementation down to 2500 MIPS in dramatically optimized
programming. These numbers, large even for the expected
technology levels of the near future, motivated our research
to focus on a cost-effective hardware solution of the MPEG-4
algorithms and the repetitive padding in particular.

The large number of alternatively used algorithms in MPEG-
4, however, makes the implementation of dedicated hard-
wired units inefficient, since a number of them may remain
unutilized in certain profile levels. A good example is the
padding algorithm, which is not included in the Simple Pro-
file Levels of MPEG-4. Thus, a multi-profile codec would
not utilize a hardwired padding accelerator, when running
at any of the Simple Profile levels. A promising solution of
this problem is the reconfigurable implementation of hard-
ware accelerators, like the reconfigurable padding unit de-
scribed in details in the section to follow.

Related work. Although the repetitive padding algo-
rithm is described in [7, 12], in the literature some modifica-
tions of it are also reported. In [4, 9, 11] new algorithms or
algorithm modifications are proposed to substitute the orig-
inal repetitive padding or to redefine it. In [2] the original

MPEG-4 padding algorithm is modified to support specific
instruction set extensions. In the same paper, the horizon-
tal and vertical padding are divided into two phases each.
These two phases consequently scan the lines/columns into
two opposite directions and perform the padding operations.
A relatively complicated hardware padding unit is proposed
in [5]. In the present paper we propose a simpler recon-
figurable and scalable solution (differenciates from [5]), us-
ing the standard repetitive padding algorithm (differenciates
from [2, 4, 9, 11]).

3. THE PROCESSING UNIT
Since padding is performed over horizontal and vertical

pixel lines in identical manner, we propose a scalable sys-
tolic structure to process pixel blocks per line basis. Con-
sequently, we need to define an elementary processing ele-
ment (PE) and a topology to connect functional groups of
processing elements.

The Processing Element. A single processing element
(PE), which is dedicated to process each pixel of a block,
is depicted in Figure 2. The same processing element is

PE
LI
LO

RO
RI

+

M M

SR

LO RO

I

LI RI

O S’

S
SI

O S’

RIN

NLI

M"SR" - Shift Right Circuit

"M" - 2->1 Multiplexors

"+" - N-bit Adder

OS

Figure 2: A Padding Processing Element

used for luminance and chrominance padding. The follow-
ing equations describe the functionality of the processing
element:

OS = (S ∨ LIN ∨RIN) (1)

O = OS · I ∨OS · [(LIN + RIN) >> i], (2)

LO = S · |S, I| ∨ S ·RI, |RO| = S · |S, I| ∨ S · LI, (3)

S′ = S ∨ LIN ∨RIN ; (4)

where i = LIN ∧RIN ,
OS stands for Output Select signal,
N represents the width of the processed data (default N=8),
LI, RI are left and right input vectors with width N+1,
LO, RO are left and right output vectors with width N+1,
I, O are data input and output vectors with width N,
S is the shape (input) bit before processing,

S
′

is a mask output bit after processing,
LIN denotes the first N (least-significant) bits of LI (bits 0
to N-1),
LIN represents the N th (the most-significant) bit of LI,

and |S, I| denotes the concatenation of bit S and vector I.
The operation of the PE is explained by the following:

• If the input shape bit S is set (the pixel belongs to the
object), then:

1. The output O takes the value of the input I, i.e.
the pixel keeps its color.

2. The value of the input (pixel) I is propagated to
the left and to the right (via outputs LON and
RON) for further processing. The shape input
bit S is propagated by the same multiplexers and
occupies the most-significant bits of LO and RO.

3. The output bit S
′

is set, meaning the pixel has
been processed.

• If the input shape bit S is zero (the pixel does not
belong to the object and has to be padded), then:

1. The output O takes the average value of the LIN

and RIN inputs, i.e. the pixel takes the padded
value.

2. The LI value is propagated via RO and the RI -
via LO including color and shape information.

3. The output bit S
′

is set, meaning the pixel has
been processed.

The Systolic Structure. To process a line from a mac-
roblock, we implement the systolic structure of processing
elements, depicted in Figure 3. For the proper circuit oper-
ation, the left-most and right-most inputs of the structure
should be initialized with zero vectors. This would mean
that there are no pixels to the left and to the right of the
macroblock, which could influence the padding values. This
structure is scalable and can contain an arbitrary number
of processing elements. Since a macroblock consist of one
16x16 luminance and two 8x8 chrominance blocks, it is effi-
cient to implement structures of 8 or 16 PE. Furthermore, it
is possible to implement several structures, identical to the
one in Figure 3. For example, if we implement eight such
structures, we will be able to process eight lines in paral-
lel. This is possible, because in the padding algorithm there
is no data dependency between any two lines or columns.
The data dependency is just between the pixels in the same
line/column. Even a larger, two dimensional structure for
processing a whole block in parallel is implementable. Imple-
mentations, which process more than one macroblock lines
in a time, however, require higher data throughput and the
utilization of more complicated addressing approaches would
become necessary.

PE

SI

O S’

LI
LO

RO
RIPE

SI

O S’

PE

SI

O S’

PE

SI

O S’

Figure 3: Single Scan Line/Column Padding Struc-
ture

We can easily evaluate the processing speed of the struc-
ture, given its operating frequency 1. Let’s assume a chain
1In this paper we distinguish (data) processing speed, mea-
sured in [macroblocks/sec] (or [MB/s]) from the device op-
erating speed (frequency), measured in [Hz].

of n PE like the one, depicted in Figure 3, operating at fre-
quency Fn [Hz]. The values of n with practical significance
are 4, 8, 16. We state two more parameters of the particular
implementation:
NP8

n and NP16
n denote the numbers of cycles, necessary to

process an 8-pixel (chrominance) and a 16-pixel (luminance)
line respectively. Some potential values of these parameters
are shown in Table 4.
NP8

n is a variable for n < 8 and a constant for n ≥ 8.
Identically NP16

n is a variable for n < 16 and a constant
for n ≥ 16. This is due to the pixel-data dependency in a
line, imposed by the padding algorithm, and the necessity
of extra (data - dependent) numbers of cycles for structures
with less than 16PE. Thus the processing of 16 pixels by

any nPE configuration will take
NP16

n
Fn

[seconds] and for a

256-pixel luminance block-
16·NP16

n
Fn

[s]. Identically, the pro-

cessing of two 8x8-pixel chrominance blocks will take
16·NP8

n
Fn

[s] of the same unit configuration. Since a macroblock con-
sists of 256 luminance and 128 (2 x 64) chrominance pixels,
padded vertically and horizontally, a whole macroblock will
be padded for 32

Fn
· (NP8

n +NP16
n) [s]. If we implement a con-

figuration, which processes two and more (say k) 16-pixel
lines in a time, we can formulate the Processing speed as
follows:

Processing speed =
Fn · k

32 · (NP8
n + NP16

n)
(5)

Formulation (5) is still valid for n < 16, assuming in this
case that k=1.

Possible Configurations. For the line/column repeti-
tive padding unit, there could be several configuration op-
tions. Some of them are:

1. 16PE unit - processes one luminance line/column and
two chrominance per operating cycle.

2. 8PE or 4PE unit - processes a half/quarter of lumi-
nance and one/half chrominance line/column. An ad-
ditional control circuit is required, to maintain inter-
mediate computational results.

3. 32, 64, ..., 256PE unit- processing more than two lumi-
nance and more than four chrominance lines/columns
per operating cycle. The extreme configuration would
process the whole macroblock.

Figure 4 depicts a general view of the discussed possible
configurations of the padding unit. The blocks, named ”I”
are buffers which store the Initialization values for config-
urations, containing multiple of 16 PE. For Configurations
with less than 16 PE, these buffers are used for storing in-
termediate values, in order not to cut the data propagation
chain for longer (up to 16 pixel) lines.

4. SIMULATION RESULTS AND
EVALUATION

To evaluate the proposed structure, we have explored con-
figurations with different numbers of PEs. The evaluation
has been made in terms of chip area and speed. We have
written synthesizable VHDL models of a single PE and a
generic multi-element structure of PEs. To get realistic val-
ues for the parameters of the unit, we have synthesized these

PE PE PE PEI I

(a) Up to 16 PE

PE PE PE PEI I

PE PE PE PEI I

PE PE PE PEI I

(b) 32, 64,..., 256 PE

Figure 4: Possible Configurations - ”I” denotes Ini-
tialization and/or Intermediate Result Buffer

VHDL models for two popular FPGA families - Altera and
Xilinx, using the standard synthesis and simulation tools,
provided by the companies. We have not chosen the cutting-
edge-of-technology chips for the implementation, because
we have been interested in achieving high performance with
lower technological (hence cheaper) generations of FPGAs.
We evaluated both the Xilinx xc4085xlpg559-09 [16] and the
Altera epf10k20rc240-4 [1] chips, because they can be run
at comparable frequencies (around 100 MHz). Their chip
organization, however, is quite different and since area is
estimated in different units for each of them, an area com-
parison between the mappings onto the two different chip
families has not been done.

For both chip families we have evaluated structures of 4,
8 and 16 PEs and speed has been reported in MHz. Two
extra evaluations for 32 and 64 PEs Xilinx mappings, have
been done to illustrate how the data organization and the
number of processing elements influence the performance of
the unit.

Area and Speed Evaluation. Table 2 suggests the area
estimates for the Xilinx chip in absolute units - CLBs (Con-
figurable Logic Blocks) and in percentage of the available
gate array area. For the Altera chip, results are reported
in Table 3 in similar manner but the units for the absolute
area are referred to as LCs (Logical Cells).

The speed estimations for both FPGA families suggest
similar results. Besides the operating frequency, measured
in MHz, we also evaluated the actual data processing speed
of the different configurations. Since VOPs may vary in
size and resolution, the MPEG-4 requirements group has
defined the binding criteria for implementation complexity
in terms of transferred macroblocks per second (Table 1).

Table 2: Results for the Xilinx xc4085xlpg559-09
chip

CLB’s Speed
PE total % MHz MB/s

Probable Worst C.
4 45 of 3136 4 24.5 95 700 76 600
8 206 of 3136 7 18.2 162 500 142 200
16 419 of 3136 14 11.4 237 500 237 500

32 838 of 3136 27 11.4 475 000 475 000
64 1676 of 3136 53 11.4 950 000 950 000

Table 3: Results for the Altera epf10k20rc240-4 chip
LC’s Speed
PE total % MHz MB/s

Probable Worst C.
4 254 of 1152 22 24.8 96 900 77 500
8 511 of 1152 44 19.8 176 800 154 700
16 1024 of 1152 88 13.4 279 200 279 200

For consistency with this definition, in the last two columns
of Tables 2 and 3, we have estimated the processing speed
in macroblocks per second ([MB/s]) according to (5) in its
most probable and worst cases. The reported numbers in-
dicate that the padding structure can meet the real-time
requirements for a broad range of visual resolutions. If we
consider the implementation with 16 PEs, the estimated op-
erating frequencies (11.4 MHz and 13.4 MHz) mean that the
padding unit can process up to 237 500 MB/s (macroblocks
per second) or 279 167 MB/s, depending on the FPGA fam-
ily.

Table 4: Values of NP8
n and NP16

n

n Probable Worst Case
NP8

n NP16
n NP8

n NP16
n

4 2.5 5.5 3 7
8 1 2.5 1 3
16 0.5 1 0.5 1

16·k 0.5 1 0.5 1

The Core and Main profile levels of MPEG-4 require pro-
cessing speeds in the range between 2970 and 244800 Bound-
ary MB/s to maintain from 4 up to 32 VOPs. It is obvi-
ous that the operating speed ranges, achievable by the pro-
posed padding unit, completely match the required values.
Even the most demanding profile level, level 4 of the Main
MPEG-4 profile, requires 244 800 Boundary MB/s for a high
resolution session type (1920 x 1088) and 32 objects. This
rate is in the order of the reported speed results for the fea-
sible padding unit implementations. Furthermore, the unit
can also meet the requirements for the maximum operating
speeds from Table 1 (5940 MB/s - 489600 MB/s). This al-
lows the boundary macroblock detection to be avoided as
a processing stage, preceding the repetitive padding and all
blocks in the visual scene to be padded. The potentials of the
structure indicate capabilities to meet even more-demanding
future profiles of the visual data compression standards.

Data-Area-Speed Dependency. Results in Table 2
and Table 3 also indicate that the actual operating speed
depends both on the number of processing elements and the

structure of the processed data. For configurations with less
than 16 PE, the area-speed relation is not proportional. The
situation is different for structures with more than 16 PEs.
The last two rows of Table 2 illustrate the influence of the
data organization (16x16 pixel macroblocks) and the config-
uration of the structure on then processing speed (for num-
bers of elements lower and higher than 16). Since any two
different lines (columns) within a macroblock are padded in-
dependently from each other, by parallelizing the processing
per lines (columns), we significantly increase the process-
ing speed without changing the operating frequency. On
the other hand, structures with less than 16 PE, require ex-
tra circuitry to maintain the intermediate computational re-
sults. Therefore the number of the processing cycles is much
higher and depends on the data. Figure 5 depicts the dis-
cussed influence of the data organization on the area-speed
relation. It is evident that for structures with more than 16
PE the speed increases with the same rate as the area does.
These properties of the implementation should be taken into
account when either the area or the speed constraints of the
unit are crucial.

250 000

500 000

750 000

4 8 16 32 64

P
ro

ce
ss

in
g

S
pe

ed
 [M

B
/s

]

Number of PE (~Area)

Figure 5: Data Structure Influence on the Perfor-
mance (Unit Mappings on Xilinx FPGA)

5. CONCLUSIONS
In this paper we proposed a scalable padding unit, capable

to process macroblocks in MPEG-4. The unit has been mod-
eled with VHDL and its performance and hardware costs
have been evaluated for two FPGA families - Altera and
Xilinx. The simulation results indicate that the proposed
padding unit can easily meet the real-time requirements of
the core and main MPEG-4 profiles at trivial hardware costs.
The significantly low operating frequencies of the proposed
reconfigurable circuit make it an alternative of the unreal-
istic multi-thousand MIPS requirements of its software im-
plementation. An operating frequency of up to 13.4 MHz
allowed a processing speed of up to 279 200 MB/s to be
achieved by only 16 PEs, mapped on relatively small Altera
FPGA. Larger configurations of the unit were mapped on
a yet cheap Xilinx FPGA and identical performance results
were reported. Evaluations indicate that for configurations
of more than 16 PE, the speed-area dependency is a linear
function, unlike structures with less than 16 PE. With a
processing speed of approximately 950 000 MB/s, a 64PE

padding unit can achieve performance well above the re-
quired by the highest level of the most-demanding MPEG-4
visual profile.

6. ACKNOWLEDGEMENTS
This research is supported by PROGRESS, the embed-

ded systems research program of the Dutch organization
for Scientific Research NWO, the Dutch Ministry of Eco-
nomic Affairs, the Technology Foundation STW (project
AES.5021) and PHILIPS Research Laboratories, Eindhoven,
The Netherlands.

7. REFERENCES
[1] ALTERA. Data Book. Altera Corp., 1998.
[2] M. Berekovic, H.-J. Stolberg, M. B. Kulaczewski, P. Pirsh,

H. Moler, H. Runge, J. Kneip, and B. Stabernack.
Instruction set extensions for mpeg-4 video. Journal of
VLSI Signal Processing, 23(1):27–49, October 1999.

[3] H.-C. Chang, L.-G. Chen, M.-Y. Hsu, and Y.-C. Chang.
Performance analysis and architecture evaluation of
MPEG-4 video codec system. In IEEE International
Symposium on Circuits and Systems, volume II, pages
449–452, Geneva, Switzerland, 28-31 May 2000.

[4] E. A. Edirisinghe, J. Jiang, and C. Grecos. Shape adaptive
padding for MPEG-4. IEEE Transactions on Consumer
Electronics, 46(3):514–520, August 2000.

[5] C. Heer and K. Migge. VLSI hardware accelerator for the
MPEG-4 padding algorithm. In IS&T:SPIE Conference on
media processors, volume 3655, pages 113–119, 1999.

[6] ISO/IEC JTC11/SC29/WG11 N2802. ISO/IEC 14496-2.
Generic Coding of Audio-visual Objects- Part2: Visual.
Final Proposed Draft, July 1999.

[7] ISO/IEC JTC11/SC29/WG11, N3312. MPEG-4 video
verification model version 16.0.

[8] ISO/IEC JTC11/SC29/WG11 N4030. MPEG-4 overview,
March 2001.

[9] A. Kaup. Object-based texture coding of moving video in
MPEG-4. IEEE Transactions on Circuits and Systems for
Video Technology, 9(1):5–15, February 1999.

[10] J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and
M. Reissmann. The MPEG-4 video coding standard - a
VLSI point of view. In IEEE Workshop on Signal
Processing Systems,(SIPS98), pages 43–52, 8-10 Oct. 1998.

[11] J.-H. Moon, J.-H. Kweon, and H.-K. Kim. Boundary
block-merging (BBM) technique for efficient texture coding
of arbitrarily shaped object. IEEE Transactions on
Circuits and Systems for Video Technology, 9(1):35–43,
February 1999.

[12] Y. Q. Shi and H. Sun. Image and Video Compression for
Multimedia Engineering. Boca Raton CRC Press, 2000.

[13] H.-J. Stolberg, M. Berekovic, P. Pirsch, H. Runge,
H. Moller, and J. Kneip. The M-PIRE MPEG-4 codec DSP
and its macroblock engine. In IEEE International
Symposium on Circuits and Systems, volume II, pages
192–195, Geneva, Switzerland, 28-31 May 2000.

[14] S. Vassiliadis, G. Kuzmanov, and S. Wong. MPEG-4 and
the New Multimedia Architectural Challenges. In 15th
International Conference SAER’2001, St.Konstantin,
Bulgaria, 21-23 Sept. 2001.

[15] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEN
rm-coded processor. In 11th International Conference on
Field Programmable Logic and Applications (FPL),
Belfast, Northern Ireland, UK, August 2001.

[16] XILINX. DataSource CD-ROM. XILINX, 2000.

	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

