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ABSTRACT
Many approaches have been proposed for digital system ver-
ification, either based on simulation strategies or on formal
verification techniques. Both of them show advantages and
drawbacks and new mixed approaches have been presented
in order to improve the verification process. Specifically, the
adoption of formal methods still lacks a coverage metrics to
let the verification engineer get a measure of which portion of
the circuit is already covered by the written properties that
far and which parts still need to be addressed. The present
paper describes a new simulation based methodology aimed
at measuring the error coverage achieved by temporal as-
sertions proved by model checking. The approach has been
applied to the description of a protocol converter block, and
some preliminary results are presented in the paper.

1. INTRODUCTION
The verification of a digital system at the various steps of

its design life is an activity that can be performed adopt-
ing a simulation approach [11, 10, 24] or, a less popular,
although extremely appealing for its promises of exhaustive-
ness, formal method [22, 6, 17, 2, 20]. Both strategies have
strengths and weaknesses and the inherent complexity of the
verification activity of non trivial systems leads to the need
to budget time, human and hardware resources involved in
the verification activity to be engaged up to the moment
in which a reasonable confidence in system implementation
correctness is reached. Growing systems complexity, com-
bined with the cited promise of exhaustiveness of formal
verification tools caused a proliferation of formal tools in
the last years, in the academic world (VIS [14], SMV [22],
NuSMV [8], STeP [21], ACL2 [19], Mocha [5], UPPAAL [23],
Spin [15], Forte [17], Versys2 [20], just to name some) and,
to a shorter extent, in the industrial world (RuleBase [6],
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FormalCheck [3], BlackTie [1], Formality [2], Prover [25])
where most of products fall in one of two categories: equiv-
alence checking and property checking. Solutions for the
equivalence checking problem are now available on the EDA
market in different flavors and can be seen as belonging to
an almost mature field, whereas tools for the model check-
ing problem are still under refinement (from a commercial
point of view) as capacity keeps being a strong limitation
even for latest tool generation (actually, this is mainly what
decreases the exhaustive promises to date). Model checking
is used to verify a circuit description according to require-
ments formalized as temporal properties and constraints,
in order to check the correctness of the implementation of
the circuit. Model checking approach, although perform-
ing exhaustive verification under the expressed environment
restrictions presents the following limitations:

• Model Checking may require long validation time since
it can be reduced, on paths of a bounded length, to
the NP-complete problem of satisfiability of boolean
formulas.

• Formal Verification may not provide complete assur-
ance that the device will work as intended, due to the
possibly incompleteness or inconsistency of specifica-
tion expressed by the system architect. This is the
main consequence of the adoption of a natural lan-
guage as a mean to express requirements and specifi-
cation.

• It requires that assumptions are made on the device
environment, and if they are incomplete or wrong the
validation could be vacuous.

• It cannot provide a measure to understand when all
design errors have been covered. Actually, property
coverage is still an open issue and a not sedimented
subject.

On the other hand, simulation based functional verifica-
tion techniques [11, 10, 24] show the following problems:

• By this technique it is not possible to distinguish be-
tween hard to detect faults, which represent hard to
verify states in the functional interpretation, and the
real design errors because in both cases the faults re-
sult undetected. Thus one runs the risk of identifying
not existent errors, or even worst, of ignoring existent
design errors.



• It is impractical to obtain a complete coverage for all
possible faults, since the space of test sequences is in-
finite.

Some attempts have been made to combine formal ver-
ification and simulation. FoCs [4], for instance, derives a
VHDL description to be attached to the design under test
from a property written in RCTL. Functional verification
by simulation is in that case driven by formal definitions
of expected properties; Foster [13], whose work is focused
on equivalence checking, proposes a methodology that ex-
ploits rigor of formal verification and high performance of
simulation and ATPG. However, both techniques do not
investigate the relation between model checking and error
simulation, neither the possibility of using model checking
as a test pattern generator to detect errors.
The present work combines model checking with func-

tional verification based on simulation in order to:

• Measure the error coverage achieved by the set of proved
formal properties, with respect to a design under test
and one particular functional error model.

• Use this error coverage as an estimation of the com-
pleteness of the properties with respect to the design
itself.

• Increase this error coverage by using a functional test
pattern generator.

• Identify a new set of properties, with respect to the
undetected errors, in order to guide the verification
engineer in the process of defining a sufficient set of
properties able to verify if the implementation satisfies
the specification.

This paper focuses on the first two objectives and proposes
a new approach to investigate the significance of a practical
metrics for the model checking coverage measure problem.
That approach has a more practical appealing than those,
more theoretical, proposed by Chockler et al. [7] and Katz
et al. [18]: [7] uses the underneath circuit transition relation
and its composition with formulas and automata to define
structure, tree and node coverage, whereas [18] describes
an operational procedure which assumes the availability of
complete specifications in a formalized format.
The paper is organized as follows. Section 2 explains the

proposed methodology with the integration of model check-
ing and error simulation. Section 3 describes how prop-
erties are written and witnesses and counterexamples are
generated. Section 4 describes the role of error simulation.
Section 5 presents a case study and the experimental results
obtained using the methodology. Finally, in section 6 we
draw our conclusions and possible future work directions.

2. METHODOLOGY
The goal of the proposed methodology is achieved by the

actions represented in Figure 1 and summarized in the fol-
lowing phases.

Property checking A set of properties is written and they
are formally verified by a property checking tool. Con-
futed rules point out erroneous behaviors that must be
fixed since they represent a discrepancy between spec-
ification and implementation. In most cases, for every
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Figure 1: Control data flow of the methodology.

rule to be checked the property checker is able to gen-
erate at least one trace (a witness) that satisfies it,
or at least one trace (a counterexample) that refutes
it. Those traces are collected in order to be used in
the simulation error step. Note that at the end of this
phase all the collected traces are actually witnesses,
since all the identified design errors are removed.

Functional error simulation All collected witnesses are
used as input sequences for a functional error simu-
lator. An automatic tool, AMLETO [12], is used to
generate an erroneous description of the design under
test based on the bit coverage error model [10]. This
error model has been selected, since it has been proved
in [9] that it is suited to reveal design errors. This sim-
ulation estimates the achieved error coverage. Some
injected errors are usually untested by the witnesses.
They can be:

– untestable errors, which are symptoms of some mis-
takes in the design, e.g.: over-specified function-
alities or wrong modules interconnection.

– undetected errors because the number of applied



witnesses is too low to verify all aspects of the
implementation. Thus, a larger number of prop-
erties should be written.

At this point, an automatic test pattern generator
could be used in order to increase the error coverage
by removing some untested errors.

Furthermore, a feedback connection of the ATPG phase
and the model checker would allow to check either if
already written rules can generate other witnesses to
identify undetected injected errors, or if some new ad-
hoc rules can be added to disambiguate between hard
to verify injected errors and redundant errors; these
interactions will be part of our future work and will
not be developed subsequently in this paper.

3. PROPERTIES AND WITNESSES GEN-
ERATION

Let us examine the relationship between properties and
functional errors. Different properties can be generated to
verify the correct implementation of a specification. Such
properties can be summarized as follows:

• Safety: to prove the correctness of the design under
test checking that the system must not evolve in a con-
figuration which violates the specification.

• Liveness: to prove the reactivity of the design under
test by considering the fact that, after the right stimuli
are applied, sooner or later the expected result, should
be obtained.

rule no_retract_grant {

envs default_req_eop_lck_opc;

envs fair_request_granted;

assign req_slow := 0;

formula {

AG((!RESET & GNT & !REQ) -> AX(GNT))

}

}

Figure 2: Example of a property.

From the proposed verification methodology perspective,
properties written using the “for all” path quantifier (A-
formulas, A(p)) should be preferred with respect to prop-
erties written using the “existential” path quantifier (E-
formulas, E(p)). This is both a direct consequence of the im-
plication A(p)→ E(p), and a consequence of the significance
of counterexamples generated for A-formulas compared to
those of E-formulas: counterexamples for E-formulas should
show an infinite number of paths, which is obviously not fea-
sible, and addressed restricting the counterexample shown
to the shortest common prefix shared by all the counterex-
amples. In the error simulation phase, the proposed method-
ology simulates as many counterexamples and witnesses as
possible in order to measure the error coverage obtained by
property checking, thus the possibility of generating many

witnesses is preferable. Note that, counterexamples became
witnesses at the end of the property checking phase.
As reported in Table 1, the property checker supplies at

least one witness when a property results true; what is actu-
ally relevant for the current work is that property checkers
are able to generate (finite) sets of witnesses for the same
property. In fact, as the approach we are proposing com-
bines the meaningfulness of witnesses as test sequences for
an error simulator, it is a preeminent matter to have a highly
variegate set of witnesses, so that the biggest number of in-
jected errors is detected.
As said at the end of section 2, if there were injected errors

not detected by any witness produced so far, it should be
understood if such condition derives from the errors being
redundant or from the set of witnesses being incomplete; if
the first case happened, we would have identified a design
mistake, otherwise, we should find out if a witness for an
already written rule is missing or not, and in this latter case
we should write a new rule, aimed at trying to generate a
new witness. This will be addressed by future development
of our present work.

4. FUNCTIONAL ERROR SIMULATION
After the property checking step, all the collected wit-

nesses and counterexamples must be used to simulate the
DUT in order to obtain the error coverage with respect to
the bit coverage error model. Bit coverage states:

• occurrences of variables and signals used in the de-
scription of the system under test are considered as a
sequence of bits, thus every bit can be stuck-at 0 or
stuck-at 1 to represent one particular error;

• conditions included in the description of the system
under test can be stuck-at true or stuck-at false inde-
pendently from their real value.

In order to simulate the DUT considering the bit coverage
model, AMLETO can be used to obtain the erroneous de-
scription that is able to represent the behavior of the system
in presence of stuck-at errors. The error simulation phase
proceeds by comparing the output between the error free
DUT and the erroneous DUT for every witness and for ev-
ery injected error. At the end of the simulation, the er-
ror coverage achieved by the previously proved properties is
computed.
It is worth to note that to avoid problems due to the reset

sequence of asynchronous design under test, an extension
to AMLETO has been made, since in its first release it has
been developed for synchronous systems only. To obtain the
erroneous description of the design under test, AMLETO
substitutes every occurrence of every signal and every con-
dition of control flow statements (as if, case and while

statements) with the inject error function. This function
returns the faulty value of the occurrence when the relative
error is activated. The activation of every error depends on
the error port signal added to the entity of the erroneous
design. During the error simulation phase, when one error
is detected, the erroneous description and the error free de-
scription must be reset to proceed with the simulation of the
next error. In particular, it is necessary that all internal sig-
nals of the erroneous description do not keep the old value
imposed by the previous injected error. If internal signals
are not reset to their default values, the error simulation



Existential path quantifier (E) For All path quantifier (A)

True Property At least one witness At least one witness
The property checker generates only

False Property the common root to the inherently infinite At least one counterexample
family of counterxample traces

Table 1: Number of witnesses or counterexample generated by the property checker with respect to a property
written by using the “existential” or the “for all” quantifier.

process can produce wrong results. The assignments of in-
ternal signals of synchronous systems is executed at every
clock cycle, but this is not true for asynchronous systems
where not all processes are sensitive to a clock signal. To
avoid this problem AMLETO has been modified by inserting
the error port in the sensitivity list of all processes. In this
way, when the value of the error port changes, all processes
are reactivated and all internal signals are reinitialized (see
Table 2), allowing a correct error simulation.

5. CASE STUDY
The proposed methodology has been applied to test a

VHDL description of a protocol converter composed of two
modules: the requestor and the response. First of all, a set of
properties have been written and proved by using a commer-
cial SMV [22] (see Figure 2) based property checker. Some
of these properties resulted false and thus some project re-
finements of the description was needed in order to satisfy
all the properties. So far a certain number of witnesses have
been collected.
In this way, after the property checking phase the error

simulation has been applied as reported in Figure 3. A
C based error simulator has been interfaced with the two
VHDL descriptions (the error free and erroneous one) of the
DUT by using a FLI (Foreign Language Interface) library.
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Figure 3: Architecture of the case study.

Some interesting observations have been established dur-
ing the error simulation phase:

• The model checker can increase the length of the test
sequences generated starting from one witness. That
is, it can produce a witness W of length L and other
witnesses, for the same rule, which include W , but are
longer than L. This extra effort in the generation of

further witnesses is useless since, such longer test se-
quences never increased, in our experiments, the error
coverage.

• Witnesses generated by the model checker describe
only the track of the input signals needed to prove
the property. However, error simulation needs the val-
ues for all input signals, thus it is fundamental to fix
the unspecified values to their default values (i.e., 0 for
integer, ’U’ for std logic, ’0’ for bit, etc.). This implies
the use of at least a 3-value error simulator.

• By considering all the checked properties, a total num-
ber of 1627 witnesses have been extracted. They
are composed of 45550 test vectors. Their simula-
tion detects 1454 errors on 3850 injected errors, thus
achieving 37.7% error coverage. This result has been
obtained by fixing the unspecified values to their de-
fault values. On the other hand, the error coverage
achieved by randomly completing the unspecified val-
ues is 56.7%.

• On the contrary, the error coverage obtained by con-
sidering only one property is 25.2% with default com-
pletion. This is due to the local scope of the witnesses
generated by one single property. The error coverage
raised from 25.2% to 50.4% by randomly completing
the unspecified values.

• A so low property error coverage could be related ei-
ther to the low number of properties checked or to
many hard to detect injected errors. For this reason,
we simulate the system with 1627 randomly generated
sequences composed of 74 test vectors each. The error
coverage raises to 73.6%.

Such preliminary results imply the difference between:
property coverage and witness error coverage. The proposed
verification approach aims at measuring the property cov-
erage by using the measure of the witness error coverage.
Model checkers usually supply only one witness for every
proved property, but most of the true properties could have
an infinite number of witnesses. Thus, computing error cov-
erage based on just one witness is not the right approach in
order to measure the error coverage for some kinds of prop-
erties, particularly such properties that prove some rules
about the data signals. In fact, in this way only the er-
ror coverage of the considered witness is obtained, which is
a significant underestimation of the real property coverage.
For instance, the analyzed example is a protocol converter
which highlights this behavior since the majority of errors
have been injected on data, which are simply transmitted
from the requestor to the response. Such data requires a
large number of test sequences to be tested, but very few
properties to be verified.



Before transformation After transformation

process (state ctrl) process (state ctrl, error port)
begin begin
... ...
state ctrl next <= state ctrl; state ctrl nect <= inject error(state ctrl, error port, ...);
... ...

end process; end process;

Table 2: Processes transformation by using AMLETO.

For this reason, we are currently working on the extension
of the proposed verification approach. The extension will
take a witness, supplied by the model checker, as a seed for
the automatic generation of other witnesses, where signals
that are relative to the control part of the DUT remain
unchanged while signals that represent data are assigned in
a random or genetic way. In this way, the witness error
coverage will better approximate the property coverage.

6. CONCLUDING REMARKS
In this paper we proposed a new simulation based ap-

proach for measuring the error coverage of formal properties
and a case study has been presented to show the obtained
experimental results. The work is a first step towards the in-
tegrations of formal methods and simulation based strategies
in order to describe a new methodology for digital system
verification as early reported in section 1.
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