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ABSTRACT 
A 1.75 MByte L2 cache has been designed and fabricated as part 
of the Alpha 21364 microprocessor[1] (Figure 1), in a .18µ bulk 
CMOS process. The cache was designed to run at 1.2 GHz, and 
pass-1 samples confirm this. While Alpha CPUs are known pri-
marily for high speed, the combination of package constraints and 
a tight schedule forced careful attention to the integrated whole of 
power expenditure and the interaction of CAD with design. The 
cache consumes only 7% of total die power.  

Categories and Subject Descriptors 
B.3.1 [Memory Structures]: Semiconductor Memories –  SRAM 
B.2.2 [Memory Structures]: Design Styles – cache memory 
B.7.1 [Integrated Circuits]: Types and Design Styles – Micro-
processors. 

General Terms 
Design, Performance, Verification. 

Keywords 
Cache memory, CPU, low-power, timing verification, logic verifi-
cation. 

1. INTRODUCTION 
Alpha CPUs have long been designed at the bleeding edge of 
performance. Their position on the power-delay curve could be 
described by “as much performance as possible without melting 
the system." Nevertheless, the relentless physics of power affects 
even this type of design, especially in the caches. The Alpha 
21364 CPU is built from a 21264 out-of-order CPU core[2]. We 
then added a 1.75Mbyte, level-2, combined I-D-cache and a sys-
tem interface (memory controller and router) around the core 
(Figure 1). To keep to a tight schedule, the 21264 core was modi-
fied as little as possible. 

 

The 21364’s power budget can be broken down as follows: 

• L2-cache clocking power: 3.9 watts 
• L2-cache RAM-array banks: 0.8 watts 
• L2-cache data distribution between the banks and the 

CPU core: 2.9 watts 
• L2-cache tags: 3.5 watts 
• Other (core, system interface, I/O): 138 watts 
• Total chip power: 150 watts. 

It is immediately obvious that engineering the L2-cache power 
consumption offers little opportunity for glory – reducing its 
power to zero would only reduce chip power by 7%. However, the 
opportunity for a spectacular failure is large. Simply put, the L2 
cache covers 37% of the Alpha 21364 chip area and contains 85% 
of the total devices; without careful attention to power, it may 
overwhelm the chip’s power budget. By contrast, the StrongARM 
110, a low-power RISC CPU, spent up to 43% of total chip power 
in the caches[3]. 

Chip power is rarely reduced without a corresponding tradeoff in 
chip speed, signal integrity, or schedule. Our goal in this paper is 
to show some of the design tradeoffs made in this cache, and 
highlight some of its innovative features. We further hope to show 
how, by carefully integrating CAD considerations into the overall 
design, the design tradeoffs were made without undue schedule 
impact or project risk. 

2. CACHE OVERVIEW 
The tags contain 28 banks of 128 rows by 248 columns. It con-
tains a total of 5.4M RAM devices and 350K non-RAM devices. 

The data arrays are far larger, and the rest of this paper will focus 
on them. They contain 108M transistors. This includes 6.9M non-
RAM transistors – as many non-RAM transistors as the entire 
21264 CPU[2]. The cache data arrays consist of 224 banks, 
organized into 28 sections of 4 bank pairs each (Figure 2). Each 
section contains ¼ of one of the 7 ways. That is, each way spans 
four sections, one in each corner. Tags are kept separately, in a 
central location. 

Each cache access requires one tag lookup; it then returns 128 
data bits in four fully-pipelined cycles. The tag lookup is decoup-
led from the data access; probes in the multiprocessor system 
require frequent tag lookups with no concomitant data access.  

Each bank of the cache contains 128 rows and 512 columns. An 
additional two spare rows and 8 spare columns provide redun-
dancy for improved yield. Banks are layed out in mirrored pairs – 
pairs of banks mirrored about their X axis, and sharing a common 
set of tristate super-bitline drivers in the center. We use dynamic 
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sense amps similar to [5,p.303]. 



We use M1 for local routing, M2 for horizontal bit lines, and M3 
for vertical word lines alternated with shields. Since the L2 cache 
is at the periphery of the chip, the only global routing above the 
cache is its own global bit lines, address, and control. This en-
ables us to use free upper metal layers to enhance electrical ro-
bustness. 

M4 and M5 are both horizontal(!). M4 is strictly Vdd/Vss, while 
M5 contains the main clock spines and global signals. Running 
these two metals in the same direction allows critical M5 lines to 
be shielded on both sides and below, creating a virtual coaxial 
cable. It also isolates the critical lower-level bit and word lines 
from global M5 routes. M6 is used for more Vdd/Vss and a small 
number of vertical clock bus-bars, and M7 for bump routing. The 
overall dense upper-level Vss/Vdd metallization gives us an ex-
tremely low-R and low-L path from Vss/Vdd bumps down to the 
lower metals. 

3. CACHE POWER 
The very first tradeoff we made was to give away performance in 
an area where it would not be missed. This L2 cache was being 
added to the existing 21264 CPU core. The core had originally 
been designed to interface with an off-chip L2 cache made of fast 
commercial SRAM. Bringing both the L2-cache tags and data on 
chip allowed us to significantly reduce their latency. However, 
beyond a certain point, the core was not ready to accept data any 
sooner.  Since the core could not take advantage of further L2 
latency reduction, we reduced power instead. 

We were able to meet this minimum latency while still serializing 
tag and data access. That is, we first do a tag access to determine 
which (if any) of the seven cache ways holds the current address. 
Only then do we activate the relevant 1/7 of the data arrays. This 
enabled a drastic power reduction vs. looking up data in each way 
and then muxing to pick the relevant one. 

When combined with using 3 more address bits to restrict our-
selves to enabling 1/8 of the banks, this means that only 4 of the 
228 banks are ever accessed simultaneously. Aggressive condi-
tional clocking of inactive word and bit lines thus greatly reduces 
the total power in the banks. With this done, only 11% of the total 
cache power is spent in the RAM arrays and surrounding circuits. 
Thus, techniques such as subbanking or bit-line segmentation[4] 
would not be highly effective in our situation 

However, 38% of the cache power is spent on the long wires dis-
tributing data between the cache banks and the CPU core. Given 
the size of the cache, this is not surprising. It could be reduced by 
low-voltage signaling techniques (e.g.,[5,pp.371-5]). Unfortu-
nately, sending data over these wires represents the most critical 
timing path in the cache, and reducing the power spent here would 
thus directly impact our cycle time. Instead, we focused on clock-
ing power. 

3.1 Clocking. 
Previous Alpha chips have used a dense global metal grid driven 
by an HTree or RC tree[1,2,3]. The main section of the 21364 is 
in fact clocked this way[6]. However, for power reasons, the 
cache has its own clock distribution network. Each of the East and 
West halves of the L2 has a separate distribution network; they 
are synchronized to the main clock by DLLs. 

A dense metal grid as used on most Alpha designs provides low 
skew across wide loading variations. However, this has also repre-
sented in clock power of up to 65% of the total chip power[3]. 
Clearly, this would have resulted in an unacceptable amount of 
cache power. 

Fortunately, due to the replication of the basic cache bank, our 
clock usage is extremely regular, rendering the dense grid less 
necessary. We thus investigated the use of a buffered HTree. 
Since the cache area is large, significant spreads of temperature, 
voltage, and intra-die variation can occur. Thus, a pure HTree 
would not provide tight skew; different buffers in the HTree could 
have different delays. We also investigated the use of an RC 
tree[5,p.270]. Since this relies on matching diffusion capacitance 
against metal capacitance, it cannot give low skew across process 
corners without a dense clock grid, and would have worse skew 
than an HTree 

We chose two identical global HTrees, one for each of the East 
and West halves of the cache (with one endpoint for each of the 
14 sections) driving an extremely sparse grid. The grid consists of 
a single horizontal M5 clock spine in each of the 28 sections, 
running the entire width of the section. These are tied together 
with a total of 4 vertical bus-bars (two each in the East and West). 
Each of the bus-bars runs nearly the entire height of the chip. 

RLC simulation shows that insertion of the bus-bars reduces total 
clock skew by 30% vs. a pure HTree. The sparse grid requires 
minimal metal usage. A denser grid would have reduced the effect 
of process/Vdd/temperature variations on clock skew, at the cost of 
extra clocking power. 

Based on their size, these bus-bars constitute 39% of the total 
clock-wire capacitance. This may seem like a large amount of 
clocking power. However, the total metal of the clock grid (in-
cluding the bus-bars) is only 17% of the total gate loading at-
tached to it. Thus, the bus-bars are only 7% of our total clock 
capacitance. 

3.2 Clock Shielding 
As mentioned, our M5 clock spines are shielded on both sides as 
well as below. This was done chiefly for signal-integrity reasons – 
with this configuration, and assuming that 75% of the metal layer 
above is populated with Vdd/Vss, only 6% of the wire capacitance 
is susceptible to crosstalk. Including the gate loading implies that 
less than 1% of the total clock load is from coupling. Since cou-
pling cap is data-dependent loading, the shielding reduces skew. 
By eliminating the possibility of crosstalk aggressors switching in 
the opposite direction as the clock, it also reduces clocking power. 

The shielding also decreases the clock-spine inductance. At high 
frequencies, shields running parallel to a wire are much better 
current returns than shields perpendicular to a wire. Worst-case 
RLC ringing is only 2% of Vdd, even though the clock grid is 
strongly driven for a fast edge rate. 

3.3 Synchronous Design 
The use of self-timed design is common in caches[e.g.,3]. For 
example, the strobe which fires the sense amplifiers may be de-
rived from the discharge of a dummy bit line, or may occur a fixed 
delay interval after (e.g.,) firing of a word line. For obvious rea-
sons, the use of a self-timed design reduces clocking power. How-



ever, it also introduces significant design risk –firing sense ampli-
fiers before enough bit-line differential has developed will result 
in non-functional operation. For this reason, critical delays are 
often made programmable. 

Instead, we used a fully-synchronous design. Bit-line differential 
is generated during phase 1, and then dynamic sense amps 
[5,p.303] are strobed at the start of phase 2. This design style is 
nearly risk free. Lowering the clock frequency will increase the 
bit-line differential as needed. For this reason, a synchronous 
design was deemed mandatory. 

However, the penalty in clock power was severe. Our most critical 
timing path in the cache starts from firing the sense amplifiers, 
and continues through repair logic and driving the very long wires 
back to the CPU core. Thus, in our synchronous design, we had to 
fire the sense amplifiers as early as possible in the clock cycle. 
Since the sense-amp clock is a gated clock, the minimum delay is 
through a single gate. 

A standard means of generating a conditional clock with a single 
gate delay is CCLK = NOR2 (CLK,EN_L). CCLK will then pulse 
high in phase 2 if ENA_L is active. However, due to their large P 
devices, highly-loaded NOR gates are both power and area ineffi-
cient. Instead (Figure 3), we conditioned the sense-amp strobe 
using CCLK=NAND2(CLK,ENA_H). CCLK is thus always high 
in phase 2. In those cycles where the strobe is due to fire in phase 
2, it goes low in phase 1, thus ensuring a rising edge will occur. 
For a constant output loading, the use of the NAND gate instead 
of the NOR reduces both clock loading and gate area by 20%. 

We further reduced area by downsizing the data P device. Since 
small circuits consume less power, this also reduces overall 
power. With ENA_H set up before the start of phase 1, this P 
device is used only as a keeper, and can be downsized as much as 
leakage concerns allow. 

Finally, we added a small internal precharge device inside the 
NAND to equalize the loading the NAND places on the main 
clock line, independent of the value of ENA_H. This improves 
skew, at a negligible power cost. 

Though the decision to use a synchronous design improved our 
schedule and reduced risk, it had a significant impact on clocking 
power. This single NAND gate represented 52% of our clock gate 
load. In perspective, however, this represents less than 2% of the 
chip power. 

3.4 Conditional Clocking 
The prime candidate to decrease clocking power is usually condi-
tionalizing the clock[5 p.268,7]. In any cache, clocklike signals 
such as word lines are only clocked when necessary. We also 
investigated shutting off the main clock grid. This would be diffi-
cult: 

• The chip goes into high-memory-bandwidth servers for data-
bases and scientific computing. This class of machine can 
use the L2 cache almost constantly. 

• The clock for the L2 cache is driven by a delay-locked 
loop[6]; the L2-cache clock must tick constantly to drive the 
DLL’s phase detector. 

It is thus difficult to conceive of turning off the entire global clock 
grid. Another option would be to break the grid into multiple 

smaller grids – one unconditional driving the DLL and a small 
amount of clock-control logic in each bank, and a separate smaller 
grid for each of the seven ways. We could calculate our power 
savings as: 

• Based on cache layout, the unconditional part of the grid 
would comprise ¼ of the total grid area. 

• Naively, only one of the other seven grids is ever powered on 
at the same time. In fact, due to overlap in the pipes, we 
typically have two ways with simultaneous transactions in 
their pipe at any time. 

• Power savings=1-[¼*1 + ¾*2/7]=54%. 

However, the L2-cache clock power represents only 3% of the 
total chip power. Thus, conditional clocking would save us only 
1.5% of the total chip power. 

On the other hand, conditionally clocking the main power grid 
would increase the clock skew [5,p.265](as conditional clocking 
almost always does). Furthermore, it causes severe disruptions to 
the verification flow, as detailed next. On the whole, then, it did 
not seem worth the risk. 

4. CAD OVERVIEW 
Understanding up front the limitations of our CAD tools in deal-
ing with a design of this size helped us avoid design choices that 
would have hurt our schedule. In other cases, being able to en-
hance our tools allowed us to reduce our design margin. 

4.1 Logic Verification 
Verifying the correct logical operation of  a cache this size pre-
sents obvious difficulties. Simulation in a switch-level simulator 
such as Cosmos[8] is not possible in any computer available to us, 
due to virtual-memory limitations. We could, of course, remove 
all of the RAM cells and then simulate it with Cosmos. However, 
even this is quite slow – and with 8.4M non-RAM devices, ex-
haustive non-symbolic simulation is unthinkable[9]. 

Symbolic simulation (e.g., Symbolic Trajectory Evaluation[10]) 
would have been possible. STE has been successfully used to 
verify several memory arrays [11]. However, it is most useful 
when a functional block, though internally complex, can have its 
external behavior described by its response to a small number of 
symbolic stimuli. This is not the case for us. First, the internal 
structure of the cache is quite regular and not complex. Moreover, 
the cache is driven by a complex BIST engine. Our real problem 
is not verification of the cache by itself, but rather the combina-
tion of cache and BIST engine – and the BIST engine’s behavior 
is not easily described by a small number of assertions. Finally, 
STE engines are not readily available, and the pool of verification 
engineers skilled at using them is correspondingly small; this 
would have hurt our schedule. 

Instead, we verified the RTL with focused tests. We then did for-
mal equivalence checking of RTL vs. schematics. This placed 
severe constraints on the RTL. First, it must be written at a low 
enough level that a formal-equivalency-checker tool can compare 
it to the schematics. On the other hand, it must be written at an 
abstract enough level to run very quickly in the RTL simulator – 
the BIST sequence is over 6 million cycles long. 



Our RTL simulator uses levelized compiled code and phase parti-
tioning. Rather than using bit-parallel simulation to simultane-
ously simulate different patterns, it packs 64-bit-wide busses into 
a single machine word for better single-simulation performance. 
Since the RAM datapath is largely wide busses, this would seem a 
natural fit. Unfortunately, the combination of swizzling the ad-
dress and datapaths, 4-1 column muxes, and row/column repair 
made this very difficult without significant bit packing and un-
packing. 

Our resolution was to pack the RTL bits in whatever manner was 
necessary to make the RTL fast. This was quite different than the 
actual bit order in the schematics. However, the discrepancy was 
only visible in the RTL↔schematic mapping file used by the 
equivalency checker. Since the equivalency checker is run only 
rarely, and compares each bit of a bus separately in any case, this 
was not a problem. 

With this done, the full-chip model ran only 15% slower with our 
detailed model than with a previous abstract cache model. We 
mentioned earlier that conditionalizing the main clock grid would 
have prevented this. The reason is that the cache needs clocks in 
both phases. Assume that the main clock grid is a conditional 
phase-1 clock. Inverting it to make a phase-2 clock would create a 
signal that is always high in phase 2, and conditional in phase 1. 
ANDing this with a condition to make a phase-2 conditional clock 
would create a signal that could be high or low in both phases. 
Though correct architectural use of these clocks ensures correct 
functionality, the use of “clocks” which may be high or low in 
either phase confuses CAD tools. 

In particular, the phase partitioner used in the RTL simulator 
model fails to understand the clocking. The majority of the nodes 
actually switch only once per cycle; without proper phase-timing 
information, the code generator must schedule them for evaluation 
every phase. This nearly double the number of gate evaluations 
vs. more traditional clocking. 

4.2 Race Verification 
Our use of a very sparse clock grid, while saving power, causes 
more skew than on the rest of the die. If this skew caused a race, 
the chip would be non-functional at any speed. To minimize this 
risk, each of the 28 HTree endpoints was treated as its own clock 
domain. Essentially, we assumed arbitrary worst-case skew be-
tween endpoints, and designed around it with deskewing circuits 
(e.g., Figure 4). This guarantees functionality at any clock skew 
(though clock skew will still hurt the cycle time). Similarly, all 
paths between the cache and a clock grid on a different DLL were 
deskewed. Our race-checking tool[12] was extended to check that 
proper deskewing was done. In addition, it allowed us to break 
down the design and analyze it hierarchically. Long wires requir-
ing RLC simulation were identified with heuristics similar to [13], 
and then manually verified. Understanding the clocking is funda-
mental to the race checker’s operation. Thus, again, conditionaliz-
ing our main clock grid would have made this tool’s operation 
quite difficult. 

5. HINDSIGHT 
Hindsight is always 20-20; we could have done many things bet-
ter. The design of the data arrays, commonly thought of as the 
“entire” project, went smoothly. However, we greatly underesti-

mated the layout complexity of the wiring between the data arrays 
and the core. The global timing of these wires proved similarly 
complex – they encompass every clock domain on the chip. 

Similarly, we underestimated the contribution of this wiring to the 
global power budget. The write-data paths to the data arrays were 
not speed-critical. With more schedule time, we could greatly 
reduce the power they used; either by inserting “dummy” latches 
to mask unneeded transitions or by using low-swing signaling. 

Hooking up our global power grid to the rest of the chip proved 
difficult. The power grids of the L2 cache and of the rest of the 
chip were both done in a very regular fashion – but independently 
of each other. This simple oversight required a time-consuming 
final stitching operation. 

With hindsight, we have justified significant percentages of the 
L2-cache power as being insignificant to the overall chip power. 
Early in the design, these numbers were less clear. Instead, we 
made the decisions somewhat by gut feel and later reversed the 
ones which were wrong. For example, we originally did condition 
the main clock grid; but then reversed that decision when the 
CAD implications and the total chip power became clearer.  

6. CONCLUSIONS 
While “traditional” Alpha designs have been done with power as 
an afterthought, this is no longer possible. Though it covers 37% 
of the die area and 85% of the transistors, the Alpha-21364 L2 
cache represents only 7% of the chip power. This was achieved by 
careful attention to clocking and to schedule. The requisite con-
straints were met by treating speed, power, and CAD algorithms 
as one integrated whole. Design decisions were made only in light 
of verification capabilities. Even at the high-power, low-volume 
end of the CPU spectrum represented by Alpha CPUs, we expect 
this trend to become more pronounced in the future. 
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