
Efficient Architectures for implementing Montgomery
Modular Multiplication and RSA Modular Exponentiation

on Reconfigurable Logic

Alan Daly
Dept. of Electrical and Electronic Engineering

University College Cork
Ireland

aland@rennes.ucc.ie

William Marnane
Dept. of Electrical and Electronic Engineering

University College Cork
Ireland

marnane@ucc.ie

ABSTRACT
This paper presents a review of some existing architectures
for the implementation of Montgomery modular multipli-
cation and exponentiation on FPGA (Field Programmable

Gate Array). Some new architectures are presented, includ-
ing a pipelined architecture exploiting the maximum carry
chain length of the FPGA which is used to implement the
modular exponentiation operation required for RSA encryp-
tion and decryption. Speed and area comparisons are per-
formed on the optimised designs. The issues of targeting a
design specifically for a reconfigurable device are considered,
taking into account the underlying architecture imposed by
the target technology.

Keywords
RSA, Encryption, Montgomery, Modular Multiplication,
Exponentiation, FPGA, Public Key

1. INTRODUCTION
In a secure telecommunications network such as is in-

creasingly required for electronic commerce and internet pri-
vacy, security requirements include confidentiality, authen-
tication, data integrity and non-repudiation. These services
are offered by public key cryptosystems, the most popular
of which is the RSA encryption scheme [1]. The fundamen-
tal operation of the algorithm is modular exponentiation
which is achieved by repeated modular multiplications. The
Montgomery modular multiplication algorithm [2] is often
used to perform these calculations. However, the high bit
lengths required to provide adequate security (1024 bits is
considered secure against attack in the near future), mean
a high hardware throughput is difficult to achieve.

An efficient algorithm for the calculation of (A×B) mod
M was developed by P. L. Montgomery [2], and forms the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002 ...$5.00.

basis of the designs presented here. It should be noted that
Montgomery’s algorithm only works if the modulus is rela-
tively prime to the radix, although this is always the case in
RSA.

This paper is organised as follows: Section 2 gives a brief
introduction to the RSA cryptosystem and it’s operation,
Section 3 introduces the Montgomery method of modular
multiplication and presents 3 variations of the algorithm.
Section 4 then explains how the Montgomery modular mul-
tiplier in Section 3 may be used to implement modular expo-
nentiation. Section 5 gives some previous implementations
presented by other authors, and their approaches and re-
sults. Section 6 describes how the underlying architecture
of the target FPGA device may be utilised to produce an
optimum design. Section 7 presents various hardware imple-
mentations of the basic Montgomery multiplier, and Section
8 describes how the multiplier may be pipelined to exploit
the maximum carry chain length available. This pipelined
multiplier is then used in Section 9 to implement a full mod-
ular exponentiator capable of implementing RSA encryption
and decryption. Speed and area results of the designs are
presented in Section 10, and finally some conclusions are
drawn in Section 11

2. THE RSA CRYPTOSYSTEM
The RSA public key cryptosystem [1] was proposed by

R.L. Rivest, A. Shamir and L. Adleman in 1978. Encryp-
tion and decryption are identical modular exponentiation
operations, the only difference being the inputs, making it
relatively easy to implement. This modular exponentiation
is performed by repeated modular multiplications. With
the exponent being in the region of 1024 bits, this means
that many multiplications must be performed per exponen-
tiation. In order to achieve real-time encryption and de-
cryption, it is therefore necessary to perform fast modular
multiplications.

The public and private keys are found as follows:
Two large (≈ 512bit) prime numbers, P and Q, are cho-

sen, and their product M is computed.

M = P × Q

The Euler Totient Function, φ(M) is defined as “ the number

of positive integers smaller than M which are relatively prime

to M”, or symbolically:

φ(M) = (P − 1) × (Q − 1)

An integer, D (< M), is chosen to be relatively prime to
φ(M). ie:

gcd(φ(M), D) = 1

Then the integer, E is computed, which is the multiplicative

inverse of D, modulo φ(M).

E × D ≡ 1(modφ(M))

To encrypt a plaintext message P , the entire message must
first be represented as a sequence of integers between 0 and
M − 1, and then raised to the Eth power modulo M . Sim-
ilarly, to decrypt the ciphertext C, it must be raised to the
Dth power modulo M . Therefore:

C = P E(mod M)

P = CD(mod M)

The public encryption key is then the pair of positive in-
tegers (E, M), and the private decryption key is the pair of
positive integers (D, M).

The only known way of deriving D from E and M is
to factor M into P and Q. Thus the security of the RSA
cryptosystem ultimately relies on the inability of a potential
attacker to effectively factor large integers. At present, with
only currently available mathematical techniques and com-
puting power, this is considered to be a valid assumption for
integers of 1024 bits or greater.

3. MONTGOMERY MULTIPLICATION
Modular multiplication is generally considered to be a

complicated arithmetic operation because of the inherent
multiplication and division operations. There are two main
approaches to computing modular multiplication: (1) Per-
form the modulo operation after multiplication or (2) dur-

ing multiplication. The modulo operation is accomplished
by integer division in which only the remainder is needed for
further computation. The first approach requires a n×n bit
multiplier with a 2n-bit register followed by a 2n×n bit di-
vider. In the second approach, the modulo operation occurs
in each iteration step of integer multiplication. Therefore
the first approach requires more hardware, while the second
requires more addition/subtraction computations [3].

The ordinary modular multiplication algorithm for the
computation of (A × B) mod M takes the normal multi-
plication method which accumulates digit products A × bi

and interleaves modular reductions to keep the result below
M . These reductions are achieved by subtracting the cor-
rect multiple of the modulus from the intermediate result.
This reduction is dependent on the most significant bits of
the operand.

Montgomery’s algorithm [2], on the other hand, reverses
the order of treating the digits of the multiplicand, using
the least significant bits of the intermediate result to per-
form an addition rather than a subtraction, and performs a
shift down operation instead of a shift up operation on each
iteration.

Three slightly modified Montgomery product (MonPro)
algorithms are examined here, each lending to a slightly dif-
ferent hardware architecture.

The pseudo-code to perform the 3 MonPro operations is
given in algorithms (1),(2) & (3) where:

A =

k−1∑

i=0

ai2
i, B =

k−1∑

i=0

bi2
i, M =

k−1∑

i=0

mi2
i

ai, bi, mi ∈ {0, 1}

and given that the modulus, M , is at most, a k-bit integer
(ie: 0 < M < 2k), and A, B < M , then the bit length of the
multiplier, n, is defined to be equal to k + 2. It is necessary
to make the bit length of the multiplier equal k+2 to ensure
that the intermediate result, S, remains bounded (ie: 0 ≤
S < 2k). This condition allows the intermediate result to be
used as an input for the next iteration.

Algorithm 1 : MonPro1(A,B,M)

MonPro1 (A,B,M)
{

M ′ := M+1

2
;

S−1 := 0 ;
for i = 0 to n do

qi := (Si−1) Mod 2 ; (LSB of Si−1)
Si := Si−1/2 + qiM

′ + biA ;
end for
Return Sn ;

}

Algorithm 2 : MonPro2(A,B,M)

MonPro2 (A,B,M)
{

S−1 := 0 ;
for i = 0 to n − 1 do

qi := (Si−1+biA) Mod 2 ; (LSB of Sum)
Si := (Si−1 + qiM + biA)/2 ;

end for
Return Sn−1 ;

}

Algorithm 3 : MonPro3(A,B,M)

MonPro3 (A,B,M)
{

S−1 := 0 ;
A := 2 × A ;
for i = 0 to n do

qi := (Si−1) Mod 2 ; (LSB of Si−1)
Si := (Si−1 + qiM + biA)/2 ;

end for
Return Sn ;

}

Note that algorithm (1) requires one more iteration of the
for loop than algorithm (2), and thus computes one Mont-
gomery modular multiplication in n +1 clock cycles instead
of n. Algorithm (1) is preferable for use in systolic structure
arrays, where the multiplier is constructed from identical
processing elements such as those proposed by Kornerup [4].
Algorithm (3) is a modification of algorithm (2) whereby the
multiplicand A is shifted up by 1 bit to simplify the calcu-
lation of qi. This implies that the result is a factor of 2
too large, and so the for loop must be executed an addi-
tional time to eliminate this factor. Thus, algorithm (3) also
requires n + 1 clock cycles.

Each of the MonPro functions then computes a Montgomery
product of the form:

MonPro (A, B, M) = ABr−1 mod M (1)

Unfortunately, the extra factor of r−1 is picked up in the
calculation, and some pre- and post-calculations are required
to produce the correct result. Here, r−1 is the inverse of r
(mod M), ie: r−1r = 1(mod M), where r is given by:

r = 2n

The m-residue A, of an integer A < M is defined as:

A = Ar mod M (2)

The MonPro function can be used to convert an integer
to it’s M -residue as follows:

MonPro (A, r2, M) = Ar2r−1 mod M

= Ar mod M

= A

So to convert a number, A, to it’s M -residue, A, it is
necessary to compute MonPro (A, r2, M).

However, the value r2 = 22n is outside the allowed range
for inputs to the MonPro function (0 < M < 2n−2), so we
must compute:

MonPro (A, 22nmod M, M)

This value of (22n mod M) must be precomputed externally.
However, this value is constant for a given bit-length and
modulus, and could ideally be stored in a database along
with the recipient’s public key (M & E) in RSA applications.

It can be seen that the Motgomery product of 2 M -residues,
A, B, is itself an M -residue, S :

S = MonPro (A, B, M)

= ABr−1 mod M

= ArBrr−1 mod M

= ABr mod M

= Sr mod M

so a final calculation is required to convert S back into the
ordinary form of the integer, S :

S = Sr−1 mod M

= 1Sr−1 mod M

= MonPro (1, S, M)

A precondition for the algorithm to work is that the mod-
ulus, M , has to be relatively prime to the radix, r (ie:
gcd(M, r) = 1). This is always the case in the RSA cryp-
tographic system [1] since M = p × q, a product of 2 large

primes, and therefore odd. And since r is a power of 2, it is
always even.

Due to the fact that the operations of mod r and div r
are intrinsically fast in binary systems since r is a power of
2, Montgomery’s algorithm is faster and easier to compute
than the ‘ordinary’ modular product AB mod M . How-
ever, the additional operations of conversion to and from the
M -residue format, and the pre-computation of 22nmod M
add extra steps to the calculation. Thus, it is not advanta-
geous when only a single modular multiplication needs to be
performed. It is more appropriate when several multiplica-
tions with respect to the same modulus are to be performed
such as in the RSA modular exponentiation algorithm.

4. MODULAR EXPONENTIATION
Modular exponentiation is performed by repeated modu-

lar multiplications. There are two common algorithms which
can be used: The L-R Binary Method, which is area opti-
mised, and the R-L Binary Method which is speed opti-
mised. These are given in algorithms (4)&(5), where P is
the plaintext, E is the exponent, M is the modulus, C is the
constant 22nMod M (which must be precomputed), and R

is the result.

Algorithm 4 : L-R Algorithm : MonExp1(P, E, M)

MonExp1 (P, E, M)
{

C := 22n mod M ;
P :=MonPro(C, P, M) ; (Mapping)
R :=MonPro(C, 1, M) ;
for i = k − 1 downto 0 do

R :=MonPro(R, R, M) ; (Square)
if (Ei = 1) then

R :=MonPro(R, P, M) ; (Multiply)
end if

end for
R :=MonPro(1, R, M) ; (Re-Mapping)
Return R ;

}

Algorithm 5 : R-L Algorithm : MonExp2(P, E, M)

MonExp2 (P, E, M)
{

C := 22n mod M ;
P :=MonPro(C, P, M) ; (Mapping)
R :=MonPro(C, 1, M) ;
for i = 0 to k − 1 do

if (Ei = 1) then
R :=MonPro(R, P, M) ; (Multiply)

end if
P :=MonPro(P, P, M) ; (Square)

end for
R :=MonPro(1, R, M) ; (Re-Mapping)
Return R ;

}

In algorithm (4), the square and multiply operations must
be performed sequentially, and therefore the 2n multiplica-
tions must be performed in series. It does mean that both
the square and multiply operations can be performed in the
same single hardware multiplier, thus saving on area.

In algorithm (5), the square and multiply operations are
independent, and may be performed in parallel. Thus, 50%
less clock cycles are required to complete the exponentiation.
However, two physical hardware multipliers are required to
achieve this speed up. Therefore, the speed × area products
of both algorithms are very similar.

For this paper, the R-L algorithm (algorithm (5)) will be
used since the primary aim is to increase the data through-
put or bit-rate of the exponentiator for real time encryp-
tion/decryption.

5. PREVIOUS IMPLEMENTATIONS
By considering Montgomery’s algorithm at a bit-wise level,

a Processing Element (PE) can be specified to perform the
multiplication, and implement modular multipliers up to
any desired length by simply combining multiple PE’s.
Figure 1 shows one of the basic PE’s which will be used
to construct the array multiplier illustrated in figure 2.

S_i

S_o

C_i

x

x

C_o

yy

Figure 1: Processing Element used in figure.2.

Each PE performs the following logical operations:

So = Si ⊕ Ci ⊕ x · y

Co = (Si · Ci) + (Si · (x · y)) + (Ci · (x · y))

where x and y represent Ai or Mi and bi or qi respectively.
All PE’s are identical, and a total of 2n(n−1) are required

to perform 1 multiplication as illustrated in the DDG of
figure 2. The LSB of the Result, S0 appears at the LSB of
row n, and successive bits of the result (S1 − Sn−1) appear
on subsequent LSB’s of rows (n + 1) − (2n − 1). Thus the
MSB of the result Sn−1 appears at the LSB of row 2n − 1.
The values of qn,...,q2n−2 and bn,...,b2n−2 must be set equal
to 0. Walter presents a similar 2D array in [5], however the
carry propagation is in the right-to-left horizontal direction,
resulting in a maximum carry chain length of n-bits.

By examining the DDG of figure 2, it is observed that
the PE’s can be pipelined in a systolic fashion, according
to the order indicated. By mapping calculations occuring
at different times to a single PE, a bit serial systolic array
is derived. By introducing a clock into the system, only 2n
PE’s are required as illustrated in figure 3.

In this architecture, the multiplier bi is loaded bit serially
from the LSB of the array, and is fed in a systolic manner
through the array.

After n clock cycles, the LSB of the result, S0, is valid at
the LSB and after a further (n − 1) clock cycles, the MSB
of the result, Sn−1, is valid.

0

0 0 0 0 0

0

q =00

b0

b1

A0A1A2

q1

M’0M’1M’2

An-1 An-2

M’n-2M’n-1

Sn-1

b2n-2 (=0)

1

1

1

1

2

22

2

1

1

2

2

2n-1

2n-1

2n-1

2n-1

2n-1

2n-1

2n-1

2n-1

2n-1

2n-1

1 1

1 1

2

2

2

2

q2n-2 (=0)

Figure 2: Data Dependence Graph (DDG) for
Montgomery multiplication using
algorithm (1).

Sn-i Sn-2 S2 S1 S0

0

qi

bi

A1

M’1

A0A2An-1 An-2

M’0M’2M’n-2M’n-1

Figure 3: Bit serial systolic array for Montgomery
multiplication using algorithm (1).

This is the design developed for FPGA implementation by
Marnane in [8]. By building the multiplier from individual
processing elements, each operating on 1 bit of the calcula-
tion, a ratio of 2 bit slices to 5 CLB’s (Configurable Logic

Block’s) was achieved, making it possible to implement a
360-bit multiplier on a Xilinx XC4025 FPGA. By exploiting
the reconfigurability of the FPGA, the design could be opti-
mised further to achieve an array length of 450-bits provided
the value of M is pre-programmed, using 2 CLB’s per bit
slice. A clock speed of 50MHz was achieved, and a single
multiplication required 2n − 1 clock cycles to execute. The
issue of pre- and post-calculations to convert to and from
M -residues was not addressed.

A similar systolic multiplier design is implemented by
Kornerup in [4]. Both algorithms (1) & (2) as introduced in
Section 3 are presented, with algorithm (1) being favoured
for the systolic implementation.

Instead of implementing the multipliers as an array of
systolic processing elements, they may be implemented as
two Carry Propagation Adders (CPA).

Recently, the authors of [9] proposed a design similar to
the the MonArch2 design presented in section 7.1 of this
paper. The authors chose to use the R-L exponentiation
algorithm, thus increasing clock frequency by implementing
two modular multipliers. The design was is targeted for

VLSI implementation, based on 0.5µm SOG technology, and
uses a Double Carry Save Adder (CSA) structure with an
additional CPA to implement the multipliers. The design
produces an M-residue result from 2 M -residue inputs. The
issue of mapping to and from M -residues is dealt with as in
section 3 of this paper.

In their example, the two CSA’s perform the basic oper-
ation in n = 1026 clock cycles, and another 32 clock cycles
to perform the addition in the CPA. A bit rate of approxi-
mately 46.5kbit/s is achieved for the 1024 bit exponentiator.

In [9][10] the authors suggest that the size of r be 2 bits
larger that that of the modulus to limit the range of the
intermediate output and that the for loop of the MonPro
algorithm be executed k+3 times to ensure that the result
of one modular multiplication may be reused as an input for
the next multiplication, and thus make it possible to pipeline
the algorithm.

Walter and Eldridge present a good review of methods of
improving multiplier efficiency in [6], and Walter provides
further insight into the Montgomery algorithm in [5]&[7].
However, none of their discussions deal with implementa-
tion of the algorithm on FPGA devices, and so not all of
their efficiency improvements can be implemented in the ar-
chitectures presented here.

The Baud rates being achieved by other RSA designs are
around 34kbit/s by Kim, Kang & Choi in 2000[11] for 1024
bits, 118kbit/s by Yang, Chang & Jen in 1998 [12], and
278kbit/s by Guo, Wang & Hu in 1999 [13] for 512 bit de-
signs. These are VLSI implementations and obviously can-
not be directly compared to the FPGA results provided in
this paper, but this gives an idea of the data throughput
rates expected.

6. UNDERLYING FPGA ARCHITECTURE
Unlike ASIC design, there is an uderlying architecture im-

posed upon FPGA circuit design. Thus an optimum design
for FPGA will exploit the features available.

Typically, FPL devices today are comprised of config-
urable units which consist of 4-input lookup tables, simple
D-type Latches, and control logic. The lookup tables can
be used to implement 4-input function generators or 16x1-
bit RAM. This type of RAM is given the term Distributed

RAM. Block RAM may also be provided on another area of
the chip dedicated for this purpose.

Some devices contain high speed interconnect lines be-
tween vertically adjacent logic blocks which are designed
to provide efficient carry propagation. This dedicated logic
provides carry capability for high speed arithmetic func-
tions. In order to exploit the fast carry chain, the logic
blocks in which the carry signals are generated and propa-
gated must be placed in a single column on the FPGA. This
dedicated carry logic improves both the speed and area of
arithmetic operations.

The architectures presented in this paper are optimal for
implementation on any FPL device which has dedicated
carry logic capability. Speed and area results may differ be-
tween technologies due to routing and different physical lay-
out, however by exploiting the maximum carry chain length,
the optimum design can be tailored to a given target device.

The carry save adder design which can be used to increase
large digit addition speed on VLSI designs does not improve
efficiency on FPGA designs, since it does not fully exploit
the fast dedicated carry logic provided.

7. MULTIPLIER ARCHITECTURES

7.1 Double Adder Architectures
If the direction of carry propagation in figure 2 is modified

to flow from right to left, two carry propagation adders are
obtained which can be mapped directly to two n-bit full-
adders. This is presented as MonArch1 in figure 4. The fast
carry chain of the Configurable Logic Blocks (CLB’s) in the
FPGA can be exploited to reduce the clock period. Also,
by using the dedicated AND gate provided in each CLB, 2
adder and biA or qiM functions can be performed in one
CLB.

The first layout presented is based on algorithm (1) which
requires an additional precomputation to convert M to M ′

before multiplication begins. This architecture requires n+1
clock cycles to complete a calculation.

M’

A bi

qi

Si-1(0)

n ~ bit Adder

n ~ bit Adder

S ,...,Si-1 i-1(n-1) (1)

LSBMSB, … ,LSB+1

Figure 4: MonArch1 : Montgomery multiplier
architecture based on algorithm (1).

By basing the architecture on algorithm (2), the number
of clock cycles can be reduced to n as illustrated in figure 5.
The value of qi is now taken directly from the LSB of the sum
of Si−1 and biA. The second adder must also be increased
to n + 1 bits to account for the division by 2 after addition
rather than before (In fact, only the n most significant bits
are taken from the n+1-bit result, the LSB being discarded).

M

A bi

qi

n ~ bit Adder

(n+1) ~ bit Adder

S ,...,Si-1 i-1(n-2) (0)

LSB

MSB , … , LSB

LSB

MSB , … , LSB+1

Figure 5: MonArch2 : Montgomery multiplier
architecture based on algorithm (2).

To remove the dependency of qi on the addition of biA
and Si−1, A can be shifted up 1 bit, thus forcing the LSB
of Si−1 + biA to always be zero, as illustrated in figure 6.
However, this extra factor of 2 must be removed by an extra
iteration, meaning that the number of clock cycles is again
equal to n + 1.

M

2A bi

qi

Si-1(0)

n ~ bit Adder

(n+1) ~ bit Adder

S ,...,Si-1 i-1(n-2) (0)

LSBMSB, … ,LSB+1

Figure 6: MonArch3 : Montgomery multiplier
architecture based on algorithm (3).

If the order of the additions is rearranged, the architecture
of figure 7 can be used. Again A must be shifted up by 1 bit
and n + 1 clock cycles are required. However, there is a sig-
nificant increase in the operation speed of this architecture
over the preceding ones due to the fact that the bi2A + qiM
calculation can be performed as soon as the 2 LSB’s of the
other addition are complete. Thus, both adders can work
almost in parallel. This design does however require slightly
more area due to the need for 2 n-bit registers at the input
to the second adder.

M2Abi qi

n ~ bit Adder

(n+1) ~ bit Adder

S ,...,Si-1 i-1(n) (0)

LSB

LSB+1

MSB , … , LSB+1

S ,...,Si i(n) (0)

Figure 7: MonArch4 : Modified Montgomery
architecture based on algorithm (3).

7.2 Mux/Add Architecture
By examining figure 7, it can be seen that, for any itera-

tion of a given multiplication, there are only 4 possible out-
puts from the first adder. These are; 0, M , 2A, or M + 2A,
depending on the values of bi and qi. Therefore the imple-
mentation of 2 adders is wasteful. Instead, a multiplexer
could be used to select from the 4 possible inputs to the
adder as shown in figure 8.

This design requires that the value of 2A+M be computed
and stored in a register before the actual multiplication be-
gins. This can be achieved with 2 extra clock cycles; the
first to load M into the adder, and the second to add this
value to 2A. The result is then stored in the 2A + M reg-
ister, and the inputs to the adder reset to 0. Two select
lines control the output of the multiplexer. During the ac-
tual multiplication, one would equal qi, and the other bi,
however additional control is required to ensure the precal-
culation is performed correctly.

R.S.1
Mux

10 01 0011

M+2A

2A

M

0

ai

RST

Load1

Load2

LSB = Q

Sel0

Sel1

Figure 8: MuxMult1 : Montgomery modular
multiplier architecture with single
adder and multiplexer.

7.3 Distributed RAM Architecture
An extension of the idea proposed in figure 8, is to replace

the multiplexer with a RAM. The LUT in each CLB can be
implemented as a 16 × 1 Distributed RAM block.

Therefore it is proposed to use a 4xn RAM to store these
values, and by using bi and qi as address lines, any of the 4
possible outputs can be selected (figure 9). The value of A
can be written into the RAM at the start of each calculation,
and since M is relatively constant (for a given recipient in
the case of RSA), it can be initialized in the RAM at con-
figuration. Also, the value of M + 2A must be calculated
at the beginning of each multiplication and then written to
the RAM.

Addr
01

D_in

D_out

RAMR.S.1

Mux

Shift
Reg

LSB

2A

qi

ai

init 0 1

rst

Select
Logic

init
rst

bi

Figure 9: RAMMult : Distributed RAM design
with single adder.

Again relatively few extra initialization steps are required
to load the RAM with the values of 2A, M , and then M+2A.
A shift register is still required to load A serially and load
it into the RAM. The dedicated Block RAM can be used as
a shift register to load, store, and input B to the multiplier.

Speed and area results for 64-bit implementations of the
unpipelined multiplier of figures. 4-10 are given in Table 1.
These were targeted to a Xilinx Virtex V600FG680-6 FPGA.
Included in the designs were 64-bit shift registers to load
in the values of A & M, and to output the result S in a

Architecture No. of Slices Clock Freq.

MonArch1 162 104.46 MHz
MonArch2 161 102.40 MHz
MonArch3 161 105.74 MHz
MonArch4 194 119.47 MHz
RAMMult4 194 74.12 MHz
MuxMult1 161 114.53 MHz
MuxMult2 162 113.87 MHz

Table 1: Speed & area results for a 64-bit
Montgomery modular multiplier.

bitwise manner. The data throughput figures are calculated
for a single multiplication, since the result would need to be
output, and the next set of inputs loaded into the registers
before the next multiplication can commence. This could
be overcome by including an extra n-bit register for A, B, &
M, so that the values may be loaded while a multiplication
is being performed.

It can be seen from Table 1 that architectures MonArch1-3
have very similar area and speed characteristics. However,
architecture MonArch4 is almost 13% faster. The RAM
multiplier performs much slower than the other architec-
tures, due to the access time of the RAM. The Mux/Add
architecture doesn’t perform quite as well as the MonPro4
architecture, but it is better suited to the requirements of
the multiplier needed to perform modular exponentiation.

The number of CLB’s per bit of the multiplier is approx-
imately 1.25 for designs MonArch1-3 and MuxMult, and
1.5 for MonPro4 and the RAMMult designs. This is signifi-
cantly lower than that achieved by previous implementations
such as [8].

Overall, it was decided that the MuxMult architecture
was best suited for use in the exponentiator design due to
its high speed and lower area requirements. Therefore, the
remainder of the paper will concentrate on this architecture.

8. PIPELINED MUX/ADD ARCHITECTURE
When the bitlength of the multiplier exceeds the maxi-

mum carry chain length (or 1 column of the FPGA), the
advantage of exploiting the carry logic is lost. By divid-
ing the calculation into j p-bit words, and pipelining it, an
improvement in clock speed is achieved (where p is the max-
imum length of the carry chain for the device in question,
and j = n/p). Therefore p is is a function of the target de-
vice resulting from the underlying physical architecture of
the device.

The inputs to the multiplier must be broken into p-bit
words, and the carry out of the adder must be delayed by one
clock cycle before being input to the next adder. However,
due to the right-shift operation, the LSB of the sum must be
fed directly into the MSB of the previous adder as illustrated
in figure 10. This does not slow the operation of the circuit
since the LSB of the higher adder will be computed long
before the MSB of the lower adder needs to be computed.

Figure 11 illustrates the flow of data through a fully pipe-
lined multiplier with j = 4. It can be seen that there is a
delay of n + 3 clock cycles between the loading of the first
p-bit input word, A0 and the first p-bit output word, S0

R.S.1
Mux

10 01 0011

M+2A

2A

M

0

ai

RST

Load1

Load2

LSB = Q

Sel0

Sel1

LSB

CinCout

MSB

Figure 10: MuxMult2 : pipeline modular multiplier

being valid in the result register of the same pipelined unit.
It takes n+3 clock cycles for each multiplication due to the
2 clock cycle initialisation (as discussed in section 7.2), and
the n + 1 clock cycle implementation of algorithm (3). For
the next j − 1 clock cycles, output words S1-Sj−1 are valid
and are right shifted as they are bing loaded so as to output
the result serially over k clock cycles.

1

2

3

4

5

4

3

2

6

5

4

3

A0

A1

A2

A3

S0

S1

S2

S3

n+2

n+3

n+4

n+5

n+6

n+5

n+4

n+3t

Figure 11: Pipelined Multiplication : DDG using the
pipelined multiplier units.

It is obvious that another multiplication can begin as soon
as the first output word is valid, and has been latched into
the result register. Refer to figure 11 where each of the
blocks represents a single pipelined multiplier unit as in
figure 10. Although it takes (n + 3) + (j − 1) clock cycles
from the input of A0 to the latching of Sj−1 into the re-
sult register, a new result is valid every (n + 3) clock cycles

thereafter. Therefore for throughput calculation purposes,
it takes (n+3) clock cycles to produce the consecutive multi-
plication results, with an extra latency of (j−1) clock cycles
to produce the first result. This latency will not affect the
throughput of the exponentiator.

9. EXPONENTIATOR ARCHITECTURE
The basic architecture presented in figure 10 requires some

modifications so as it may be used in the exponentiator
where the multiplicands change from one multiplication to
the next. The multiplexer now has 6 inputs instead of 4,
and therefore requires 3 select or control lines. All control
signals and the carry must be clocked through the unit from
right to left. There are three possible parallel inputs to the
multiplier depending on the stage of the multiplication, and
so the multiplexer must be extended to allow for this. Ad-
ditional registers are also necessary.

With reference to figure 10, the input A can now be any of
the following: The constant, C, the initial start result, R0, or
the previous multiplication result, R. The M and C registers
are used by both multipliers, so they are not within the
pipelined unit. Figure 12 illustrates a p-bit multiplier unit
for the implementation of an n-bit fully pipelined multiplier
including all necessary registers. Minor additional control
required for the initialisation stage is omitted for clarity in
the figure.

Right
Shift x 1 Mux

A+M

0

LSB = Q

2 CM

2 R0

Select (i)

Cin

LSB

Cout

MSB

Resin Resout

CalcDone (i)CalcDone (i+1)

Select (i+1)

2 R

Result Shift-Reg

3

Reset (i)Reset (i+1)

CalcDone (i)

R Latch0 (i+1) R Latch0 (i)

Reset

Figure 12: MuxMult3 : p-bit modular multiplier
unit for exponentiator implementation.

A total of 2j of the pipelined multiplier units are needed
to implement the 2 fully functional n-bit multipliers required
for the exponentiator. Figure 13 illustrates how the 2 mul-
tipliers must be arranged to perform the exponentiation. In
the figure the result is in parallel word form at the bottom
of the multiplier block, and fed out serially from the internal
shift register to the right. The input at the top is also in
parallel form, and the input to the left is a serial input.

The square operation is performed on every iteration, how-
ever the value of ei determines whether or not the multiply
operation is performed according to algorithm (5).

Firstly the mapping process must be performed to convert
the plaintext P into its M -residue P , and to calculate R0,

C C

1P1

R0

1

2

3

k

k+1

1

2

1

C

P2 R1

t

R1

eiM M

Figure 13: Exponentiation: Multiplication schedule
including mapping to and from
M-residue representation.

the initial start result for all further multiplications . After
that there are k parallel square & multiply operations, fol-
lowed by a final re-mapping of the result back to an ordinary
integer. k + 2 square/multiplication operations are required
before the first k-bit word of ciphertext is valid, but there-
after, another word is valid every k+1 square/multiplication
operations.

The value of 1 × C mod M need not be calculated each
time since it is constant for a given modulus, and it can
therefore be stored in a register to be used once every k + 1
multiplications.

The number of clock cycles required to perform an ex-
ponentiation is therefore (k + 1) times the number of clock
cycles required per multiplication, or (k + 1)(n + 3) on av-
erage. So for a 1024-bit exponentiation, more than 1.05
million clock cycles are required.

The values of the constant, C, modulus, M , and expo-
nents E and D can be stored in on-chip ROM, which can be
altered via reconfiguration. Therefore, whenever a new pub-
lic or private key is required for the encryptor/decryptor, the
device can be reconfigured to store the values into memory.

10. RESULTS
Speed and area comparisons for pipelined multipliers up

to 1080 bits are given in Table 2. The target device was
the Xilinx Virtex V1000FG680-6, which has 124 CLB’s per
column. Therefore p (the bit length of the pipelined mul-
tiplier unit) was chosen to be 120, allowing for space for
control registers needed for each unit. So for the 1080-bit
design, p = 120, j = 9, that is, 9 of the pipelined units were
required for each multiplier. The design also included all
the registers necessary for using the multiplier in the expo-
nentiator design. Therefore, the designs occupied more area
than would be required for a single purpose multiplier. The
significant decrease in clock frequency when the bitlength is
increased from 120-bits to 240 is due to the routing of the

Multiplier No. of Slices Clk Freq Data
Size (% of Chip) (MHz) Rate

120 603 (4%) 88.47 84.9 Mb/s
240 1211 (9%) 57.99 56.8 Mb/s
480 2426 (19%) 59.03 58.4 Mb/s
720 3641 (29%) 56.83 56.4 Mb/s
1080 5458 (44%) 54.61 54.4 Mb/s

Table 2: Speed & area results for the pipelined
Mongtomery modular multiplier.

Multiplier No. of Slices Clk Freq Data
Size (% of Chip) (MHz) Rate

120 603 (4%) 88.47 84.9 Mb/s
240 1203 (9%) 41.41 40.6 Mb/s
480 2403 (19%) 18.52 18.3 Mb/s
720 3603 (29%) 12.64 12.6 Mb/s
1080 5403 (43%) 8.40 8.4 Mb/s

Table 3: Speed & area results for a non-pipelined
Mongtomery modular multiplier.

carry from the top of one column in the FPGA to the bot-
tom of the next. However, this penalty is not as great as for
the non-pipelined design as can be seen in Table 3, and the
frequency does not continue to decrease dramatically.

Approximately 2.5 CLB’s per bit of the multiplier are re-
quired for this design. The increase in area over the results
in Table 1 is mainly due to the extra registers and larger
multiplexer required for this architecture which is designed
to be used in the expontiator.

Note that, with p = 120, a 1080-bit multiplier will op-
erate at the same clock frequency as a 1026-bit multiplier
(remembering that n = k + 2), and so for relatively little
extra area, the bit-length of the multiplier can be increased
with no deterioration of the clock frequency.

Table 3 provides an indication as to how effective the
pipelining of the multiplier is. The design used to produce
the results in Table 3 was identical to one multiplier unit,
except the bit length and thus carry chain length were in-
creased to 240, 480, 720 and 1080-bits.

A dramatic decrease in clock frequency is observed as the
carry chain exceeds the column height of the FPGA. Thus
it is obvious that the pipelined multiplier out-performs the
non-pipelined design provided that a suitable pipeline bit-
length is chosen to exploit the maximum length of the carry
chain.

Finally, a full modular exponentiator is implemented and
synthesised, and the results are presented in Table 4. This
design can implement either RSA encryption or decryption.

A 1024-bit exponentiator can be implemented on the 1080-
bit design at a data rate of 48.2 kb/s. The clock frequency
figures were obtained from the Xilinx auto place and route
tool. By floorplanning by hand, a smaller area and high
clock rate can generally be achieved.

Bit Length No. of Slices Clk Freq Data
(n) (% of Chip) (MHz) Rate

120 1146 (9%) 83.51 673.2 kb/s
240 2301 (18%) 58.15 238.3 kb/s
480 4610 (37%) 55.92 115.5 kb/s
720 6917 (56%) 50.66 70.0 kb/s

1080 (1024) 10369 (84%) 49.63 45.8 kb/s

Table 4: Speed & area results for the pipelined
RSA encryptor/decryptor.

11. CONCLUSIONS
By exploiting the fast carry logic provided in the Xilinx

Virtex FPGA’s it is possible to implement a high speed
Montgomery multiplier for bit lengths shorter than the max-
imum length of the carry chain (ie: 1 column of the FPGA).
In order to improve speed at higher bit-lengths it is neces-
sary to break the multiplication up into stages, and pipeline
the calculation. This was seen to improve performance sig-
nificantly.

Reconfiguration can be used to load the values of M , C,
and possibly E or D into the design before encryption or
decryption begins. Generally this does not have to be per-
formed very often, with many exponentiation calculations
being executed with the same values of M ,C, E, and D.

Also, by having both E and D stored in registers, digital
signatures can be appended to messages by simply encrypt-
ing part (or all) of the plaintext with the sender’s private
key, and then reloading this ciphertext into the encryptor to
further encrypt it with the recipient’s public key. To decrypt
this message the receiver must first decrypt it with his own
private key and then with the senders public key to confirm
its origin.

With some further optimisation, a 1024-bit RSA encryp-
tor/decryptor with a clock rate exceeding 50MHz should be
achievable. This would lead to data rates of 50kb/s which
is faster than the throughput rates being achieved by some
recent VLSI designs[9].

12. ACKNOWLEDGEMENT
This work was funded by a strategic research grant from

Enterprise Ireland.

13. REFERENCES
[1] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for

obtaining digital signatures and public-key cryptosystems”.
Comm. ACM, 21:120–126, 1978.

[2] P. L. Montgomery. “Modular multiplication without trial
division”. Math. Computation, 44:519–521, 1985.

[3] Yong-Jin Jeong and Wayne P. Burleson. “VLSI Array
Algorithms and Architectures for RSA Modular
Multiplication”. IEEE Transactions on VLSI Systems,
5(2):211–217, June 1997.

[4] Peter Kornerup. “A Systolic, Linear-Array Multiplier for a
Class of Right-Shift Algorithms”. IEEE Transactions on
Computers, 43(8):892–898, Aug. 1994.

[5] C. D. Walter. “Systolic modular multiplication”. IEEE
Transactions on Computers, 42:376–378, Mar 1993.

[6] S. E. Eldridge and C. D. Walter. “Hardware
implementation of Montgomery’s modular multiplication
algorithm”. IEEE Transactions on Computers, 42:693–699,
June 1993.

[7] C. D. Walter. “Still faster modular multiplication”.
Electronics Letters, 31:263–264, Feb 1995.

[8] W. P. Marnane. “Optimised bit serial modular multiplier
for implementation on field programmable gate arrays”.
IEE Electronics Letters, 34(8):738–739, April 1998.

[9] Taek-Won Kwon, Chang-Seok You, Won-Seok Heo,
Yong-Kyu Kang, and Jun-Rim Choi. “Two implementation
methods of a 1024-bit RSA cryptoprocessor based on
modified montgomery algorithm”. IEEE Int. Symp. on
Circuits and Systems (ISCAS), pages 650–653, May 2001.

[10] T. Blum and C. Paar. “Montgomery Modular
Exponentiation on Reconfigurable Hardware”. Proc. 14th
IEEE Symp. on Computer Arithmetic, pages 70–77, 1999.

[11] Young Sae Kim, Woo Seok Kang, and Jun Rim Choi.
Implementation of 1024-Bit Modular Processor for RSA
Cryptosystem. The 2nd IEEE Asia Pacific Conference on
ASICs, Aug 2000.

[12] Ching-Chao Yang, Tian-Sheuan Chang, and Chein-Wei
Jen. “A new RSA cryptosystem hardware design based on
Montgomery’s Algorithm”. IEEE Trans. Circuits and
Systems – II: Analog and Digital Signal Processing,
45(7):908–913, July 1998.

[13] Jyh-Huei Guo, Chin-Liang Wang, and Hung-Chih Hu.
Design and Implementation of an RSA Public-Key
Cryptosystem. Proc. IEEE International Symposium on
Circuits and Systems, 1:504–507, 1999.

[14] Xilinx Inc. Website. http://www.xilinx.com.

Alan Daly is currently pursuing a Ph.D. in the Depart-
ment of Electrical and Electronic Engineering, University
College, Cork. Primary areas of interest include Reconfig-
urable Logic Design, and Cryptographic applications.

	Main Page
	FPGA02
	Front Matter
	Table of Contents
	Session Index
	Author Index

