
Congestion Estimation with Buffer Planning in Floorplan Design

Chiu-Wing Sham, Wai-Chiu Wong and Evangeline F. Y. Young
The Chinese University of Hong Kong

Shatin, NT, Hong Kong
cwsham, wcwong2, fyyoung @cse.cuhk.edu.hk

Abstract

In this paper, we study and implement a routability-
driven floorplanner with buffer block planning. It evalu-
ates the routability of a floorplan by computing the proba-
bility that a net will pass through each particular location
of a floorplan taken into account buffer locations and rout-
ing blockages. Experimental results show that our conges-
tion model can optimize congestion and delay (by success-
ful buffer insertions) of a circuits better with only a slight
penalty in area.

1. Introduction

Floorplanning plays an important role in physical design
of VLSI circuits. It plans the shapes and locations of the
modules on a chip, and the result of which will greatly af-
fect the performance of the final circuit. In the past, area
was the major concern in floorplan design. Advances in the
deep sub-micron technology have brought many changes
and challenges to this. As technology continues to scale
down, the sizes of the transistors and modules are getting
smaller and a significant portion of the circuit delay is com-
ing from interconnects. In some advanced systems today,
as much as 80% of a clock cycle is consumed by intercon-
nects [4]. Area minimization became less important while
routability and delay has become the major concern in floor-
planning and many other designing steps.

Traditional floorplanners did not pay enough attention to
congestion optimization. This will result in a large expan-
sion in area or even an unroutable design failing to achieve
timing closure after detailed routing. There are several pre-
vious works addressing these interconnect issues in floor-
plan design. In the paper [3], a floorplan is divided into
grids and congestion is estimated at each grid, assuming
that each wire is routed in either L-shaped or Z-shaped.
Cong et al. define in their paper [9] the term feasible region
of a net, and buffers are clustered into blocks in these feasi-
ble regions along the channel areas. Sarkar et al. [12] add in

the notion of independence to feasible regions so that these
regions for different buffers of a net can be computed inde-
pendently. Tang and Wong [14] propose an optimal algo-
rithm to assign buffers to buffer blocks assuming that only
one buffer is needed per net. Dragan et al. [7] use a multi-
commodity flow-based approach to allocate buffers to some
pre-existing buffer blocks. Alpert et al. [2] make use of tile
graph and dynamic programming to perform buffer block
planning. Finally, Lou et al. [10] apply probabilistic anal-
ysis to estimate congestion and routability, and they show
that their estimations correlate well with post-route conges-
tion. However their congestion model does not take into
account buffer insertions

Buffer insertion is one of the most popular and effec-
tive techniques [5, 13] to achieve timing closure. In cur-
rent practices, buffers are inserted after routing. However
buffers also take up silicon resources and cannot be in-
serted wherever we want. A good planning of the mod-
ule positions during the floorplanning stage so that buffers
can be inserted wherever needed in the later routing stages
will be useful. Besides, buffer itself contributes delay and
area, and their locations should be carefully planned. In our
method, we will compute the buffer usage of each net and
estimate congestion taking into account buffer locations and
net routability. We employ a simple yet accurate method to
estimate congestion from a more global and realistic per-
spective. The nets are assumed to be routed in multi-bend
shortest Manhattan distance and issues like buffer locations
and blocked nets (a net that cannot be routed in the shortest
Manhattan distance) will also be considered in the evalua-
tion of the floorplan. In order to consider buffer issues in
congestion estimation, we need to compute the buffer lo-
cations for each net. Dynamic programming [6] is used to
compute the buffer locations of an interconnect tree in the
paper [11]. The biggest disadvantage of this method is that
it will take a long computational time. In a floorplanner us-
ing the simulated annealing technique, tens of thousands of
iterations will be invoked for each floorplanning step, it will
be too slow if this process is repeated in each iteration. In
order to speed up the process, we employ a table look-up

approach to store and retrieve the delay and buffer infor-
mation of a net. This allows flexible handling of the buffer
information efficiently.

This paper is organized as follows. We will give an
overview of our approach in Section 2. The congestion
model used in our floorplanner will be discussed in sec-
tion 3. The method to compute buffer locations will be
described in section 4. Implementation details will be
explained in section 5, and the experimental results will be
shown in section 6 before the conclusion is made in the last
section.

2. Overview of Our Floorplanner

We use simulated annealing with sequence pair represen-
tation to describe a non-slicing floorplan solution. Unlike
traditional floorplanners, we will consider buffer usage of
each net and estimate the wiring congestion of each inter-
mediate solution taken into account the buffer requirements.
In each iteration of the annealing process, we will compute
the buffer requirements of each net using an efficient table
look-up method that will be discussed in details in Section
4. After computing the buffer requirements of each net, we
will estimate the wiring congestion of the floorplan solu-
tion considering both the module positions and the possi-
ble buffer locations. We assume that a net will be routed
in multi-bend shortest Manhattan distance and buffers can
only be inserted in un-occupied spaces between the logic
modules. A floorplan solution will be evaluated according
to the total chip area, interconnect length, congestion and
availability of buffers. The congestion model and the esti-
mation procedure will be explained in the following section
in details.

3. Congestion Model

We will divide a floorplan into a 2-dimensional array of
fixed-size grids. The size of each grid is a trade-off between
efficiency and accuracy. In our implementation, we will use
an array of grids to grids. In each iteration
of the annealing process, we will first compute the buffer re-
quirements of each net using a table look-up approach (sec-
tion 4). These buffer requirements will be expressed as a
list of grid positions. For example, a list (5, 10) means that
two buffers are required for this net: the first one should
be at a position of 5 grids from the source and the second
one should be at a position of 10 grids from the source. Af-
ter these buffer requirements are computed for each net, we
will estimate the congestion and routability of a floorplan
solution as follows.

3.1. Construction of Grid Structure and Blocked
Grids

In order to obtain the congestion information at every
location of a floorplan, we divide the floorplan into a 2-
dimensional array of fixed-size grids. In each iteration of
the annealing process, we will compute the congestion in-
formation at each grid assuming that a net will be routed
in a multi-bend shortest Manhattan distance. Since buffers,
which also consume area and cannot be inserted wherever
we want, may need to be inserted on a net in order to satisfy
its delay bound, we should consider the possible buffer lo-
cations in the congestion estimation. In order to handle this
and other routing constraints like VCC, GND and CLK, we
define some grids as blocked grids. A grid is blocked for net

if it is located at a pre-defined reserved area, or at a posi-
tion where buffer should be inserted for net but is totally
occupied by some logic modules.

A simple example is shown in figure 1. In this example,
we assume that the buffer requirements of net is (3, 6), i.e.,
two buffers are needed and they should be at distances of
three and six grids from the source respectively. The shaded
grids are the grids where a buffer should be inserted for net

if the wire passes through it. However two of them are
totally occupied by logic modules and cannot accommodate
any buffer. These two grids are thus blocked. Besides, the
two grids of dark grey in color are also blocked because they
are reserved for some other routing purposes.

B : Blocked grid

: Grid where a buffer should be inserted
 for net k if net k passes through it

Source
of net k

Destination
of net k

BB

: Grid completely occupied by some
 modules

: Grid with other routing blockage

: Module

B
B

Figure 1. Example of Blocked Grids

3.2. Counting the Number of Routes at a Grid

After dividing a floorplan into grids, we will count the
number of routes of a net passing through each grid. In our
floorplanner, we assume multi-bend routing with shortest
Manhattan distance. An example is illustrated in figure 2.

In this example, we assume that the starting grid is on
the upper-left side of the ending grid. At the beginning (fig-
ure 2()), the number of possible routes at each grid lying
vertically or horizontally with the starting grid is initialized
to one. Then, the values of the other grids can be computed

2

Starting
grid

Ending
grid

1 1 1 1 1

1

1

1

1

Starting
grid

Ending
grid

1 1 1 1 1

1

1

1

1

2 3 4 5 6

Starting
grid

Ending
grid

1 1 1 1 1

1

1

1

1

Starting
grid

Ending
grid

1

1

1

1

1

1111

23456

2 3 4 5 6

3 6

4

5

10

10

15

20

15 21

35

35 70

56

1 1

1

1

3

4

5

6

10

153570

126

126

35 20

101521

56

(a) (b)

(c) (d)

Figure 2. Example for counting the number of
routes for a net

dynamically row by row by adding up the values on its top
and on its left. In general, the value (, ,) computed at
the grid (,) is the number of possible routes for net that
goes from the starting grid to the grid at position (,). We
can then obtain the total number of possible routes from the
starting grid to the ending grid by filling in the values at all
the grids. In order to compute the number of routes passing
through each grid, we need to repeat the same steps from
the ending grid to the starting grid (figure 2()) and com-
pute (, ,), that is the number of possible routes for net

going from the ending grid to the grid at position (,).
The number of routes for net passing through
the grids at (,) will then be computed as:

3.3. Counting routes with Blocked Grids

A blocked grid for net does not allow the wire of net
to pass through, so the counting should be reset to zero at

the blocked grids. An example is illustrated in figure 3.
By comparing figure 2 and figure 3, we can see that the

total number of possible routes is reduced from 126 to 48
because of the lack of routing resources at the blocked grids.
It may happen that the number of possible route is equal to
zero. It means that the net cannot be routed from the starting
grid to the ending grid with the shortest Manhattan distance,
and we will call such a net a blocked net.

3.4. Delay of a Blocked Net

If a net is blocked, it cannot be routed in its shortest
Manhattan distance without omitting some of its required

: blocked grid

Starting
grid

Ending
grid

11
Starting

grid

Ending
grid

The result of g1(x,y,k) The result of g2(x,y,k)

1

1

1

11

1111

11111

1

1

1

1

2

2

33

321

1174

34

23125

1411

4834

3

6

4

7

18

12

12

56

18

30

48 2

1

3

4

6

Figure 3. Results of g (x,y,k) and g (x,y,k) with
blocked grids

buffers. In our modeling, it is reasonable to assume that
buffers will still be inserted for a blocked net as much as
possible to minimize its delay. There is a simple way to
compute the maximum number of buffers that can be in-
serted for a blocked net using our computational scheme. A
simple example is shown in figure 4.

In this example, net is a blocked net that requires
=2 buffers. In order to compute the maximum number of

buffers that can be inserted for net , we will first label the
starting grid with , meaning that buffers are required to
be inserted in any route from that grid to the ending grid.
Then we will compute the values at other grids by taking
the minimum between the values at its top and on its left. A
smaller value is taken because we want to satisfy the buffer
requirements as much as possible. Whenever we reach an
un-blocked grid where a buffer is required, we will take the
minimum value as usual and minus one from it. This is
because a buffer can be inserted at that position and the
number of buffers required can be reduced by one. This
computation is continued until the ending grid is reached.
If the value at the ending grid is zero, it means that all
the buffers required can be inserted (but this will not hap-
pen for a blocked net). Otherwise, the value () will
be the maximum number of buffers that can be inserted for
net . This value () will then be used to compute the
optimized delay of net .

: blocked grid

Starting
grid

Ending
grid

22 222

1

1

2

2 2

11

122

11

11

11

11

11

: the grid where a buffer is required to be inserted

1

2

2

1

1

Figure 4. Example of computing the maximum
number of buffers for a blocked net

3

3.5. Computing the Probability of Net Crossing

After counting the number of possible routes for a net,
we can calculate the probability that the wire of a net will
pass through any particular grid. The probability that the
wire of a net will pass through the grid at () is:

where is the total number of possible routes
from the starting grid to the ending grid for net . An ex-
ample for figure 3 is shown below:

By using the above method, we can compute the con-
gestion at each grid due to each net one after another. Fi-
nally, the average number of wire passing through the grid
at () will be computed, taking into account all the nets
simultaneously, as:

If the value of is large, it means that the
grid at () is very congested.

3.6. Time Complexity

In the congestion estimation, we need to scan the grids
from the source to the destination for each net. Therefore
the time complexity is where is number of grids
scanned for each net and is number of nets. However, the
number of grids that required to be scanned for each net is
bounded because we assume that the nets are routed in the
shortest Manhattan distance. As a result, if the floorplan is
divided into grids, we need to scan at most grids for
each net and the time complexity of the congestion estima-
tion is only .

4. Buffer Location Computation

Since the floorplan solution is divided into grid structures
for congestion estimation, we will use the grid unit length
as the length of a wire segment in the computation of buffer
locations. Instead of computing the buffer locations by dy-
namic programming [6], we have developed a table lookup
approach to speed up the computations of buffer locations.

4.1. Elmore Delay Computation

The Elmore Delay Model is commonly used for delay
estimation. For a wire divided into segments and with a
load capacitance and a load resistance . If buffers
are inserted in each segment, its delay can be computed by
the following formula:

where , and are unit wire capacitance, resistance
and fringing capacitance respectively; ,

and ; is the length of a wire segment, ,
and are resistance, capacitance and intrinsic delay of a
buffer respectively.

4.2. Dynamic Programming Approach

A dynamic programming algorithm is used for inter-
connect tree optimization in the paper [11]. The algo-
rithm adopts a bottom-up dynamic programming approach
to minimize the maximum delay among all the paths from
a source to the sinks. The interconnect tree is divided into
short segments, and in each step of the bottom-up traver-
sal of the tree, a set of solutions for each tree segment is
computed based on the solution sets of its subtrees.

However, the biggest disadvantage of this approach is its
long computation time. Its execution time will exponen-
tially increase with the number of wire segments. If we
estimate the delay of each wire in each iteration of the an-
nealing process, the whole floorplanning process will take a
very long time. In order to avoid this, we use the same ap-
proach, but will save the necessary information into a table
before the annealing process. During the annealing process,
all the buffer insertion information can then be “looked-up”
from the table quickly. The computation time for buffer lo-
cations can thus be shortened significantly.

4.3. Table Lookup Approach

In order to speed up the computation time for buffer lo-
cations, we have developed a table lookup approach. Before
the simulated annealing process, we compute the buffer lo-
cations (optimal delay) for each different wire length (in
terms of grid unit) once. Since the wire length is estimated
by its shortest Manhattan distance, there should be at most
60 grid unit length for each net (20-30 grid unit length in
each dimension of the whole chip). The information stored
in the table for each net length is the optimal delay of the

4

wire, number of buffers required and their corresponding
locations. The net length is used as an index for looking up
the information in the table. The table structure is shown in
figure 5.

Wirelength
(grid unit)

Optimized
wire delay

(fs)

Number
of buffers
requried

Buffer
locations

index information

1

60

2
55.6231 Null0
78.4569 0 Null

15646.002 4 12,24,36,48

......
...

Figure 5. An example of a lookup table for
buffer location computation

5. Implementation Details

5.1. Handling Multi-pin Nets

The above calculations are used for 2-pin nets only. In
order to extend it to handle multi-pin nets, there are sev-
eral methods such as using minimum spanning tree (MST)
or rectilinear steiner tree (RST). MST will run faster but it
may over-estimate the congestion because of the overlap-
ping net segments. However, this conservative estimation
will not affect the resultant packing significantly because
the total length of an MST can be reduced by 6% to 9%
only by removing all the overlapping net segments to get
a corresponding RST [8]. Since the run time of an RST
algorithm is usually much longer than that of an MST algo-
rithm, MST will be a better choice for estimation purposes
in the early floorplanning stage. As a result, we apply MST
to handle multi-pin nets in our floorplanner: breaking the
multi-pin nets into a set of 2-pin nets.

5.2. Positioning of the I/O pins

During the floorplanning stage, the positions of the I/O
pins are not fixed, so we need to locate the I/O pins before
counting the number of possible routes. In order to dis-
tribute the I/O pins into the grids appropriately, intersection-
to-intersection method is used. Consider a net connecting
two modules A and B, we will first draw a line connect-
ing the centers of two modules. The two intersecting points
between this line and the boundaries of the modules will
be found (figure 6) and the I/O pins will be placed into the
grids of the intersection points.

Selected
grids

Figure 6. Intersection-to-intersection method
to locate I/O pins

5.3. Cost function of the Floorplanner

In our floorplanner, we use the following cost function:

where is the total area of the floorplan, is
the total wirelength, is the average weight
of the top 10% most congested grids and
is the number of blocked wires, , and are parameters.
These parameters will be set at the beginning of the anneal-
ing process in such a way that the ratio of importance of the
area term, the wirelength term, the congestion term and the
blocked wire term will remain a constant. This can be done
by performing a sequence of random walks at the beginning
and sampling the average values of these penalty terms. The
parameters , and can then be computed accordingly.

6. Experimental Results

We tested our floorplanner using three MCNC building
block benchmarks (ami33, ami49 and playout). The num-
ber of modules and nets are (33, 123), (49, 408) and (62,
1161) respectively. The areas of the modules are scaled by
10 times in order to demonstrate the effects of buffer inser-
tions on delay. All the experiments were performed using
an Intel 1.4GHz processor with 256 MB memory. The val-
ues of the parameters in the Elmore delay computation are
based on the 0.18 m technology (see Table 1) [1, 13].

We tested our floorplanner using the benchmarks with
three cases: (a) without congestion nor buffer insertion, (b)
with congestion optimization only, and (c) with both con-
gestion and buffer insertion. The execution time, deadspace
percentage, number of blocked nets, congestion and net de-
lays are reported in Table 2. For congestion and net delays,
we report the average of the top 10% most congested grids
and the average of the top 10% longest delays. Every set of

5

Parameters Value

wire resistance per unit length (/ m) 0.075
wire capacitance per unit length (fF/ m) 0.118

wire fringing capacitance per unit length (fF/ m) 0.0641
intrinsic buffer delay (ps) 36.4

load capacitance/buffer capacitance (fF) 23.4
driver resistance/buffer resistance () 180

Table 1. Values of parameters used in Elmore
delay computation

results displayed in the table is the average obtained by per-
forming the experiment eight times. From Table 2, we can
observe that there is about 10-25% decrease in net delay and
up to 95% decrease in the number of blocked nets in case
(c) (with both congestion and buffer insertion) in compari-
son with the other two cases. For congestion, we can obtain
an improvement of about 20-35% in both case (b) and (c)
in comparison with case (a) (without congestion nor buffer
insertion). Case (a) optimizes the area the best, but it is the
worst in terms of the number of blocked nets and conges-
tion. In the other cases, there are significant improvements
in reducing the number of blocked nets, congestion and net
delay, with only a slight penalty in area (about 3% on aver-
age).

Circuit
and case

Execution
time(s)

Dead-
Space
(%)

Number
of
blocked
nets

Congestion
(number
of nets
per grid)

Net de-
lay (fs)

ami33

(a) 3.415 5.407 4.750 11.521 51.118

(b) 238.645 9.221 3.625 8.251 43.829

(c) 243.508 10.977 1.250 7.478 38.497

ami49

(a) 8.117 5.242 44.875 65.196 485.424

(b) 221.371 6.446 42.875 51.389 502.183

(c) 254.110 6.396 8.750 59.470 450.725

playout

(a) 19.881 6.282 107.625 153.849 59.603

(b) 1034.891 8.507 98.875 104.803 57.147

(c) 1074.447 8.543 4.750 109.713 51.922

Table 2. Experimental Results for MCNC
benchmark

For the execution time, it can be seen that the time for
handling buffer insertions using the table lookup approach
is very efficient (increase of about 6% on average) by com-
paring the execution time of case (b) and (c).

7. Conclusion

In this paper, we presented a congestion model for esti-
mating interconnect cost with buffer planning in a routabil-
ity driven floorplanner. By using this probabilistic model,
the number of blocked nets, delay and congestion can be
estimated, taken into account buffer locations and routing
blockages. Experimental results show that congestion and
delay can be better optimized using this congestion model
with little penalty in area.

References

[1] S. I. Assoication. National Technology Roadmap for Semi-
conductors. San Jose, CA, 1997.

[2] S. S. S. C. J. Alpert, J. Hu and P. G. Villarrubia. A practical
methodology for early buffer and wire resource allocation.
In DAC, 2001.

[3] H. M. Chen, H. Zhou, F. Y. Young, D. Wong, H. H. Yang,
and N. Sherwani. Integrated floorplanning and interconnect
planning. In Int. Conf. on CAD, pages 354–357, 1999.

[4] J. Cong. Challenges and opportunities for design innovations
in nanometer technologies. In SRC Design Sciences Concept
Paper, 1997.

[5] J. Cong, T. Kong, and D. Z. Pan. Buffer block planning for
interconnect-driven floorplanning. In Int. Conf. on Computer
Aided Design, pages 358–363, 1999.

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-
gorithms. The MIT Press, Cambridge, Massachusetts 02142,
1990.

[7] S. M. F. F. Dragan, A. B. Kahng and A. Zelikovsky. Provably
good global buffering using an available buffer block plan. In
Proc. Int. Conf. On CAD, 2000.

[8] J. M. Ho, G. Vijayan, and C. K. Wong. A new approach to
the rectilinear steiner tree problem. In 26th ACM/IEEE DAC,
pages 161–166, 1989.

[9] T. K. J. Cong and D. Pan. Buffer block planning for intercon-
nect driven floorplanning. In CAD 1999. Digest of Technical
Papers. 1999 IEEE/ACM Int. Conf., pages 358–363, 1999.

[10] S. K. J. Lou and H. S. Sheng. Estimating routing congestion
using probabilistic analysis. In Int. Sym. on Physical Design,
ACM, pages 112–117, April 2001.

[11] J. Lillis, C.-K. Cheng, and T.-T. Y. Lin. Optimal wire sizing
and buffer insertion for low power and a generalized delay
model. IEEE Journal of Solid-State Circuit, 31(3):161–166,
March 1989.

[12] C. K. K. P. Sarkar, V. Sundararaman. Routability-driven re-
peater block planning for interconnect-centric floorplanning.
In ISPD 2000, 2000.

[13] P. Sarkar, V. Sundararaman, and C.-K. Koh. Routability-
driven repeater block planning for interconnect-centric floor-
planning. In Int. Symp. Physical Design, pages 186–191,
2000.

[14] X. P. Tang and D. Wong. Planning buffer locations by net-
work flows. In Intl. Symp. Physical Design, pages 186–191,
2000.

6

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

