

Interconnect Enhancements for a
High-Speed PLD Architecture

Michael Hutton, Vinson Chan, Peter Kazarian, Victor Maruri, Tony Ngai, Jim Park,

Rakesh Patel, Bruce Pedersen, Jay Schleicher and Sergey Shumarayev

Altera Corporation, 101 Innovation Drive, San Jose, CA 95134 (mhutton@altera.com)

ABSTRACT
As programmable logic grows more viable for
implementing full design systems, performance has become
a primary issue for programmable logic device
architectures. This paper presents the high-level design of
Dali, a PLD architecture specifically aimed at performance-
driven applications. We will present significant portions of
the background research that contributed to our
architectural decisions, an overview of the core routing
architecture and benchmarking experiments used to
evaluate the prototype device.

Keywords
Programmable logic, FPGA, architecture, interconnect.

1. INTRODUCTION
The design of a PLD architecture involves many conflicting
goals, one of which is the tradeoff between performance
and efficiency. In fact, PLDs themselves are in the tradeoff
space between truly flexible but slow microprocessors and
high-performance but inflexible ASICs.

This paper discusses research experiments aimed at
designing a PLD architecture that is as fast as possible
without unreasonably increasing die-size or non-routability
(i.e. cost). The Dali architecture discussed in this paper
forms the basis for the recently announced Mercury PLD
family from Altera, a commercial product. However, we
will continue to use the name Dali to emphasize that all of
the results reported on here are based upon the prototype
architecture and software. This paper concentrates on the
core routing architecture of Dali, and we will not try to
cover modifications to the I/O structure in this discussion.

In a PLD the majority of the electrical delay occurs in

interconnect and interconnect switching, so our primary
concentration will be on routing enhancements relative to
previous-generation PLD families. The basic interconnect
(wire) delay incurred by a critical path is common between
PLD and ASIC devices. The time spent in interconnect
switching is a PLD-specific design tradeoff. Flexibility
introduced by interconnect switching is paid for with the
additional loading delay which it puts on the routing. The
key item in the design of a PLD routing architecture is to
always provide enough flexibility to implement a high
proportion of designs, but not so much flexibility that
performance or area suffers.

The target density for our architecture family is
approximately 2000 to 15000 LEs. This is an important
design parameter because decisions related to the degree of
hierarchy, accessibility to re-buffering signals and the
length of interconnect wires can be quite different at high
vs. low density spaces. Since current high-density PLDs
reach close to 75,000 LEs [2,22] our target range would be
considered a mainstream rather than high-density PLD
family.

There are a number of ways to make PLD interconnect
faster. One approach is to make the device less
programmable by replacing switches with less flexible or
even dedicated connections, or by restricting availability of
certain types of routing. A second approach is to optimize
wires for speed with width, space and shielding. Both
result in an increase in overall cost: the first manifests itself
as loss of routability, the second as an increase in die-size.
The amount to which we are willing to do this and the ways
in which we can accomplish it comprise the major topics of
this paper, and can be categorized as follows:

• Hierarchy: choosing the correct level of hierarchy for
the density range of the family, in our case a semi-
hierarchical organization rather than flat or fully
hierarchical.

• Heterogeneous routing: some wires are fast, but more
expensive. Others are slower, but more efficient/dense.
The place and route software is responsible for
utilizing the wires appropriately by placing critical
paths on the fast wires and non-critical paths on the
regular wires.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA ’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002…$5.00.

• Dedicated wiring: dedicated short connections
between adjacent LEs and dedicated carry-chain and
multiplier circuitry allow special purpose critical
functions to be implemented with faster interconnect.

• Greater variety of wiring resources: Different netlist
connections are of different lengths and fanout. Our
goal is to provide the best possible mix of routing
resources for the requirements of most designs.

The organization of the paper is as follows: Sections 2
through 5 cover the topics just mentioned which related to
the core routing architecture, and Section 6 then
summarizes the core architecture of the device and gives
experimental results from in-house evaluation of the
prototype device. We make some closing remarks in
Section 7.

2. HIERARCHY / BASE ARCHITECTURE
Before beginning any detailed experimentation, it is
necessary to describe a base architecture. For our purposes
this really means deciding on the amount of hierarchy and a
general theme to the organization of the interconnect.
There is a spectrum of known architectures from which to
choose our starting point.

The APEX architecture [2,11] is a fundamentally
hierarchical device. Groups of LEs are clustered into fully-
connected LABs, which are grouped into MegaLabs.
Global or high-level interconnect can only enter a MegaLab
by switching onto MegaLab interconnect and then into
individual LE inputs. Horizontal and vertical wires in this
type of architecture are full-length, half-length, or quarter-
length rather than staggered.

At the opposite extreme from APEX is a flat or island-style
architecture, such as the XC4000 presented by Trimberger
et.al. [20]. Though provision is made for longer lines in
this architecture, the primary communication is through
short wires which stitch together through switching blocks
to go longer distances. The part is symmetric, in that
vertical and horizontal connectivity is identical.

The FLEX 10K architecture (similar to the FLEX 6K
presented in [21]) is semi-hierarchical. Though LEs are
still grouped into LABS with full connectivity, the
interconnect is row-biased. Unlike APEX, top level full or
half-length horizontal lines can communicate directly with
LEs in a LAB, but similar to APEX vertical lines must
switch onto a horizontal line before entering a LAB. See
Figure 1. In FLEX 6K adjacent LABs can also
communicate by interleaving their local connections to
accomplish unit-length horizontal wires.

An alternative definition of semi-hierarchical was given by
Kaptanoglu et. al. [12]. Their architecture is hierarchical at
the top-level, but flat in 16x16 blocks at the lowest level.

We experimented with a range of architectures throughout
the available space. Some comments on the various
tradeoffs are the following. A short-line architecture will
always be the fastest and most dense for unit connections.
However, when more connections are required a connection
must go through multiple switches to go even a relatively
short distance. A long-line hierarchical architecture is very
good for medium to long connections, but pays the extra
price in both density and area for the short connections. At
a very high level, one could argue that unit-length
connections are always the most efficient for density alone.
However, since modern processes have 8 or more layers of
metal, this makes some naïve assumptions about the
tradeoff of metal for switching.

In actuality, the choice of which base architecture to start
with will always be filled with caveats, experimental bias
due to assumptions and, in particular, software bias towards
already existing parts. In this case, after numerous
experiments with HSPICE and software place and route, we
chose a semi-hierarchical architecture roughly modeled on
the FLEX 10K/6K architecture of Figure 1. To fill in the
details, our basic logic element (LE) is a 4-input LUT and
DFF pair as is common in most PLDs. These are grouped
into clusters, called LABs, of size 10 with full
programmable connectivity (local lines). Connections
outside of a LAB are accomplished with global wires: half-
horizontal or HH lines, global (full-length) horizontal or
GH lines, and global vertical or GV lines. GV lines can
turn onto the horizontal resources with programmable
switches at their intersection points.

Though the FLEX model serves as our starting point, we
will make a significant number of modifications and
improvements upon the architecture.

3. HETEROGENEOUS WIRES
It is well known in VLSI that one can optimize certain
wiring connections by spending greater area in their
implementation. Some common techniques are to increase
the width and spacing of long interconnect wires, introduce
optimally sized and spaced buffering for the required

LAB

Programmable
switches

LUT

 V

 H

Figure 1. Semi-hierarchical architecture similar to FLEX10K or
FLEX6K, and our base architecture for Dali.

loading on the wire, or laying out more critical connections
on faster metal layers.

The difficulty with these approaches on a PLD is that
routing is intended to be generic. We don’t know which
wires are going to be critical until after a user’s design has
gone through place and route, and different user-designs
will have different critical paths. It is infeasible (i.e. too
expensive) to optimize all wires in the part for delay.

The major innovation in the Dali architecture is to provide
wires in the routing architecture that are functionally
identical, but have different delay characteristics. We can
then rely on our place and route tools to properly balance
the use of the fast and slow wires. The keys to this
approach are in deciding how many wires to make faster,
and how to organize the connectivity so that both fast and
slow wires are reachable from all areas of the chip.

For a number of designs targeting this device and for a
fixed placement based on FLEX 10K, we performed
experiments as summarized by the following algorithm:

 For varying p (percentage fast wires per row or column):
 Loop
 Do timing analysis and determine most critical path.
 For each non-fast wire W on the critical path
 If W’s row or col has fast wires remaining,
 “promote” W to fast by halving its delay.
 Until critical path cannot be sped up.
 Record new critical path length
 End For

The results of this experiment are shown in Figure 2. Each
test design generates one data point for each value on the X
axis. When we allow maximum of 5% of the global wires
to speed up, we see the normalized critical path delay
decrease by between 0% and 30% of the original delay,
depending on the design, with an average of about 11%.
The trend-line shows the average decrease in critical path
length for increasing fast wires. The dotted lines show the
curve for the two designs which eventually showed the most
and least benefit.

The two main observations from this data are that we can
gain an approximately 30% decrease in critical path delay,
on average, by making only 20% of the wires fast, and that
speeding up more than 20% of the wires will have only a
marginal effect on the critical path. Figure 3 emphasizes
these diminishing marginal returns – the first 5% fast wires
affect all 33 designs in the experiment, whereas increasing
from 5% to 10% affects only 32 designs. Increasing from
45% to 50% affects only one design. Figure 4 views
marginal returns from the perspective of overall
effectiveness. Though Figure 3 shows diminishing effects
by number of designs it underestimates the acceleration of
the decreased returns arising from less benefit even on
those designs that are affected.

These statistics have important ramifications on the design
of our routing architecture: even if the 20% of wires made
fast cost twice the die-area of the standard wires, we
increase the overall chip size by only 20%. And were we to
speed up all wires on the chip, we would be wasting a
significant amount of die-area to do so.

Critical path speedup with fast global wires

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

max % fast wires in any row/col

%
 o

f
or

ig
in

al
 C

P
 d

el
ay

Figure 2. Effect on test designs of speeding up given proportions
of row and column global interconnect.

Diminishing marginal returns to fast wires
(fewer designs affected)

33 32 31

23
18

14

8
5

2 1
0
5

10
15
20
25
30
35
40

5 10 15 20 25 30 35 40 45 50

max % fast wires in any row/col

de
si

gn
s

af
fe

ct
ed

Figure 3. Diminishing marginal returns to fast wires.

Diminishing marginal returns to fast wires
(overall effectiveness)

12.15

9.18

5.09
3.28

2.15 1.90
0.56 0.09 0.04 0.04

0
2
4
6
8

10
12
14
16

5 10 15 20 25 30 35 40 45 50

max % fast wires in any row/col

%
 a

ve
ra

ge
 s

pe
ed

u
p

Figure 4. Diminishing average delay returns to fast wires.

This simplified experiment, however, makes an assumption
of perfect routability which is not realistic in practice – just
making the wires fast is not sufficient to make them
accessible to the subset of LEs and turning connections that
require them. Routing flexibility could either shift or skew
the curves to the right. Doubling the number of wire types
greatly increases the number of possible ways to route from
A to B in the part, and hence complicates the software
significantly.

We remark that Dali is the first and only PLD architecture
to utilize this heterogeneous wiring scheme to achieve
greater performance. In Dali, we implement roughly 20%
to 25% of wires as “fast”. The exact number for each wire-
type is dependent on aspect ratio of the part, numerology of
the switching network, output muxing structures and
detailed architectural experiments, with the general
experiment used as a guideline or starting point. To derive
the correct output flexibility for LEs driving the fast and
standard interconnect we performed incremental tuning
experiments throughout the design of the architecture.

Similar qualitative results to these were quoted by Betz and
Rose in independent work [3]. They found that by
modifying 20% of the tracks they were able to obtain a 13%
circuit speedup, whereas speeding up all tracks gained only
a 15% speedup. Though their results show less quantitative
improvement than ours, they agree on both on the location
of the “elbow” of the curve and the decreasing marginal
returns. Among the reasons that we gain more benefit is
that we optimized more than simply width and spacing for
the fast wires. Also, we use significantly larger designs and
devices in which speedup with respect to fanout can be
greater.

In an accounting sense, we claim after this modification to
have decreased critical path delay by approximately 30%
with a roughly 20% die-size cost.

4. DEDICATED CONNECTIONS
A second way to speed up a PLD is to introduce dedicated
connections for special purpose logic. There are three
primary structures with which Dali achieves this goal. We
introduce a new form of cascaded LUT connection,
dedicated carry look-ahead structures important for
arithmetic functions, and a dedicated multiplier.

4.1 Cascaded 4-LUT Connection.
One issue that must be re-visited in every new architecture
is LUT-size: do we want to continue with a 4-LUT, or
perhaps use 3 or 5 LUTs? The use of 5-input LUTs
decreases unit delay in a technology mapped circuit by
roughly 25%, 6-LUTs by an additional 15%, and so on.
(One can easily generate this data using RASP [5] and the
MCNC benchmarks.) However, the size of the LE layout
doubles with each unit increase in LUT-size, which affects

both area and propagation delay through the logic cell, and
also the die area required for the LAB input region.

Recent work by Ahmed and Rose [1] confirms previous
studies by Rose et. al. (e.g. [18]) that a 4-LUT continues to
be delay-area efficient, especially when paired with clusters
(LABs) of size 4-10. Similar experiments which we
conducted found a greater die-size penalty than Rose et. al.
in using larger LUT-sizes, and a greater benefit to larger
cluster sizes when all layout effects are taken into account,
hence we continue to use 4-LUT LEs in clusters (LABs) of
size 10.

However, there are alternatives to implementing larger
LUTs in all cases, which can allow us to maintain both area
efficiency and achieve better delay properties. For
example, all FLEX and APEX devices from Altera contain
special circuitry to allow adjacent LEs to cascade (AND)
their outputs (see Figure 5(a)). This facilitates the
implementation of wide and/or functions and multiplexors.
Cong and Hwang [5] showed that a majority (96-98%) of
all “practical” 5-LUTs and 85% of all practical 6-LUTs can
be implemented by the 4-3 structure shown to the left of
Figure 5(b). Though they did not directly study the 4-4
structure, we find it empirically even better (>98,98,73 for
5,6,7-LUTs), and significantly more layout and software
friendly than heterogeneous LUT sizes. Note that though
the AND-cascade of FLEX devices is comparable we found
for the types of designs we looked at the 4-4 was more
flexible.

Dali uses this 4-4 cascade in place of the previous and-
cascade of FLEX 10K. The D input of each 4-LUT can be
either a standard LUT input or the cascaded output of its
adjacent LE.

4.2 Carry Look-Ahead.
Carry-chain delays, though significantly smaller than LE
propagation delays, still require a signal to traverse the

4lut

4lut

4lut

4lut

Figure 5(a) FLEX / APEX style AND-cascade.

4lut

3lut

4lut

3lut

4lut

4lut

4lut

4lut

Figure 5(b) Cascade LUT suggested by Cong and Hwang,
and cascaded LUT implemented in Dali.

entire length of the carry chain after arriving at the first LE
in the chain. To speed up this process, we added new carry
lookahead circuitry which reduces the delay for an length-N
carry chain to (N div 5) + 1 + 5. Thus for longer carry
chains more likely to be on the critical path, a significant
delay savings can be achieved.

Adding carry lookahead to speed up addition is not a new
concept. However, typical carry lookahead circuitry is not
common to PLDs because of the irregularity of the layout.
Also, the fact that only arithmetic functions benefit while all
logic increases in cost is prohibitive.

The carry lookahead scheme in Dali uses a regular layout,
rather than a tree-like structure, and is designed to speed up
all carry logic, not just arithmetic functions. The basic
mechanism is to compute both the “if 0” and “if 1”
branches of the carry chain, and then choose the correct
result with a 2:1 mux at the end of 5 carry computations to
achieve the cost savings quoted above.

4.3 Dedicated Multiplier.
As DSP and other communication-specific logic
increasingly dominate the PLD landscape arithmetic logic is
becoming more and more important. We have already
discussed methods to speed up addition, which does help
multiplication also, but we chose to add further specific
circuitry to further attack the long propagation delays
associated with multipliers.

The biggest drawback in implementing a multiplier in
programmable logic is that the routing architecture is not
amenable to optimal placement. Artificial boundaries may
cause signals that should be local to use un-naturally longer
wires (or an un-balanced number of short wires). The
regularity of carry chain circuitry might also cause layout of
the multiplier to be unnatural, following a zig-zag chain
along a row (as in the case of an Altera FLEX 10K
architecture).

To combat these issues we added two new routing features
to Dali. First, we added vertical carry chain lines to allow
logic in one level of the adder tree to align itself vertically.
Then we added short dedicated lines to directly connect the
output of one level of the adder tree to the next. To speed
up signed multiplication, we added special circuitry in each
LE so that the AND functions can be absorbed into the first
level of the adder tree.

The use of these dedicated routing resources introduces a
number of restrictions on the placement of a multiplier in
the part. It is not possible to fully explain the restrictions
here, but they are documented in the Mercury data-sheet.

There is, of course, the option of adding dedicated hard
multiplier circuitry to the part. However, this introduces
the typical PLD architecture problem of “How many?”
Since some customers want no multipliers at all, they don’t

want to pay for them, and others want 23 when we provide
20 (or want 18 bit rather than a generic 16 bit), it is
impossible to choose a single architecture to solve the
problem. As density increases, dedicated multipliers will
no doubt become mainstream, but for Dali we found the
placement friendly circuitry for synthesized generic logic to
be the best solution. The flexible (rather than hard-wired)
approach also allows for the user to choose their latency
strategy. In the Dali architecture a 16x16 multiplier can run
over 130 MHz without pipelining, and over 300 MHz with
pipelining.

5. NEW WIRE TYPES
Some connections in a placed netlist will naturally be closer
together, and others further apart. In an attempt to
accommodate as many different types of connections as
possible, we introduce a new type of interconnect that is
staggered and is dedicated to the source LAB at which it is
driven, supplementing the FLEX 10K base architecture.
These are called NFL lines (short for network of fast lines).
See Figure 8. NFL lines originate at a LAB and drive 5
LABs horizontally in either direction.

Because NFL lines have dedicated drivers, they are faster
than typical GH or HH lines. We also achieve a moderate
density benefit, because the staggering of the lines allows
for a 20% better packing than regular GH lines. Figure 6
shows decreasing requirements for GH lines as the number
of NFL lines approaches 10 per LAB. NFL lines are not
stitched at their endpoints, in order to keep their delay
reasonable. Note that the benefit of these lines is over-
stated in the chart shown, because raw line-counts do not
directly translate to layout area, due to different switching
and sizing requirements for the different wire types.

A second new wire-type is the interleaved vertical (V) line,
or “short V”, which allows for nearest-neighbor row
connections and saves the use of a longer global V line.
Just as we found it advantageous to have unit-length
connections between adjacent LABs [21], short-cut paths

Decrease in GH with more NFL locals

50
55
60
65
70
75
80
85
90
95

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

max NFL locals per lab

av
er

ag
e

G
H

 u
sa

ge

Figure 6. Density benefit of mixing staggered and full-length
lines.

between rows are useful, particularly for special functions
such as the multiplier circuitry.

6. DALI CORE ARCHITECTURE.
In this section we tie together the discussion of the previous
several sections by presenting the overall routing
architecture of the Dali family. This is best done by a top-
level floorplan, shown in Figure 7. The prototype device
shown has 10 LEs per LAB, 40 LABs per row and 12 logic
rows for a total of 4800 LEs. Other family members in the
family contain, for example, 14,400 LEs in different
row/column configurations.

In addition to programmable logic rows, the device has two
rows devoted to Embedded System Blocks (ESBs) which
are 4Kbit user-configurable RAMs. PLLs or phase-lock
loops (in varying numbers depending on the family
member) allow fine control of externally generated clocks.

An idealized “die-shot” of the part is shown in Figure 8.

The operation of the RAM blocks is shown in Figure 9.
Many earlier-generation PLDs implemented partial dual-
port RAM (i.e. FIFO-RAM), but Dali implements not only
a full dual-port, but also quad-port access and a number of
new configuration options which are beyond the scope of
this paper. The ESB continues to be configurable as a
Content-Addressable Memory [7,8] as in the APEX family.

It is interesting to note that I/O locations in Dali are in rows
directly in the core, as opposed to a pad-ring surrounding
the chip. This allows us to take advantage of modern flip-
chip technology in order to provide higher pin-counts, and
also allows us to give I/Os very fast access to core registers.

6.1 Benchmarking Results.
Our judge of success for the Dali routing architecture is to
compare it to an equivalently sized FLEX 10K part. In
addition to being the closest point for comparison, the

APEX architecture was not yet available in production at
this time. Our evaluation uses same-process, simulation-to-
simulation timing and area models. A direct comparison of
actual Mercury device to 10K would overly favor it simply
because of the process advantage, whereas these
comparisons fairly evaluate our architectural decisions.

To remove the effects of software from the benchmarking
as much as possible we created a fake FLEX 10K family
member with the same number of rows and columns as our
base part. We then start with a back-annotated placement.
By beginning with the same placement, we can make sure
that we do not give any advantages due to new/better
algorithms, or disadvantages due to immature software to
the new part. However, it would be too unfair to make no
modifications for use of the interleaved V-lines and
staggered short lines, so we add pre-processing and post-
processing steps which locally modify the input placement
to better take advantage of these new lines – i.e. LABs are
re-ordered within their row, and rows are shifted around as
blocks to opportunistically use the new wire-types. We
consider this to be a fair yet conservative implementation,
because it allows for improvements that legitimately exist in
the new part, without adding the experimental noise of
using two completely different place and route tools.

Figure 8. Mercury “Die-shot” showing different wire types.

Port 1 Port 2

Port 3 Port 4

Data
Address
Clock

16

Data
Address
Clock

2 Data
Address
Clock

16

Data
Address
Clock

4

Figure 9. Quad-port ESB RAM.

P L L

P L L

C o ntro l
L og ic
& P ins

JT A G
L og ic
& P ins

M em o ry R o w
L V D S -In /C D R IO B an d & P L Ls

L V D S -O u t IO B an d & P L L

R egu la r IO B a n d

R egu la r IO B a n d

R e gu la r IO B an d

M em o ry R o w

12 Logic Rows

Data Register

A d d re ss R e g is te r

P L L

P L L

C o ntro l
L og ic
& P ins

JT A G
L og ic
& P ins

M em o ry R o w
L V D S -In /C D R IO B an d & P L Ls

L V D S -O u t IO B an d & P L L

R egu la r IO B a n d

R egu la r IO B a n d

R e gu la r IO B an d

M em o ry R o w

12 Logic Rows

Data Register

A d d re ss R e g is te r

 Figure 7. Top-level Floorplan of 4800 LE Mercury.

Because of the new wire-types, we also require changes to
the router to use all available wires. The router must
prioritize the critical path connections onto the fast wiring
resources or staggered lines where appropriate to achieve
both performance and fitting. In production we would want
to have placement also consider the availability of fast
resources. Even though this leaves potential upside we
chose, as previously mentioned, to not introduce greater
experimental variation by significantly modifying
placement. In the production-quality software we address
a number of these new issues and problems. For example,
the simple “promotion” algorithm outlined in Section 3
contains a full timing-analysis in its inner loop and is
clearly not time-efficient.

Our results are presented in the following manner. For each
design in the evaluation set, we take the 10K critical path
length, normalized to 100 units. We then compare the
length of the critical path of the same design after the
introduction of the Dali timing-model, implementation of
the modified cascade, placement modifications for new
wire-types and prioritized routing algorithm. Figure 10
shows this result for a sample of user designs. All designs
are between 70% and 100% full in terms of LE count. On
average, the Dali device achieves a critical path that is 58%
the delay of the beginning 10K path, translating to a 1.72X
increase in internal clock-speed. The most affected design
is almost 2X the speed, and the least affected has 70% the
critical path, or 1.43X clock-speed of the original.

Figure 10 is the exact, un-edited result used in presentation
of the prototype architecture. Thus it compares simulation-
to-simulation on the same process rather than commercial
benchmarking. It does not reflect differences in the parts
based on process shrinks or future layout constraints, either
positive or negative.

To further illustrate the areas where the primary benefits
were achieved, we can examine the breakdown of the
critical path in the “before” and “after” architectures, as
shown in Figure 11. The delay types are GH (full-length

global horizontal), HH (half horizontal), GV (full length
vertical), carry, cascade, local, and LE delays through
inputs A, B, C, and D of the 4-LUT. The distinction
between GH and GH+ is the base delay vs. the additional
delay due to fanout loading.

After conversion to the Dali architecture (lower pie-chart),
we see 42% of the overall delay removed, and the
breakdown of the remaining 58 units of delay has
significantly moved away from the higher delay global
wires to a mixture of the most appropriate wire types. The
new wire types NFL and IV have appeared, and the GH and
GV lines have been divided into the new wire types sGH –
standard GH, and fGH – fast-GH.

One of the major effects of the detailed design of the fast
wires is the removal of fanout effects. Overall, we can see
that virtually all wire types were sped up, confirming our
previous research experiment that we could speed up all
critical paths with only a fraction of the basic routing
architecture requiring additional cost. In particular, we note
that the standard GH and GV wires comprise the majority
of the routing architecture, yet they very rarely appear on
any critical paths.

7. CONCLUSIONS
In this paper we have outlined the routing architecture of a
new PLD architecture, Dali, which is specifically designed

50

55

60

65

70

75
%

 o
f

re
m

ai
n

in
g

 c
ri

ti
ca

l p
at

h

Figure 10. Percentage of remaining critical path after
software modification of 10K to Dali architecture.

car cas

a

b

c

d

locgh

gh+

hh

hh+
gv gv+

"removed"

igh

fgv

fgh+

fgv+ sgh/sgv

loc
car

fgh

nfl
d

c
b

a
cas4

Figure 11. Dali Speedup relative to the base architecture.

to achieve high-performance, both in core clock-speed and
in I/O bandwidth. In addition to the overall architecture,
we have made a number of independent research
contributions, including justification that only a proportion
of routing resources need be fast to achieve high-
performance routing, effective use of dedicated connections
for special-purpose logic, and discussion of the use of
different routing types.

Overall, our prototype benchmarking shows the Dali
routing architecture to achieve approximately 1.7X the
performance of an equivalent process FLEX 10K device, at
a relatively cheap 1.3X die-area cost.

The Dali architecture forms the basis for Altera’s Mercury
family. Mercury was originally implemented on a 8LM .18
Al, 1.8V CMOS process, and now commercially available
on .15 Cu, 1.8V CMOS, the first two family members
comprising the 4800 and 14,400 LE size devices. We
firmly believe that the Mercury implementation of our Dali
architecture represents the fastest PLD in its process and
density range by a significant margin.

Though not discussed in this paper, many of the important
features of the Mercury commercial family relate to multi-
standard and voltage I/O structures, and Gbit high-speed
differential interfaces with clock-data recovery as a primary
feature. CDR, in particular, is a novel and important
structure that is critical to modern high-bandwidth
communications designs.

ACKNOWLEDGMENTS
The authors on this paper were the primary technical
contributors to the high-level interconnect design of the
Dali architecture but only a small part of the overall IC
design, layout and software effort required to produce the
family. During the architecture definition phase described
in this paper Jay Schleicher lead the software team, and
Tony Ngai the IC design team.

REFERENCES
[1] E. Ahmed and J. Rose, “The Effect of LUT and Cluster

Size on Deep-Submicron FPGA Performance and
Density”, in Proc. ACM/IEEE Int’l Conference on FPGAs
(FPGA00), pp. 3-11.

[2] Altera Corp. http://www.altera.com.
[3] V. Betz and J. Rose, “Circuit Design, Transistor Sizing and

Wire Layout of FPGA Interconnect”, in Proc. IEEE
Custom Integrated Circuits Conference (CICC), 1999.

[4] K. Chung and J. Rose, “TEMPT: Technology Mapping for
the Exploration of FPGA Architectures with Hard-Wired
Connections”, in Proc. ACM/IEEE Int’l Conference on
FPGAs (FPGA92), pp. 21-26, 1992.

[5] J. Cong and Y-Y. Hwang, “Boolean Matching for Complex
PLBs in LUT-based FPGAs with Application to
Architecture Evaluation”, Proc. ACM/IEEE Int’l
Conference on FPGAs (FPGA98), pp. 27-34, 1998.

[6] S. Hauck, M. Hosler and T. Fry, “High Performance Carry
Chains for FPGAs”, in Proc. ACM/IEEE Int’l Conference
on FPGAs (FPGA98), pp. 223-233, 1998.

[7] F. Heile and A. Leaver, “Hybrid Product Term and LUT-
Based Architectures Using Embedded Memory Blocks”, in
Proc. ACM/IEEE Int’l Conference on FPGAs (FPGA97),
pp. 13-16, 1997.

[8] F. Heile, A. Leaver and K. Veenstra, “Programmable
Memory Blocks Supporting Content-Addressable
Memory”, in Proc. ACM/IEEE Int’l Conference on FPGAs
(FPGA00), pp. 13-21, 2000.

[9] W-J. Huang, M. Hutton, V. Maruri, T. Ngai, R. Patel, B.
Pedersen, J. Schleicher and S. Shumarayev, “PLD Routing
Architecture with Both Fast and Regular Routing
Resources”, US Patent Application Pending.

[10] M. Hutton, “Interconnect Prediction for Programmable
Logic Devices”, in Proc. ACM/SIGDA Int’l Workshop on
System-Level Interconnect Prediction (SLIP01), pp. 125-
131, 2001.

[11] M. Hutton, K. Adibsamii and A. Leaver, “Timing-Driven
Placement for Hierarchical Programmable Logic Devices”,
In Proc. ACM/IEEE Int’l Conference on FPGAs
(FPGA01), pp. 3-11, 2001.

[12] S. Kaptanoglu, G. Bakker, A. Kundu and I. Corneillet, “A
new high-density and very low cost reprogrammable FPGA
architecture”, in Proc. ACM/IEEE Int’l Conference on
FPGAs (FPGA99), pp. 3-12, 1999.

[13] A. Marquardt, V. Betz and J. Rose. “Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve
FPGA Speed and Density”, in Proc. ACM/IEEE Int’l
Conference on FPGAs (FPGA99), pp. 37-46, 1999.

[14] T. Ngai, B. Pedersen, S. Shumarayev, J. Schleicher, W-J.
Huang, M. Hutton, V. Maruri, R. Patel, P. Kazarian, A.
Leaver, D. Mendel and J. Park. “Interconnection and
Input/Output Resources for Programmable Logic
Integrated Circuit Devices”, US Patent Applicatoin
Pending.

[15] E. Ochotta, et. al.. “A Novel Predictable Segmented FPGA
Routing Architecture”, in Proc. ACM/IEEE Int’l
Conference on FPGAs (FPGA98), pp. 3-11, 1998.

[16] J. Park, B. Pedersen and W-J. Huang, “Carry-lookahead”,
US Patent Application Pending.

[17] B. Pedersen and J. Park, “Dedicated Multiplier”, US Patent
Application Pending.

[18] J. Rose, R.J. Francis, D. Lewis and P. Chow. “Architecture
of Field-Programmable Gate Arrays: The Effect of Logic
Block Functionality on Area Efficiency,” In. IEEE J. Solid-
State Circuits, 1990.

[19] J. Schleicher and M. Hutton. “Fast Cascade”. US Patent
Application Pending.

[20] S. Trimberger, K. Duong and B. Conn. “Architecture
Issues and Solutions for a High-Capacity FPGA”, in Proc.
ACM/IEEE Int’l Conference on FPGAs (FPGA97), pp. 3-
9, 1997.

[21] K. Veenstra, B. Pedersen, J. Schleicher and CK Sung.
“Optimizations for a Highly Cost Efficient Programmable
Logic Architecture”, in Proc. ACM/IEEE Int’l Conference
on FPGAs (FPGA98), pp. 20-26, 1998.

[22] Xilinx Corp. http://www.xilinx.com.

	Main Page
	FPGA02
	Front Matter
	Table of Contents
	Session Index
	Author Index

