
Protected IP-Core Test Generation

Alessandro Fin Franco Fummi

Dipartimento di Informatica
UniversitÁa di Verona

ITALY

ABSTRACT
Design simplification is becoming necessary to respect the
target time-to-market of SoCs, and this goal can be obtained
by using predesigned IP-cores. However, their correct inte-
gration in a design implies more complex verification prob-
lems. IPs are usually provided with their own test patterns
that can be used only by applying design for testability tech-
niques onto the chip. Whenever physical faults must be de-
tected, this approach is reasonable, even if it implies circuit
performance degradation. However, it is completely useless
at the design level, when the correct integration of the IPs
into the global design must be investigated. At this level,
proprietary test sequences must be generated in relation to
the actual use of the IPs into the design. In this paper, the
SystemC language is exploited to define a design verifica-
tion framework for integration test of IP-cores. Intellectual
properties of cores are guaranteed by adopting a client/server
simulation architecture and by allowing functional test gen-
eration on faulty IP-core models without disclosing their in-
ternal structure. The methodology can be applied to mixed
descriptions based on VHDL and SystemC, since an abstrac-
tion layer has been defined allowing clients and/or servers to
be indifferently described in VHDL or SystemC. Finally, re-
mote simulation can be also performed locally to avoid band-
width bottleneck and the test generation process can be indif-
ferently applied at lower abstraction levels such as RT and
gate.

1. INTRODUCTION
The current trend of systems on silicon is leading to a com-
plexity that can be reduced only by integrating already pro-
duced and optimized parts (IP-cores). A new design is usu-
ally developed by assembling ex novo IP-cores, previously
designed IPs, externally provided IPs and some user-defined
modules to connect all the included components.

The identification of the most suited core for a design is one
of the most time consuming aspect of design management [1]
and all core selection implications, i.e. functionalities, testa-

GLSVLSI’02, April 18-19, 2002, New York, New York, USA.

bility, performances, have to be evaluated before including
it into the final design. Previously defined techniques [2,
6, 7, 9] present alternative methodologies for allowing a de-
sign team to evaluate different IPs integrations into the final
design without violating the IPs of the core provider. The
goal of the technique presented in this paper is to integrate
these functionality evaluation methodologies with a testa-
bility evaluation framework. Providing this kind of frame-
work, the core vendor allows more users to have free chance
to evaluate the produced cores. The opportunity to evaluate
the final testability of a design including the selected core
can have high impact on the profitability of the developed
design decreasing the testability issues, which can arise dur-
ing the design phase. In market with so many competitors,
such provided features can make the difference and that core
vendor can increase his visibility and his business volumes.

The main issue for developing such a feature is how to pro-
vide a framework capable to evaluate the testability prop-
erties of the selected core and simultaneously to protect
the core IP. The presented solution is based on a client-
server architecture, which allows to test and to simulate a
core without disclosing the core IP. This goal is obtained
by adding to the core model, which can be either remotely
or locally simulated, additional methods to query the core
simulation server about testability information. This addi-
tional information can be useful to evaluate the testability
of the selected core merged into the final design and/or to
drive the automatic test pattern generator, which is going
to be adopted to test the design. The core vendor has full
control on the information released by the query methods
by enabling/disabling each single query method, depending
on the business relation with the customer. This can be
achieved by a customized activation key file provided to the
core user to activate the core client simulation. All such
features can be reached by exploiting the new system-level
description language: SystemC.

The rest of the paper is organized as follows. The method-
ology for distributing IP-cores is presented in Section 2.
Section 3 discusses all features and problems related to the
simulation of SystemC descriptions across the Internet. Sec-
tion 4 shows the implementation of a remote test generator
based on the query methods framework. An application ex-
ample is described in Section 5, while Section 6 is devoted
to future works and concluding remarks.

2. IP-CORE DISTRIBUTION



The core vendor and the core user are the two cooperating
players of the proposed methodologies for IP-Core testing
and distribution.

• The goal of the core vendor is to allow the core user
to simulate and test the cores without disclosing their
internal descriptions.

• The core user usually analyzes at first the general
characteristics of the core reported in the Web site of
the core vendor. Results of this rough analysis must
then be refined by performing some simulation ses-
sions, eventually remotely, to explore the effective in-
tegration of the core in the design. The increasing rele-
vance and cost of the test phase in the design workflow
requires to evaluate a priori also the core integration
from the testability point of view.

Testing cores and protecting IPs are activities with opposite
requirements. In fact, a deep internal knowledge of the core
is required to efficiently test it and part of that knowledge
is what the IP protection techniques hide to the core user.
This paper proposes a technique to efficiently evaluate the
integration of a core in the RTL design under development
from the functional and testability points of view. These
evaluations are provided without disclosing IP information,
thus matching the requirements of both cooperating parts.

The proposed technique is abstraction level independent and
it can be applied at each workflow design level, i.e. func-
tional, behavioral, RT and gate. However, the most sig-
nificant results can be obtained applying it at the RT level,
where most of the core requirements are already defined (i.e.
performance, timing) and they can be checked during the
core selection process.

The prototype of the presented technique has been devel-
oped in SystemC: a C++ library for system design. Given
that all implementations are in the C++ language and it
has been very easy to integrate the core description with
the socket library, required to allow a simulation base on a
client-server architecture. Many VHDL and Verilog simu-
lators provide APIs to communicate via socket with other
processes, thus the presented testing framework allows to
test and cosimulate cores developed in different HDL lan-
guages.

The core vendor can allow two different ways to simulate
and test the cores by providing the following two different
packages:

• SystemC package for remote simulation.

It is composed of a core interface (a SystemC compo-
nent declaration) and the socket interface (a SystemC
component definition). The SystemC component def-
inition is released as a C++ source file and the core
interface as a C++ header file. SystemC designers can
simply compile and link this suite to their design in or-
der to remotely simulate the core. Moreover, VHDL
designers can also use this suite to verify the integra-
tion of the core in their preliminary SystemC-based
prototype. When the design will be represented in
VHDL, the same suite or the VHDL-C suite will be

used to refine the simulation.

• SystemC suite for local simulation.

It is oriented to the same users and can be used for
the same targets. It is composed of a core interface (a
SystemC component declaration) and its implementa-
tion (a SystemC component definition). The SystemC
component definition is released as a C++ object file,
compiled for the different supported computer archi-
tectures, and the core interface as a C++ header file.
An alternative for local simulation is releasing the exe-
cutable file containing the core server simulator, which
can be locally stimulated and tested by using a socket
interface.

The core vendors can publish these packages on their web
sites or provide them directly to the customers. The ad-
vantage of the package for the local simulation is the higher
overall simulation speed for the core user, while the remote
simulation package allows the core vendors to provide to
their customers the functionalities of the newest version of
the core. Moreover, the upgrade or the bug fix of the core
is completely transparent to the core users by using the re-
mote simulation package. The package for local simulation
should be provided for mature cores, which do not require
fixes at all, while for recently designed cores the package for
remote simulation could be more effective. A remote simu-
lation approach could be useful as web-CAD technique for
cooperative designs with some IPs disclosure issues.

As part of the core specifications, the core vendor provides
a list of the query methods available for the selected core.
These methods are implemented via a specific type of packet
exchanged by core client and server.

PAYLOAD

CLIENT ID SERVER ID

CLIENT TIME STAMP

TYPE

SERVER TIME STAMP

REQUESTED INFORMATION

Figure 1: Packet structure.

Figure 1 shows the structure of a packet: six header fields
and payload. ID client and ID server allow both client and
server simulators to identify each other and check the source
of the incoming packets. Unrecognized packets are dropped
by the receiving peer. Time stamp fields allow to easily
check if the simulations are synchronized. The time stamp
contains the simulation time of the local simulation. If a
received packet has a time stamp newer than the last one,
then the simulation is aborted. The last two fields of the
header determine if the packet is containing either simula-
tion or testing query. The packet length is constant (1024



byte). This allows a faster packet elaboration at a cost of
potential bandwidth waste.

3. IP-CORE SIMULATION
Remote and local simulation configurations have been in-
vestigated. The main characteristics are presented in the
following subsections.

3.1 Remote Simulation
Remote testing and simulation requires a client-server ar-
chitecture composed by two SystemC simulators connected
via socket. This solution allows the core vendor to have the
highest control on the distribuited cores. The vendor can
define the access policy to the core servers. For the actual
version of the software, a security technique based on pass-
word and IP address check has been developed. The security
level can be increased applying further control access tech-
niques, for example by defining an authentication procedure
based on one time passwords. The core vendor can limit the
number of the remote simulations for each core user. The
remote simulation guarantees the core user to simulate and
test always the last version of the core. In fact, keeping
the same interface the core vendor can change the imple-
mentation of the offered functionalities without forcing the
core user either to download a new package or to modify the
previous design.

The most complex issue to address connecting two simula-
tors is maintaining the temporal coherency of the two sim-
ulations. The client and the server simulations have both
two independent threads for receiving and transmitting data
packets. The temporal alignment of the two simulators is
managed exploiting SystemC dynamic event generation, one
of the new features introduced since the 1.2 version of the li-
brary. After sending a data packet, the simulation waits for
an event, which will be notified when the receiving thread
will receive the updated packet from the peer. For each sent
packet, another packet will be received, even if the received
packet does not contain any update signal. This solution,
which increases the communication overhead, is required to
guarantee the correctness of the remote simulation and its
equivalence to the local simulation. The data packet have
to be sent at the end of the elaboration phase, after all sig-
nals have reached a stable value. This is required to avoid
simulation with no definitive signal values. In order to solve
this problem, an additional internal bit signal is added to
the sensitivity list of the sending thread.

This signal is inverted during the same clock cycle waitmax

times to allow the core input signals to stabilize. This guar-
antees to send only one data packet per clock cycle, contain-
ing the definitive signal values. The core user has to fix the
value of waitmax: underestimating this parameter causes to
send more than a data packet per clock cycle. This con-
dition can be checked by both client and server comparing
the simulation stamp of the last two either sent or received
data packets. Overestimating this parameter implies the
schedule of useless events, which slows down the simulation
performance. The simulation is stopped if this condition is
violated and the core user has to increase the waitmax value
to run again the simulation. The remote simulation allows a
larger control on the IP simulation for the core vendor: core
users, simulated cores, executed services, etc. There are less

advantages for the core users, who have longer simulation
time and an Internet connection is required during the test-
ing procedure. Adopting this simulation configuration, core
users do not have to check for new core simulators updates.
They simply run the the remote simulation and the remote
core simulation will provide the new services and function-
alities.

3.2 Local Simulation
The core local simulation is achieved by incorporating the
downloaded SystemC compiled core description into the de-
sign. The core user knows the core interface considering
the header file coming with the core object file. Avoiding
the communication of the remote client-server simulation, a
faster overall simulation time can be achieved. The core ven-
dor can alternatively allow the local simulation by providing
the executable file of the core server. The server simulation
can be run by the core user either on the same machine of the
core client or on the intranet. This simulation configuration
presents more advantages for the core user with respect of
the core vendor. The simulation/testing time decreases sig-
nificantly and the user testing procedures are shorter. The
core vendor loses some of the control on the core simulation
offered by the remote configuration. If this factor is criti-
cal for the core vendor, then one can provide resources for
remote simulation only.

4. PROTECTED TEST GENERATION
Testing efficiently a design requires a deep knowledge of the
design structure. This requirement can imply the violation
of core IP. This problem can be avoided by defining the core
public interface, composed of a set of methods, which can be
executed by the TPG to collect information about the effi-
ciency of the applied test sequences. The core vendor defines
the set of these querying methods, thus the disclosure level
of the information provided to the core user. The core ven-
dor could apply a different level of disclosure for each core
user by checking the client ID field of the packet header. The
proposed framework for remote testing is sketched in Fig-
ure 3. An error free and an erroneous instance of the core
are included on the server side of the proposed architecture.
The error free is the RT core description which is provided to
the core user when the core is bought. While the erroneous
description is generated by the core vendor to simulate the
presence of stack-at errors in the RT core description and
to allow the core user to evaluate the impact of the testing
procedure on the core under selection. The error presence
is simulated adding extra C++ code into the SystemC de-
sign description to stuck-at either 0 or 1 the values of core
internal signals and ports [4]. The adopted error coverage is
the bit-coverage [10]. It allows to simulate, under the single
error assumption:

• Bit failures. Each variable, signal or port is consid-
ered as a vector of bits. Each bit can be stuck-at zero
or one.

• Condition failures. Each condition can be stuck-at
true or stuck-at false, thus removing some execution
paths in the erroneous representation.



The error model excludes explicitly the incorrect behavior
of the elementary operators (e.g., +,-,*,...). Only single bit
input or output errors are considered, therefore including all
operator’s equivalent errors.

It has been proved in [11] that this error model covers all
statement, branch and condition errors, moreover it covers
an important part of all path errors.

CORE
CLIENT

SIMULATOR

CORE
SERVER

SIMULATOR

SIMULATION
DATA

SIMULATION
RESULTS

SIMULATION
QUERY

SIMULATION
INFORMATIONS

Figure 2: Packet traffic.

To activate the target error, an extra port is added to the
original interface of the core for testing purpose only. This
port allows to select the injected error. Each error is iden-
tified by an unique ID, but the correlation between ID and
selected error is not known by the core user to further in-
crease the IP undisclosure. To simulate a target error the
core user has to include the error ID in the payload of the
simulation packets. If no error ID is transmitted then no
error will be simulated and the returned simulation data
packet will contain error free results. The communication
protocol has been extended to manage an extra protocol
packet: the query packet. The simulation is executed by
the core user, by sending these packets to query the server
simulation about the effectiveness of the last data packet
sent containing the last test pattern.

To experiment the presented technique we adopted a local
genetic TPG. To generate test patterns it requires some in-
formation to evaluate the fitness function for each generated
test sequence:

• Local Observability. The fitness function of a se-
quence is higher if the error can be propagated to the
primary outputs of the core, which are connected to
internal signals of the main design. In fact, this is
a condicio sine qua non to detect the injected error
on the primary outputs of the complete design. The
internal signal values can be obtained via simulator
interface for both SystemC and VHDL cores.

• Hamming Distance. Not all sequences can propa-
gate the error to the core primary outputs. The fit-
ness of such sequences is proportional to the Hamming
distance between the internal signal values of the erro-
neous core and the error-free core (see Figure 3). By
applying the genetic operators, such as mutation and
crossover, the TPG tries to modify sequences with high
Hamming distance in order to propagate the injected
error to the core primary outputs.

The actual version of the remote ATPG defines two query
packets, these packets can query the core server for the two
information required by the genetic ATPG. The core server
replies to these packets by sending back packets containing

numeric values. The set of the available query packets can
be enriched by the core vendor with packets allowing the
core user to obtain more information about the core server
simulation. The core vendor can make available a query
packet to export each core server simulation information,
which does not violate any core IP.

Figure 2 sketches the packet traffic generated by the core
client and the core server for remotely testing and simulating
the core.

The presented methodology can provide also a testability
evaluation of the overall architecture. Developers are able
to consider the impact of each alternative IP-core on the
architecture under development from the functional and the
testability points of view. Due to the large amount of re-
sources required by the testing phases of a new design, an
early testability evaluation of the final design can imply a
resource saving and a better product quality.

5. APPLICATION EXAMPLE
The proposed methodology for the verification and integra-
tion test of IP cores is applied in this section to an example.
SystemC 1.2 has been used for modeling and simulating the
SystemC descriptions. All experiments have been performed
on a SUN Ultra5 333 MHz with 256MByte Ram.

5.1 Core Selection
We consider the problem to implement a 3-tap digital filter
characterized by the following equation:

y = c0z + c1z
−1 + c2z

−2

The hardware realization of the filter uses, as embedded
core, a public domain load/store CPU available at the RT
and logic levels deeply integrated in an embedded design
composed of some other components as a memory and the
MMU. The SystemC definition of the core is provided on
the Web site of the core vendor with the core stub and the
corresponding implementation . The SystemC simulation
of the core is performed to verify the effectiveness of the
selected core. Its correct integration in the design is checked
by generating functional test patterns as reported in the next
paragraph.

The example reproduces the core selection process of a de-
sign team, which has to select the more suitable CPU core
to complete the designed embedded system to evaluate the
digital filter. This selection process will end as soon as a
CPU core is found compliant with the required functional
and testability features. Four types of simulation have been
performed to measure the applicability of the proposed sim-
ulation methodology:

• Local simulation of the core embedded into the global
architecture. It corresponds to the simulation of a
core, which is directly provided in SystemC (VHDL)
source code.

• Local with socket simulation. Both client and server
are running on the same machine and they are inter-
faced via socket. This simulation measure the over-
head of the socket interface disregarding network prob-
lems.



REMOTE SIMULATION PHASE

CORE
SERVER

ERROR
FREE
CORE

ERRONEOUS
CORE

input

error
code

output

I
N
T
E
R
N
E
T

internal
informations

internal
informations

LOCAL SIMULATION PHASE

CORE
CLIENT

COMPONENT
A

 COMPONENT
B

 COMPONENT
C

 COMPONENT
D

Figure 3: Testing architecture.

• intranet remote simulation. Both client and server
belong to the same Internet domain and they are con-
nected trough a 100Mbit Ethernet connection. This
simulation is related to the use and distribution of a
core in the same company, where a design group can
only use the results of another design group without
disclosing the intellectual property.

• Internet remote simulation. This is the more gen-
eral case, where a local client is connected to a remote
server located in any part of the Internet. We simulate
a traffic condition close to have a client in Europe and
a server in north America, or vice versa.

5.2 Core Simulation
Table 1 shows the simulation times for 4 different config-
urations of core client and core server. The real, user and
system times are the times provided by Unix command time

to run 1000 times the program evaluating the 3-tap digital
filter. The results confirm that the network traffic overhead
has the biggest impact on the overall performance, as con-
firmed by normalized results in Table 2. In fact, the simula-
tion through Internet is one order of magnitude slower than
the same simulation run over a intranet.

Sim. type Real Time User Time System Time

Local 9.94 7.80 0.94
Local+socket 24.95 10.06 5.10
Intranet 27.44 9.85 4.08
Internet 781.73 16.05 4.62

Table 1: Simulation times.

Sim. type Norm. Real Norm. User Norm. System

Local 1 1 1
Local+socket 2.51 1.29 5.43
Intranet 2.76 1.26 4.34
Internet 78.613 2.06 4.02

Table 2: Normalized simulation times.

Sim. Type VHDL SystemC Speed up

Local 105.43 9.94 10.6
Local+socket 456.02 25.95 18.2
Intranet 478.58 27.44 17.4
Internet 1518.07 781.73 1.9

Table 3: VHDL-SystemC speedup

The simulation architecture has been developed in VHDL
too. The results in Table 3 show the speedup of SystemC
simulations. The SystemC performance is one order of mag-
nitude faster than VHDL for the three of the simulations.
The quality of both VHDL and SystemC descriptions is
comparable. Thus, the main reason of such performance
speedup is that SystemC descriptions are compiled, whereas
the VHDL ones are interpreted, thus slower.

The speedup for the Internet simulation is affected by the
traffic overhead again, smoothing the performance differ-
ences between SystemC and VHDL.

5.3 Core Testing
The genetic TPG based on the exchange of query packets
has been compared with a random TPG. The results are
presented in Table 4. The best result has been obtained
by the genetic RTP. The higher test generation time of the
GA based TPG depends on the more complex test vector
generation and the higher number of packet exchanged by
the core client and the core server. Two different kinds
of query packets have been defined by the core vendor to
support the user core evaluation:

• isObservable, this packet returns to the core client
0 if there are no differences between the primary out-
puts of the erroneous and the error free core server
simulations, otherwise a 1 is returned.

• getHammingDistance, the returned float value in the
range [0, 1] expresses the ratio of the core internal sig-
nals, which differs between the erroneous and the error
free server core simulations.

Random TPG GA TPG

Num. of generation - 100
Num. of sequence per error 500 25
Max sequence length 15 15
Num. of generated vectors 538339 519806
Num. of generated sequence 4725 37253
Test set length (sequences) 24 27

Simulation time 749.21 1246.38
Trasmited packets 538339 1039612
Coverage 88.6% 99.0

Table 4: Core testing results



No more query packets have been implemented to show how
the overall coverage can increased just providing few IP un-
violating information extracted by the defined query pack-
ets.

6. CONCLUDING REMARKS
A methodology for IP-Core simulation and testing has been
presented . It allows the core vendor to make available
very detailed core models without disclosing IP informa-
tion. Moreover, it allows the core user to perform a vali-
dation test to verify the correct integration of the selected
IP core into the core-based design under development. This
is performed by generating test patterns for both the core
and the surrounding logic. This main idea has been ex-
ploited by using two different modeling languages: VHDL
and SystemC. Experimental results showed that, the use of
SystemC produces better results in terms of simulation time
and SystemC models can be more efficiently linked to inter-
face libraries. Performance degradation of the remote test
generator is dominated by the remote simulation process,
thus it seems to be feasible whenever remote simulation is
acceptable. However, waiting for an improvement of Inter-
net transmission capabilities, the proposed technique can be
directly used for local simulation, by providing detailed de-
scriptions of the cores, even with faults, without disclosing
IP information.

7. REFERENCES
[1] J. Notbauer, T. Albrecht, G. Niedrist and

S. Rohringer. Verification and management of a
multimillion-gate embedded core design. Proc.
ACM/IEEE DAC, pages 425–428, 1999.

[2] M.J. Silva and R.H. Katz. The case for design using
the World Wide Web. Proc. ACM/IEEE DAC, pages
579–585, 1995.

[3] S. Hauck and S. Knoll. Data security for Web-based
CAD. Proc. ACM/IEEE DAC, pages 788–793, 1998.

[4] A. Fin, F. Fummi, and G. Pravadelli. AMLETO: A
Multi-language Environment for Functional Test
Generation. Proc. IEEE ITC, pp 821-829, 2001.

[5] R. HelaiHl and K. Olukotun. Java as a Specification
Language for Hardware-Software Systems. Proc. IEEE
ICCAD, pages 690–697, 1997.

[6] M. Dalpasso, A. Bogliolo and L. Benini. Specification
and Validation of distributed IP-based designs with
JavaCAD. Proc. IEEE DATE, pages 684–688, 1999.

[7] A. Fin and F. Fummi. A Web-CAD Methodology for
IP-Core Analysis and Simulation. Proc. ACM/IEEE
DAC, pages 128–133, 2000.

[8] L. Peterson and B. Davie. Computer Networks: A
System Approach. Morgan Kaufmann, 1996.

[9] M. Dalpasso, A. Bogliolo, L. Benini and M. Favalli.
Virtual Fault Simulation of Distributed IP-based
Designs, Proc. DATE, pages 99–103, 2000.

[10] F. Ferrandi, A. Fin, F. Fummi, and D. Sciuto.
Functional Test Generation for Behaviorally
Sequential Models. Proc. IEEE DATE, pp 403–410,
2001.

[11] F. Ferrandi, F. Fummi, and D. Sciuto. Design
Verification of VHDL Specifications through
Functional Testing. Internal Report 3–99, Universitá
di Verona, 1999.


	Main Page
	GLSVLSI'02
	Front Matter
	Table of Contents
	Session Index
	Author Index




