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ABSTRACT 
As programmable logic grows more viable for 
implementing full design systems, performance has become 
a primary issue for programmable logic device 
architectures.  This paper presents the high-level design of 
Dali, a PLD architecture specifically aimed at performance-
driven applications.   We will present significant portions of 
the background research that contributed to our 
architectural decisions, an overview of the core routing 
architecture and benchmarking experiments used to 
evaluate the prototype device. 
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1. INTRODUCTION 
The design of a PLD architecture involves many conflicting 
goals, one of which is the tradeoff between performance 
and efficiency.   In fact, PLDs themselves are in the tradeoff 
space between truly flexible but slow microprocessors and 
high-performance but inflexible ASICs. 

This paper discusses research experiments aimed at 
designing a PLD architecture that is as fast as possible 
without unreasonably increasing die-size or non-routability 
(i.e. cost).   The Dali architecture discussed in this paper 
forms the basis for the recently announced Mercury PLD 
family from Altera, a commercial product.  However, we 
will continue to use the name Dali to emphasize that all of 
the results reported on here are based upon the prototype 
architecture and software.   This paper concentrates on the 
core routing architecture of Dali, and we will not try to 
cover modifications to the I/O structure in this discussion. 

In a PLD the majority of the electrical delay occurs in 

interconnect and interconnect switching, so our primary 
concentration will be on routing enhancements relative to 
previous-generation PLD families.  The basic interconnect 
(wire) delay incurred by a critical path is common between 
PLD and ASIC devices.  The time spent in interconnect 
switching is a PLD-specific design tradeoff.   Flexibility 
introduced by interconnect switching is paid for with the 
additional loading delay which it puts on the routing. The 
key item in the design of a PLD routing architecture is to 
always provide enough  flexibility to implement a high 
proportion of designs, but not so much flexibility that 
performance or area suffers.     

The target density for our architecture family is 
approximately 2000 to 15000 LEs.  This is an important 
design parameter because decisions related to the degree of 
hierarchy, accessibility to re-buffering signals and the 
length of interconnect wires can be quite different at high 
vs. low density spaces.  Since current high-density PLDs 
reach close to 75,000 LEs [2,22] our target range would be 
considered a mainstream rather than high-density PLD 
family.  

There are a number of ways to make PLD interconnect 
faster.  One approach is to make the device less 
programmable by replacing switches with less flexible or 
even dedicated connections, or by restricting availability of 
certain types of routing.   A second approach is to optimize 
wires for speed with width, space and shielding.  Both 
result in an increase in overall cost:  the first manifests itself 
as loss of routability, the second as an increase in die-size.  
The amount to which we are willing to do this and the ways 
in which we can accomplish it comprise the major topics of 
this paper, and can be categorized as follows: 

• Hierarchy:  choosing the correct level of hierarchy for 
the density range of the family, in our case a semi-
hierarchical organization rather than flat or fully 
hierarchical. 

• Heterogeneous routing:  some wires are fast, but more 
expensive.  Others are slower, but more efficient/dense.  
The place and route software is responsible for 
utilizing the wires appropriately by placing critical 
paths on the fast wires and non-critical paths on the 
regular wires. 
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• Dedicated wiring:  dedicated short connections 
between adjacent LEs and dedicated carry-chain and 
multiplier circuitry allow special purpose critical 
functions to be implemented with faster interconnect. 

• Greater variety of wiring resources:  Different netlist 
connections are of different lengths and fanout.  Our 
goal is to provide the best possible mix of routing 
resources for the requirements of most designs. 

The organization of the paper is as follows:  Sections 2 
through 5 cover the topics just mentioned which related to 
the core routing architecture, and Section 6 then 
summarizes the core architecture of the device and gives 
experimental results from in-house evaluation of the 
prototype device.  We make some closing remarks in 
Section 7. 

2. HIERARCHY / BASE ARCHITECTURE 
Before beginning any detailed experimentation, it is 
necessary to describe a base architecture.   For our purposes 
this really means deciding on the amount of hierarchy and a 
general theme to the organization of the interconnect.   
There is a spectrum of known architectures from which to 
choose our starting point. 

The APEX architecture [2,11] is a fundamentally 
hierarchical device.  Groups of LEs are clustered into fully-
connected LABs, which are grouped into MegaLabs.  
Global or high-level interconnect can only enter a MegaLab 
by switching onto MegaLab interconnect and then into 
individual LE inputs.  Horizontal and vertical wires in this 
type of architecture are full-length, half-length, or quarter-
length rather than staggered.    

At the opposite extreme from APEX is a flat or island-style 
architecture, such as the XC4000 presented by Trimberger 
et.al. [20].  Though provision is made for longer lines in 
this architecture, the primary communication is through 
short wires which stitch together through switching blocks 
to go longer distances.  The part is symmetric, in that 
vertical and horizontal connectivity is identical. 

The FLEX 10K architecture (similar to the FLEX 6K 
presented in [21]) is semi-hierarchical.  Though LEs are 
still grouped into LABS with full connectivity, the 
interconnect is row-biased.  Unlike APEX, top level full or 
half-length horizontal lines can communicate directly with 
LEs in a LAB, but similar to APEX vertical lines must 
switch onto a horizontal line before entering a LAB.  See 
Figure 1.  In FLEX 6K adjacent LABs can also 
communicate by interleaving their local connections to 
accomplish unit-length horizontal wires. 

An alternative definition of semi-hierarchical was given by 
Kaptanoglu et. al. [12].  Their architecture is hierarchical at 
the top-level, but flat in 16x16 blocks at the lowest level.  

We experimented with a range of architectures throughout 
the available space.  Some comments on the various 
tradeoffs are the following.  A short-line architecture will 
always be the fastest and most dense for unit connections.  
However, when more connections are required a connection 
must go through multiple switches to go even a relatively 
short distance.  A long-line hierarchical  architecture is very 
good for medium to long connections, but pays the extra 
price in both density and area for the short connections.   At 
a very high level, one could argue that unit-length 
connections are always the most efficient for density alone.   
However, since modern processes have 8 or more layers of 
metal, this makes some naïve assumptions about the 
tradeoff of metal for switching.  

In actuality, the choice of which base architecture to start 
with will always be filled with caveats, experimental bias 
due to assumptions and, in particular, software bias towards 
already existing parts.  In this case, after numerous 
experiments with HSPICE and software place and route, we 
chose a semi-hierarchical architecture roughly modeled on 
the FLEX 10K/6K architecture of Figure 1.  To fill in the 
details, our basic logic element (LE) is a 4-input LUT and 
DFF pair as is common in most PLDs.  These are grouped 
into clusters, called LABs, of size 10 with full 
programmable connectivity (local lines).  Connections 
outside of a LAB are accomplished with global wires:  half-
horizontal or HH lines, global (full-length) horizontal or 
GH lines, and global vertical or GV lines.  GV lines can 
turn onto the horizontal resources with programmable 
switches at their intersection points.  

Though the FLEX model serves as our starting point, we 
will make a significant number of modifications and 
improvements upon the architecture. 

3. HETEROGENEOUS WIRES 
It is well known in VLSI that one can optimize certain 
wiring connections by spending greater area in their 
implementation.  Some common techniques are to increase 
the width and spacing of long interconnect wires, introduce 
optimally sized and spaced buffering for the required 
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Figure 1.  Semi-hierarchical architecture similar to FLEX10K or 
FLEX6K, and our base architecture for Dali. 



    

  

loading on the wire, or laying out more critical connections 
on faster metal layers. 

The difficulty with these approaches on a PLD is that 
routing is intended to be generic.  We don’t know which 
wires are going to be critical until after a user’s design has 
gone through place and route, and different user-designs 
will have different critical paths.  It is infeasible (i.e. too 
expensive) to optimize all wires in the part for delay. 

The major innovation in the Dali architecture is to provide 
wires in the routing architecture that are functionally 
identical, but have different delay characteristics.  We can 
then rely on our place and route tools to properly balance 
the use of the fast and slow wires.  The keys to this 
approach are in deciding how many wires to make faster, 
and how to organize the connectivity so that both fast and 
slow wires are reachable from all areas of the chip. 

For a number of designs targeting this device and for a 
fixed placement based on FLEX 10K, we performed 
experiments as summarized by the following algorithm:        

   For varying p (percentage fast wires per row or column): 
       Loop 
          Do timing analysis and determine most critical path. 
          For each non-fast wire W on the critical path 
              If W’s row or col has fast wires remaining, 
                  “promote” W to fast by halving its delay. 
       Until critical path cannot be sped up. 
       Record new critical path length 
   End For 

The results of this experiment are shown in Figure 2.  Each 
test design generates one data point for each value on the X 
axis.  When we allow maximum of 5% of the global wires 
to speed up, we see the normalized critical path delay 
decrease by between 0% and 30% of the original delay, 
depending on the design, with an average of about 11%.  
The trend-line shows the average decrease in critical path 
length for increasing fast wires.  The dotted lines show the 
curve for the two designs which eventually showed the most 
and least benefit. 

The two main observations from this data are that we can 
gain an approximately 30% decrease in critical path delay, 
on average, by making only 20% of the wires fast, and that 
speeding up more than 20% of the wires will have only a 
marginal effect on the critical path.  Figure 3 emphasizes 
these diminishing marginal returns – the first 5% fast wires 
affect all 33 designs in the experiment, whereas increasing 
from 5% to 10% affects only 32 designs.  Increasing from 
45% to 50% affects only one design.  Figure 4 views 
marginal returns from the perspective of overall 
effectiveness. Though Figure 3 shows diminishing effects 
by number of designs it underestimates the acceleration of 
the decreased returns arising from less benefit even on 
those designs that are affected. 

These statistics have important ramifications on the design 
of our routing architecture:  even if the 20% of wires made 
fast cost twice the die-area of the standard wires, we 
increase the overall chip size by only 20%.  And were we to 
speed up all wires on the chip, we would be wasting a 
significant amount of die-area to do so. 
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Figure 2.  Effect on test designs of speeding up given proportions 
of row and column global interconnect. 
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Figure 3.  Diminishing marginal returns to fast wires. 
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Figure 4.  Diminishing average delay returns to fast wires. 



    

  

This simplified experiment, however, makes an assumption 
of perfect routability which is not realistic in practice – just 
making the wires fast is not sufficient to make them 
accessible to the subset of LEs and turning connections that 
require them.  Routing flexibility could either shift or skew 
the curves to the right.  Doubling the number of wire types 
greatly increases the number of possible ways to route from 
A to B in the part, and hence complicates the software 
significantly.    

We remark that Dali is the first and only PLD architecture 
to utilize this heterogeneous wiring scheme to achieve 
greater performance.  In Dali, we implement roughly 20% 
to 25% of wires as “fast”.  The exact number for each wire-
type is dependent on aspect ratio of the part, numerology of 
the switching network, output muxing structures and 
detailed architectural experiments, with the general 
experiment used as a guideline or starting point.  To derive 
the correct output flexibility for LEs driving the fast and 
standard interconnect we performed incremental tuning 
experiments throughout the design of the architecture. 

Similar qualitative results to these were quoted by Betz and 
Rose in independent work [3].    They found that by 
modifying 20% of the tracks they were able to obtain a 13% 
circuit speedup, whereas speeding up all tracks gained only 
a 15% speedup.  Though their results show less quantitative 
improvement than ours, they agree on both on the location 
of the “elbow” of the curve and the decreasing marginal 
returns.  Among the reasons that we gain more benefit is 
that we optimized more than simply width and spacing for 
the fast wires.  Also, we use significantly larger designs and 
devices in which speedup with respect to fanout can be 
greater. 

In an accounting sense, we claim after this modification to 
have decreased critical path delay by approximately 30% 
with a roughly 20% die-size cost.  

4.  DEDICATED CONNECTIONS 
A second way to speed up a PLD is to introduce dedicated 
connections for special purpose logic.  There are three 
primary structures with which Dali achieves this goal.  We 
introduce a new form of cascaded LUT connection, 
dedicated carry look-ahead structures important for 
arithmetic functions, and a dedicated multiplier. 

4.1 Cascaded 4-LUT Connection. 
One issue that must be re-visited in every new architecture 
is LUT-size:  do we want to continue with a 4-LUT, or 
perhaps use 3 or 5 LUTs?  The use of 5-input LUTs 
decreases unit delay in a technology mapped circuit by 
roughly 25%, 6-LUTs by an additional 15%, and so on.  
(One can easily generate this data using RASP [5] and the 
MCNC benchmarks.)  However, the size of the LE layout 
doubles with each unit increase in LUT-size, which affects 

both area and propagation delay through the logic cell, and 
also the die area required for the LAB input region. 

Recent work by Ahmed and Rose [1] confirms previous 
studies by Rose et. al. (e.g. [18]) that a 4-LUT continues to 
be delay-area efficient, especially when paired with clusters 
(LABs) of size 4-10.  Similar experiments which we 
conducted found a greater die-size penalty than Rose et. al. 
in using larger LUT-sizes, and a greater benefit to larger 
cluster sizes when all layout effects are taken into account, 
hence we continue to use 4-LUT LEs in clusters (LABs) of 
size 10. 

However, there are alternatives to implementing larger 
LUTs in all cases, which can allow us to maintain both area 
efficiency and achieve better delay properties.  For 
example, all FLEX and APEX devices from Altera  contain 
special circuitry to allow adjacent LEs to cascade (AND) 
their outputs (see Figure 5(a)).  This facilitates the 
implementation of wide and/or functions and multiplexors.   
Cong and Hwang [5] showed that a majority (96-98%) of 
all “practical” 5-LUTs and 85% of all practical 6-LUTs can 
be implemented by the 4-3 structure shown to the left of 
Figure 5(b).  Though they did not directly study the 4-4 
structure, we find it empirically even better (>98,98,73 for 
5,6,7-LUTs), and significantly more layout and software 
friendly than heterogeneous LUT sizes.  Note that though 
the AND-cascade of FLEX devices is comparable we found 
for the types of designs we looked at the 4-4 was more 
flexible. 

Dali uses this 4-4 cascade in place of the previous and-
cascade of FLEX 10K.  The D input of each 4-LUT can be 
either a standard LUT input or the cascaded output of its 
adjacent LE. 

4.2 Carry Look-Ahead. 
Carry-chain delays, though significantly smaller than LE 
propagation delays, still require a signal to traverse the 
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Figure 5(a)   FLEX / APEX style AND-cascade. 

4lut

3lut

4lut

3lut

      
4lut

4lut

4lut

4lut

 
 

Figure 5(b)   Cascade LUT suggested by Cong and Hwang, 
and cascaded LUT implemented in Dali. 



    

  

entire length of the carry chain after arriving at the first LE 
in the chain.  To speed up this process, we added new carry 
lookahead circuitry which reduces the delay for an length-N 
carry chain to (N div 5) + 1 + 5.  Thus for longer carry 
chains more likely to be on the critical path, a significant 
delay savings can be achieved. 

Adding carry lookahead to speed up addition is not a new 
concept.  However, typical carry lookahead circuitry is not 
common to PLDs because of the irregularity of the layout.  
Also, the fact that only arithmetic functions benefit while all 
logic increases in cost is prohibitive.   

The carry lookahead scheme in Dali uses a regular layout, 
rather than a tree-like structure, and is designed to speed up 
all carry logic, not just arithmetic functions.  The basic 
mechanism is to compute both the “if 0” and “if 1” 
branches of the carry chain, and then choose the correct 
result with a 2:1 mux at the end of 5 carry computations to 
achieve the cost savings quoted above. 

4.3 Dedicated Multiplier. 
As DSP and other communication-specific logic 
increasingly dominate the PLD landscape arithmetic logic is 
becoming more and more important.  We have already 
discussed methods to speed up addition, which does help 
multiplication also, but we chose to add further specific 
circuitry to further attack the long propagation delays 
associated with multipliers. 

The biggest drawback in implementing a multiplier in 
programmable logic is that the routing architecture is not 
amenable to optimal placement.  Artificial boundaries may 
cause signals that should be local to use un-naturally longer 
wires (or an un-balanced number of short wires).  The 
regularity of carry chain circuitry might also cause layout of 
the multiplier to be unnatural, following a zig-zag chain 
along a row (as in the case of an Altera FLEX 10K 
architecture). 

To combat these issues we added two new routing features 
to Dali.  First, we added vertical carry chain lines to allow 
logic in one level of the adder tree to align itself vertically.  
Then we added short dedicated lines to directly connect the 
output of one level of the adder tree to the next.  To speed 
up signed multiplication, we added special circuitry in each 
LE so that the AND functions can be absorbed into the first 
level of the adder tree.   

The use of these dedicated routing resources introduces a 
number of restrictions on the placement of a multiplier in 
the part.  It is not possible to fully explain the restrictions 
here, but they are documented in the Mercury data-sheet. 

There is, of course, the option of adding dedicated hard 
multiplier circuitry to the part.  However, this introduces 
the typical PLD architecture problem of “How many?” 
Since some customers want no multipliers at all, they don’t 

want to pay for them, and others want 23 when we provide 
20 (or want 18 bit rather than a generic 16 bit), it is 
impossible to choose a single architecture to solve the 
problem.  As density increases, dedicated multipliers will 
no doubt become mainstream, but for Dali we found the 
placement friendly circuitry for synthesized generic logic to 
be the best solution.  The flexible (rather than hard-wired) 
approach also allows for the user to choose their latency 
strategy.  In the Dali architecture a 16x16 multiplier can run 
over 130 MHz without pipelining, and over 300 MHz with 
pipelining. 

5. NEW WIRE TYPES 
Some connections in a placed netlist will naturally be closer 
together, and others further apart.  In an attempt to 
accommodate as many different types of connections as 
possible, we introduce a new type of interconnect that is 
staggered and is dedicated to the source LAB at which it is 
driven, supplementing the FLEX 10K base architecture.  
These are called NFL lines (short for network of fast lines).  
See Figure 8.   NFL   lines originate at a LAB and drive 5 
LABs horizontally in either direction. 

Because NFL lines have dedicated drivers, they are faster 
than typical GH or HH lines.  We also achieve a moderate 
density benefit, because the staggering of the lines allows 
for a 20% better packing than regular GH lines.  Figure 6 
shows decreasing requirements for GH lines as the number 
of NFL lines approaches 10 per LAB.  NFL lines are not 
stitched at their endpoints, in order to keep their delay 
reasonable.  Note that the benefit of these lines is over-
stated in the chart shown, because raw line-counts do not 
directly translate to layout area, due to different switching 
and sizing requirements for the different wire types. 

A second new wire-type is the interleaved vertical (V) line, 
or “short V”, which allows for nearest-neighbor row 
connections and saves the use of a longer global V line.   
Just as we found it advantageous to have unit-length 
connections between adjacent LABs [21], short-cut paths 
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Figure 6. Density benefit of mixing staggered and full-length 
lines. 



    

  

between rows are useful, particularly for special functions 
such as the multiplier circuitry. 

6. DALI CORE ARCHITECTURE. 
In this section we tie together the discussion of the previous 
several sections by presenting the overall routing 
architecture of the Dali family.  This is best done by a top-
level floorplan, shown in Figure 7.  The prototype device 
shown has 10 LEs per LAB, 40 LABs per row and 12 logic 
rows for a total of 4800 LEs.  Other family members in the 
family contain, for example, 14,400 LEs in different 
row/column configurations. 

In addition to programmable logic rows, the device has two 
rows devoted to Embedded System Blocks (ESBs) which 
are 4Kbit user-configurable RAMs.   PLLs or phase-lock 
loops (in varying numbers depending on the family 
member) allow fine control of externally generated clocks.   

An idealized “die-shot” of the part  is shown in Figure 8.  

The operation of the RAM blocks is shown in Figure 9.  
Many earlier-generation PLDs implemented partial dual-
port RAM (i.e. FIFO-RAM), but Dali implements not only 
a full dual-port, but also quad-port access and a number of 
new configuration options which are beyond the scope of 
this paper.  The ESB continues to be configurable as a 
Content-Addressable Memory [7,8] as in the APEX family. 

It is interesting to note that I/O locations in Dali are in rows 
directly in the core, as opposed to a pad-ring surrounding 
the chip.  This allows us to take advantage of modern flip-
chip technology in order to provide higher pin-counts, and 
also allows us to give I/Os very fast access to core registers. 

6.1 Benchmarking Results. 
Our judge of success for the Dali routing architecture is to 
compare it to an equivalently sized FLEX 10K part.  In 
addition to being the closest point for comparison, the 

APEX architecture was not yet available in production at 
this time.  Our evaluation uses same-process, simulation-to-
simulation timing and area models.  A direct comparison of 
actual Mercury device to 10K would overly favor it simply 
because of the process advantage, whereas these 
comparisons fairly evaluate our architectural decisions. 

To remove the effects of software from the benchmarking 
as much as possible we created a fake FLEX 10K family 
member with the same number of rows and columns as our 
base part.  We then start with a back-annotated placement.  
By beginning with the same placement, we can make sure 
that we do not give any advantages due to new/better 
algorithms, or disadvantages due to immature software to 
the new part.  However, it would be too unfair to make no 
modifications for use of the interleaved V-lines and 
staggered short lines, so we add pre-processing and post-
processing steps which locally modify the input placement 
to better take advantage of these new lines – i.e. LABs are 
re-ordered within their row, and rows are shifted around as 
blocks to opportunistically use the new wire-types.  We 
consider this to be a fair yet conservative implementation, 
because it allows for improvements that legitimately exist in 
the new part, without adding the experimental noise of 
using two completely different place and route tools. 

 

Figure 8.  Mercury “Die-shot” showing different wire types.  
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Figure 9.  Quad-port ESB RAM. 

  

P L L

P L L

C o ntro l 
L og ic
&  P ins

JT A G  
L og ic
&  P ins

M em o ry  R o w
L V D S -In /C D R  IO  B an d  & P L Ls

L V D S -O u t IO  B an d  &  P L L

R egu la r  IO  B a n d

R egu la r  IO  B a n d

R e gu la r IO  B an d

M em o ry  R o w

12 Logic Rows

Data Register

A d d re ss  R e g is te r

P L L

P L L

C o ntro l 
L og ic
&  P ins

JT A G  
L og ic
&  P ins

M em o ry  R o w
L V D S -In /C D R  IO  B an d  & P L Ls

L V D S -O u t IO  B an d  &  P L L

R egu la r  IO  B a n d

R egu la r  IO  B a n d

R e gu la r IO  B an d

M em o ry  R o w

12 Logic Rows

Data Register

A d d re ss  R e g is te r

 

       Figure 7.  Top-level Floorplan of 4800 LE Mercury. 



    

  

Because of the new wire-types, we also require changes to 
the router to use all available wires. The router must 
prioritize the critical path connections onto the fast wiring 
resources or staggered lines where appropriate to achieve 
both performance and fitting.  In production we would want 
to have placement also consider the availability of fast 
resources.  Even though this leaves potential upside we 
chose, as previously mentioned, to not introduce greater 
experimental variation by significantly modifying 
placement.   In the production-quality software we address 
a number of these new issues and problems.  For example, 
the simple “promotion” algorithm outlined in Section 3 
contains a full timing-analysis in its inner loop and is 
clearly not time-efficient. 

Our results are presented in the following manner.  For each 
design in the evaluation set, we take the 10K critical path 
length, normalized to 100 units.  We then compare the 
length of the critical path of the same design after the 
introduction of the Dali timing-model, implementation of 
the modified cascade, placement modifications for new 
wire-types and prioritized routing algorithm.  Figure 10 
shows this result for a sample of user designs.  All designs 
are between 70% and 100% full in terms of LE count.   On 
average, the Dali device achieves a critical path that is 58% 
the delay of the beginning 10K path, translating to a 1.72X 
increase in internal clock-speed.  The most affected design 
is almost 2X the speed, and the least affected has 70% the 
critical path, or 1.43X clock-speed of the original.   

Figure 10 is the exact, un-edited result used in presentation 
of the prototype architecture.  Thus it compares simulation-
to-simulation on the same process rather than commercial 
benchmarking.  It does not reflect differences in the parts 
based on process shrinks or future layout constraints, either 
positive or negative. 

To further illustrate the areas where the primary benefits 
were achieved, we can examine the breakdown of the 
critical path in the “before” and “after” architectures, as 
shown in Figure 11.  The delay types are GH (full-length 

global horizontal), HH (half horizontal), GV (full length 
vertical), carry, cascade, local, and LE delays through 
inputs A, B, C, and D of the 4-LUT.  The distinction 
between GH and GH+ is the base delay vs. the additional 
delay due to fanout loading. 

After conversion to the Dali architecture (lower pie-chart), 
we see 42% of the overall delay removed, and the 
breakdown of the remaining 58 units of delay has 
significantly moved away from the higher delay global 
wires to a mixture of the most appropriate wire types.  The 
new wire types NFL and IV have appeared, and the GH and 
GV lines have been divided into the new wire types sGH – 
standard GH, and fGH – fast-GH. 

One of the major effects of the detailed design of the fast 
wires is the removal of fanout effects.  Overall, we can see 
that virtually all wire types were sped up, confirming our 
previous research experiment that we could speed up all 
critical paths with only a fraction of the basic routing 
architecture requiring additional cost.  In particular, we note 
that the standard GH and GV wires comprise the majority 
of the routing architecture, yet they very rarely appear on 
any critical paths. 

7. CONCLUSIONS 
In this paper we have outlined the routing architecture of a 
new PLD architecture, Dali, which is specifically designed 
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Figure 10.  Percentage of remaining critical path after 
software modification of 10K to Dali architecture. 
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Figure 11.  Dali Speedup relative to the  base architecture. 



    

  

to achieve high-performance, both in core clock-speed and 
in I/O bandwidth.  In addition to the overall architecture, 
we have made a number of independent research 
contributions, including justification that only a proportion 
of routing resources need be fast to achieve high-
performance routing, effective use of dedicated connections 
for special-purpose logic, and discussion of the use of 
different routing types.    

Overall, our prototype benchmarking shows the Dali 
routing architecture to achieve approximately 1.7X the 
performance of an equivalent process FLEX 10K device, at 
a relatively cheap 1.3X die-area cost. 

The Dali architecture forms the basis for Altera’s Mercury 
family.  Mercury was originally implemented on a 8LM .18 
Al, 1.8V CMOS process, and now commercially available 
on .15 Cu, 1.8V CMOS, the first two family members 
comprising the 4800 and 14,400 LE size devices.   We 
firmly believe that the Mercury implementation of our Dali 
architecture represents the fastest PLD in its process and 
density range by a significant margin.  

Though not discussed in this paper, many of the important 
features of the Mercury commercial family relate to multi-
standard and voltage I/O structures, and Gbit high-speed 
differential interfaces with clock-data recovery as a primary 
feature.  CDR, in particular, is a novel and important 
structure that is critical to modern high-bandwidth 
communications designs. 
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