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ABSTRACT
A novel approach for the reduction of the power dissipated in

a signal processing application is introduced in this paper. By
exploiting the properties of the Polynomial Residue Number

System (PRNS) and of the arithmetic modulo (2n + 1), the power

dissipation of implementing cyclic convolution is reduced up to
four times. Furthermore, the corresponding power�delay product

is reduced up to 2:4 times, while a simultaneous reduction of
area cost is achieved. The particular performance improvement

becomes possible by introducing a way to minimize the forward

and inverse conversion overhead associated with PRNS. The
introduced minimization exploits the fact that for the conversions

for particular lengths of data sequences and particular moduli, only
multiplications with powers of two and additions are required, thus

leading to low implementation complexity. In addition multiple

supply voltages are utilized to further reduce power dissipation
by more than 30% for particular cases. Formulas that return the

applicable supply voltage values per PRNS channel are derived in

this paper.

Categories and Subject Descriptors
B.7.1 [Hardware]: Types and Design Styles; B.5.1 [Hardware]:

Design; C.3 [Computer System Organization] Special-purpose

and application-based systems—signal processing systems

General Terms
Design
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Computer arithmetic, Polynomial Residue Number System
(PRNS), Low power design, signal processing
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1. INTRODUCTION
Recently low power consumption has emerged as a major design

optimization objective due to the need for portable electronics
equipment as well as a means for increasing the reliability in

high-performance systems. Several design techniques have been

proposed to minimize power dissipation, spanning all levels of
the design abstraction [1], from system level down to the VLSI

technology level. Among the various optimization techniques,
optimal arithmetic selection has been shown to have an impact on

overall system power dissipation [2]. In this paper, a new approach

is proposed for the design of low-power digital signal processing
equipment. By utilizing a number theoretic approach, it is shown

that a significant reduction of power dissipation can be achieved,
combined with a reduction of the system area cost, at the cost

of increased delay. Further optimization is possible, by utilizing

multiple supply voltages.
The Residue Number System (RNS) [3] is an integer

system capable of supporting parallel, carry-free, high-speed

arithmetic. The system also offers some useful properties for error
detection, error correction and fault tolerance in digital systems.

Important areas of application of the RNS include Digital Signal
Processing (DSP) intensive computations, such as digital filtering,

convolutions, correlations and DFT and FFT computations. Recent

work in RNS arithmetic has resulted in the development of the
Polynomial Residue Number System (PRNS) [4] which is capable

of multiplying two polynomials using minimum computational
complexity.

The PRNS examines the problem of multiplying two (N � 1)-

degree polynomials mod (xN
� 1) in some modular ring Zm =

f0;1; : : : ;m � 1g, a ring which is closed with respect to the

operations of addition and multiplication mod m. This system can
perform the above polynomial product using the minimal number

of multiplications. It should be noted that the polynomial product

of two (N � 1)-degree polynomials mod (xN � 1) implements the
cyclic convolution of two N-point sequences, a task which is useful

in efficiently computing linear convolutions. It should also be
noted that the linear convolution of two sequences is a very useful

computation because it mechanizes digital filtering. Consider two

N-point sequences A = a0;a1; : : : ;aN�1 and B = b0;b1; : : : ;bN�1.



Then their cyclic convolution is an N-point sequence C =

c0;c1; : : : ;cN�1, with ci, i= 0;1; : : : ;N�1 given by the coefficients

of the polynomial C(x), where C(x) = hA(x)B(x)i(xN
�1) with

hP(x)iQ(x) denoting the operation P(x) mod Q(x) in polynomials,

while A(x) = ∑N�1
i=0 aixi, B(x) = ∑N�1

i=0 bixi, and C(x) =∑N�1
i=0 cixi.

By factorizing the polynomials xN �1 in N distinct factors in Zm

as in

xN
�1 = (x� r0)(x� r1) : : :(x� rN�1); (1)

where ri 2 Zm, i = 0;1; : : : ;N � 1, the product of two (N � 1)-
degree polynomials mod (xN �1) in Zm can be computed with only

N multiplications instead of N2. This is based on an isomorphic

mapping fN called the PRNS isomorphic mapping which translates
polynomials of the form A(x) =∑N�1

i=0 aixi into the PRNS domain.

The PRNS isomorphic mapping is given by

A(x) = a0+a1x+ : : :+aN�1xN�1 fN
�! A�(x) =

= (a�0;a
�

1; : : : ;a
�

N�1) (2)

with

a�i =
D
hA(x)i(x�ri)

E
m
= hA(ri)im

= ha0 +a1ri+ : : :+aN�1rN�1
i im; (3)

i = 0;1; : : : ;N�1 and ri are the distinct roots of xN �1 = 0 in Zm.

In (3) hxim denotes the operation x mod m between integers. The
inverse PRNS mapping f�1

N is given by

A�(x) = (a�0;a
�

1; : : : ;a
�

N�1)
f�1
N
�! A(x) =

= a0 +a1x+ : : :+aN�1xN�1
; (4)

where the coefficients of the polynomial A(x), ai, i= 0;1; : : : ;N�1

are given by

ai = hN�1(a�0r�i
0 +a�1r�i

1 + : : :+a�N�1r�i
N�1)im; (5)

i= 0;1; : : : ;N�1. In (5) N�1 and r�i
j are the multiplicative inverses

of N and ri
j in Zm, respectively, which means hN�1Nim = 1 and

hr�i
j ri

jim = 1. The main advantage of the PRNS is that it simplifies

the rules of polynomial multiplication. While the rules of addition
are unaffected, multiplication in the PRNS domain is performed as

(a�0;a
�

1; : : : ;a
�

N�1)(b
�

0;b
�

1; : : : ;b
�

N�1)

= (ha�0b�0im;ha
�

1b�1im; : : : ;ha
�

N�1b�N�1im): (6)

Eq. (6) dictates that the product of two (N�1)-degree polynomials
mod (xN �1) requires N multiplications mod m if performed in the

PRNS domain. The same task requires N2 multiplications mod m

if performed using the traditional technique; (non-PRNS).
Consider two polynomials A(x) = ∑N�1

i=0 aixi and B(x) =

∑N�1
i=0 bixi and consider performing hA(x)B(x)ixN

�1 in the ring Zm.
Let CPRNS and Cnon-PRNS denote the computational requirements

for computing hA(x)B(x)ixN
�1 in Zm using the PRNS and the

traditional technique respectively. Then CPRNS and Cnon-PRNS are

given by

CPRNS = (3N(N �1)+1)scalings+

3N(N �1)adds+Nmults (7)

Cnon-PRNS = N2mults+N(N �1)adds: (8)

In (7) and (8) the scalings, additions and
multiplications are operations mod m, while scaling means

multiplication by constant.
Let ri, i= 0;1; : : : ;N�1 be the N distinct roots of xN �1= h0im.

If all the roots ri, i = 0;1; : : : ;N�1, their multiplicative inverses in

Zm r�1
i , i = 0;1; : : : ;N � 1 and N�1 are all perfect powers of two,

then all the scaling operations required by the forward and inverse

PRNS mappings of (3) and (5) become multiplications by powers
of two which can be implemented with simple shift operations

simplifying this way the computational hardware. It can easily be

shown that for several moduli of the form m = 2n + 1 and several
choices of N, all the N roots ri, i = 0;1; : : : ;N � 1 of xN � 1 =

h0i2n+1, their multiplicative inverses in Z2n+1 r�1
i , i= 0;1; : : : ;N�

1 and hN�1i2n+1 are all perfect powers of two. If the diminished-1

system [5],[6] is used for performing arithmetic mod 2n + 1, then

multiplications by powers of two can be implemented with leftwise
rotations and complementation operations and this way very little

computational hardware is required; (only the inverters responsible
for complementing some bits of the number being rotated). More

on diminished-1 arithmetic mod (2n+1)will be offered in section 2

of the paper.

Lemma 1 xN + 1 can be factorized into N distinct factors in

Zm as xN + 1 = h(x� r0)(x � r1) : : :(x � rN�1)im if and only if

pi = 2kiN + 1, ki = 1;2;3; : : :, i = 1;2; : : : ;L where N and m are

positive integers with a prime decomposition of m given in terms of

powers ei of its prime factors pi, as m = pe1
1 pe2

2 : : : peL
L with N < pi.

Similarly for xN � 1, the necessary and sufficient condition for its

factorization becomes pi = kiN+1, ki = 1;2;3; : : :. For both cases

the factorization is not unique; there are (N!)L�1 different ways to

factorize xN �1 into N distinct first-degree factors [4].

Lemma 2 For both congruences xN �1 = h0im, the multiplicative

inverses of their roots are also roots of the congruences, while the

additive inverses are roots of the congruences only when N is even

[4].

Due to the fact that if N is even and r is a root of xN � 1 = h0im
then h�rim is also a root, the number of scalings required for the

forward PRNS mapping can be reduced to almost one half.
The remainder of the paper is organized as follows: In section 2

the basics of diminished-1 arithmetic are reviewed. In section 3

the area, time and power dissipation performance of a PRNS
architecture that exploits the scalings by powers of two for the

forward and inverse converters is quantified and compared to a non-
PRNS architecture. The impact of multiple supply voltages on the

PRNS convolver architecture is discussed in Section 4. Finally,

conclusions are discussed in Section 5.



2. DIMINISHED-1 ARITHMETIC
Diminished-1 arithmetic has been proposed by

Leibowitz [5] as an efficient means for performing arithmetic
modulo 2n+1. In diminished-1 arithmetic, the quantity hx�1i2n+1

is used as an image of x 2 Z2n+1. The particular mapping allows

non-zero quantities to be represented using n bits, while zero is
mapped onto the quantity 2n, which requires n + 1 bits for its

representation.
When performing arithmetic mod (2n+1) using the diminished-

1 system, all input operands and the

corresponding results are expressed in diminished-1 form.
By exploiting the diminished-1 representation, addition mod

(2n + 1) is performed as an end-around carry operation, in two
phases: An ordinary n-bit addition is performed, the carry out

of which is negated and added back. Efficient parallel VLSI

diminished-1 structures for modulo 2n + 1 two-operand addition
have also been recently proposed [7].

Negation mod (2n + 1) is performed in diminished-1 system as

follows: When A 6= 0 and A 2 Z2n+1, A
dim-1
�! A�1. By taking the

one’s complement of A�1, the quantity h�Ai2n+1 in diminished-1
format is obtained.

In PRNS processing, scaling by powers of

two is an important operation and it can be efficiently implemented
in the diminished-1 system. In particular,



2kA

�
2n+1 is computed

as follows: The number A�1 is rotated k bits to the left, where the
bits shifted out of the most significant end are complemented and

shifted in the least significant end. The obtained result is expressed

in diminished-1 form.

3. PERFORMANCE OF PRNS
ARCHITECTURES

In the following the area, time and power dissipation

performance of N-point cyclic convolution

using the PRNS is quantified. The organization of the PRNS
system is depicted in Fig. 1. The PRNS performance is compared

to the performance of an architecture that employs conventional
modular arithmetic. It is shown that the PRNS can substantially

reduce both the area cost and the power dissipation of a system,

even when the corresponding forward and inverse conversion
overhead are taken into consideration.

The comparisons assume VLSI PRNS architectures that employ

the modulo-(2n + 1) multiplier by Wang et al. [6], and carry-save
(3;2)-counter Wallace trees for the N-operand additions mod (2n+

1), required by the forward and inverse converters. These structures
employ diminished-1 arithmetic mod 2n + 1. The non-PRNS

architectures employ the same multiplier and multi-operand adder

structures for the direct computation of the cyclic convolution.
A novel observation is employed in this paper to simplify

the converter design and hence reduce the PRNS implementation
complexity. In particular, when certain moduli m = 2n + 1 are

utilized for certain values of N, the roots of the polynomial xN �1,

and the multiplicative inverses of the roots and of N in Z2n+1
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Figure 1: The organization of a PRNS system.
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Figure 2: Scalings in the forward PRNS converter for N = 8
and m = 17 for the computation of a�1, assuming diminished-1
representation.

are powers of two, either of positive or negative sign. This is
demonstrated in Table 1 for several values of N and m. Hence, the

scalings in (3) and (5) are reduced to scalings by powers of two,
which can be efficiently implemented in diminished-1 arithmetic

as rotations and bit-negation operations, with very low hardware

complexity. This is demonstrated for N = 8 and m= 24+1= 17 in
Fig. 2, for a�1. The remainder of the a�i require scalings of similar

implementation complexity.

The area, time and power dissipation performance of the
PRNS-enhanced cyclic convolution architectures is summarized

in Table 2, for various numbers of points N and several moduli
of the form m = 2n + 1. The relative performance of a PRNS

and a non-PRNS architecture are compared in terms of the ratios
Anon-PRNS

APRNS
, Tnon-PRNS

TPRNS
, Pnon-PRNS

PPRNS
, and (PT )non-PRNS

(PT)PRNS
, where Ax, Tx, Px, and

PTx denote the area, time, power dissipation and power�delay

product complexity of the architecture x, i.e., non-PRNS or PRNS.
When a ratio assumes a value r larger than one, r > 1, then

the performance of the PRNS system is r times better than the

corresponding non-PRNS architecture; a value r < 1 denotes worse



N m fri; i = 0;1; : : : ;N�1g fr�1
i ; i = 0;1; : : : ;N�1g N�1

8 24 +1 f1;2;22
;23

;�23
;�22

;�2;�1g f1;�23
;�22

;�2;2;22
;23

;�1g �2
28 +1 f1;22

;24
;26

;�26
;�24

;�22
;�1g f1;�26

;�24
;�22

;22
;24

;26
;�1g �25

216 +1 f1;22
;28

;212
;�212

;�28
;�24

;�1g f1;�212
;�28

;�24
;24

;28
;212

;�1g �213

16 28 +1 f1;2;22
;23

;24
;25

;26
;27

;�27
;�26

; f1;�27
;�26

;�25
;�24

;�23
;�22

;�2; �24

�25
;�24

;�23
;�22

;�2;�1g 2;22
;23

;24
;25

;26
;27

;�1g

216 +1 f1;22
;24

;26
;28

;210
;212

;214
;�214

; f1;�214
;�212

;�210
;�28

;�26
;�24

;�22
; �212

�212
;�210

;�28
;�26

;�24
;�22

;�1g 22
;24

;26
;28

;210
;212

;214
;�1g

32 216 +1 f1;2;22
;23

;24
;25

;26
;27

;28
;29

;210
;211

;212
;213

; f1;�215
;�214

;�213
;�212

;�211
;�210

;�29
;�28

; �211

214
;215

;�215
;�214

;�213
;�212

;�211
;�210

; �27
;�26

;�25
;�24

;�23
;�22

;�2;2;22
;23

;24
;

�29
;�28

;�27
;�26

;�25
;�24

;�23
;�22

;�2;�1g 25
;26

;27
;28

;29
;210

;211
;212

;213
;214

;215
;�1g

Table 1: Roots ri of polynomials xN
�1 mod 2n +1, and the multiplicative inverses r�1

i and N�1 of the roots ri and of N in Z2n+1. It
can be seen that all the quantities are powers of two.

N m Anon-PRNS
APRNS

Tnon-PRNS
TPRNS

Pnon-PRNS
PPRNS

(PT )non-PRNS

(PT )PRNS

8 17 0.854 0.602 1.084 0.653
257 1.481 0.567 1.820 1.032

65537 2.462 0.556 2.912 1.619

16 257 1.671 0.559 2.136 1.194
65537 2.991 0.553 3.717 2.055

32 65537 3.341 0.550 4.284 2.356

Table 2: Area, time, power dissipation, and power�delay
performance of N-point cyclic convolution using PRNS
and modulo 2n + 1 arithmetic, compared to a non-PRNS
implementation, for single-modulus channel implementations.

performance of the PRNS system. The area, time and power

dissipation performance of the cells that build the diminished-1
arithmetic circuits, for both PRNS and non-PRNS architectures, is

obtained from a 0:7-µm CMOS library [8]. Table 2 reveals that the
totally parallel implementation of the N-point cyclic convolution

using PRNS, achieves significant area and power savings, at the

cost of a higher delay, due to the forward and inverse conversion.
As shown in the sixth column of Table 2, the power�delay product

of the PRNS implementation can be up to 2:4 times better than the

power�delay product of the traditional implementation, only at a
fraction of the area. As the number N of points grows larger, PRNS

area and power dissipation savings increase, over the corresponding
performance of the non-PRNS system. The particular behavior

of the experimental results is consistent with the computational

complexities given by (7) and (8).

4. MULTI-VOLTAGE CONSIDERATIONS
In case of a PRNS system which includes several moduli, further

optimization is possible, by using a different supply voltage for

each modulo channel. The capacitance along the critical path of

the employed modulo m = 2n +1 diminished-one multiplier is

Ccrit(m) = h(log2(m�1))CFA + log2(m�1)CFA +Cmux; (9)

where CFA is the capacitance of an 1-bit full adder, Cmux is the
capacitance of an 1-bit two-input multiplexer, and h(L) returns the

height of a Wallace tree that adds L operands and it is recursively
computed using [9]:

h(L) = 1+h

��
2L
3

��
(10)

h(3) = 1: (11)

The critical path capacitance can be exploited to derive the
delay along the maximum delay path of the particular multiplier

architecture can be approximated by (cf. [10]):

Tcrit(m) =
Ccrit(m)V

k(V �Vth)2
; (12)

where V is the supply voltage, k depends on implementation

technology parameters, and Vth is the device threshold voltage.
Eq. (12) implies that the delay of a particular modulo-m multiplier

depends on m and the supply voltage V . The different delays of

the various modulo channels can be balanced by properly selecting
the supply voltages of each channel. The utilization of multiple

supply voltages in RNS FIR filters has been proposed by Del Re et

al. [11]. In this paper, we study the application of multiple supply

voltages to PRNS architectures, and derive models and formulas

that return the supply voltage value per channel. Therefore, for a
PRNS system employing three moduli channels 24+1, 28+1, and

216 + 1, the supply voltage for each channel can be computed by
posing the requirement that the channels that correspond to smaller

moduli demonstrate equal delay time to the larger moduli channels,

i.e.,

Tcrit(2
16 +1) = Tcrit(2

4 +1) (13)

Tcrit(2
16 +1) = Tcrit(2

8 +1): (14)

Let V denote the supply voltage of the modulo 216 +1, and V17 =

β17V and V257 = β257V denote the supply voltages for the channels



mod 24 + 1 and mod 28 + 1. By combining (9)–(14), equations

can be formed the solution of which allows the computation of the

supply voltage reduction factors β17 and β257:

V (23CFA +Cmux)

k (V �Vth)
2 �

V β17 (7CFA +Cmux)

k (V β17�Vth)
2 = 0 (15)

V (23CFA +Cmux)

k (V �Vth)
2 �

V β257 (13CFA +Cmux)

k (V β257�Vth)
2 = 0: (16)

The solution of (15) and (16) returns

β17 =
1

2V 2 (23CFA +Cmux)

�
Cmux

�
V 2+V 2

th

�
+

CFA

�
7V 2+32VVth +7V 2

th

�
�jV �Vthj

p
7CFA +Cmuxq

Cmux(V +Vth)
2+CFA

�
7V 2 +78VVth+7V 2

th

��
(17)

β257 =
1

2V 2 (23CFA +Cmux)

�
Cmux

�
V 2+V 2

th

�
+

CFA

�
13V 2 +20VVth +13V 2

th

�
�jV �Vthj

p
13CFA +Cmuxq

Cmux(V +Vth)
2+CFA

�
13V 2+66VVth +13V 2

th

��
: (18)

From the two values obtained for each of b17 and b257, the one

that leads to V17;V257 < Vth is not legitimate [10]. In order to
quantify the voltage reduction factor, capacitance values taken from

a 0.7-µm CMOS standard-cell library [8] are utilized as follows:

Assuming CFA = 0:054pF Cmux = 0:067pF, Vth = 0:6V and V = 5V,
it is obtained that β17 = 0:472 and β257 = 0:674. Therefore,

without affecting the overall system delay, the mod 17 and mod

257 residue channels can operate at supply voltages V17 = 2:36V
and V257 = 3:37V. The particular supply voltage reduction directly

reduces the overall power dissipation of the system. Assuming
a Wallace-tree based implementation of a binary multiplier, the

power dissipated by an 8-point circular convolution by means

of a three-modulus PRNS system which offers a dynamic range
of 28 bits, is reduced by 30%. It is noted that the particular

performance improvement does not affect the latency of the system.
Furthermore, when compared to a full-parallel conventional binary

(non-RNS) implementation of the the 8-point convolver, a five-

times reduction in power is anticipated.

5. CONCLUSIONS
In this paper it has been shown that by properly selecting

the modulus of operation, the conversion complexity inherent

in a PRNS-based architecture can be reduced to scalings with
powers of two and additions. This substantial reduction leads to

significant power�delay product and area savings, in comparison

to a traditional architecture for the implementation of N-point
cyclic convolution. In addition, in a multi-modulus PRNS VLSI

architecture, the different delays displayed by the residue channels

can be exploited to further reduce power dissipation. This is
achieved by reducing the supply voltage of the smaller residue

channels, as dictated by (17) and (18).
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