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Abstract

In this paper, a method for nominal design of analog in-
tegrated circuits is presented that includes process varia-
tions and operating ranges by worst-case parameter sets.
These sets are calculated adaptively during the sizing pro-
cess based on sensitivity analyses. The method leads to ro-
bust designs with high parametric yield, while being much
more efficient than design centering methods.

1 Introduction
In integrated circuit technologies with ever shrinking

feature sizes and growing performance requirements, the
influence of process variations on the behavior and yield
of analog circuits cannot be neglected. In order to be able
to design robust circuits, random process fluctuations and
also variations of the operating conditions (e.g. temperature
and supply voltage) must be taken into account as early as
possible in the design cycle. Furthermore a high degree of
automation is needed for analog circuit design in order to
cope with the demand of an ever shorter time-to-market [9].

Powerful tools for nominal design, e.g. [5, 14, 15], were
developed and some are commercially available. Nominal
design usually does not consider process fluctuations and
variations of the operating conditions. Therefore, nominal
design can only guarantee that the given specifications are
fulfilled for the typical process and nominal operating con-
ditions. Due to the growing influence of process fluctuation
and changes in the operating conditions, design centering is
necessary in addition to nominal design in order to ensure a
high production yield.

Many approaches to design centering, based on statisti-
cal, e.g. [2, 11], and deterministic methods, e.g. [1, 6, 12],
were presented. Usually design centering algorithms are
computationally very expensive. Hence the design center-
ing process should be started from a “good” nominal design
in order to keep the computational cost small. This can be
achieved by introducing worst-case parameter sets for pro-
cess and operating conditions into nominal design [4, 6].

In the digital domain, process fluctuations are being con-
sidered by means of slow and fast worst-case parameter
sets. These are calculated for a given process and typical
circuit performance like delay, but independent from a spe-
cific circuit. For digital cell libraries, these parameter sets

give a good estimation of the influence of random fluctua-
tions on the relevant digital circuit performances, delay and
power. However it is well known that such digital corners
cases are not sufficient for analog design [6, 13].

Using digital corner cases for analog circuit design bears
a high risk of leaving yield problems undetected until pro-
duction. For analog design, worst-case parameter sets there-
fore need to be calculated for each circuit topology and each
circuit performance individually.

Using such performance-specific worst-case parameter
sets for circuit sizing faces the problem that they depend on
the nominal design parameter set and hence vary during the
sizing process.

In this paper, a new efficient sizing algorithm is pre-
sented that simultaneously considers process fluctuation
and operating conditions. It features:

• calculation of individual worst-case parameter sets for
each performance,

• adaptive calculation of worst-case parameter sets in each
iteration step of the sizing process based on simple and
fast sensitivity analyses.

• efficient trust region optimization algorithm using sizing
rules [10].

The paper is structured as follows: The next section for-
mulates worst-case parameter sets. The new sizing algo-
rithm is discussed in Section 3, and the results are presented
in Section 4.

2 Worst-case parameter sets and yield
For a given topology, a circuit can be described by its

parameters and performances. Three types of parameters
can be distinguished:

• Design parameters d ∈ R
nd (e.g. nominal transistor

widths and lengths) can be adjusted by the circuit de-
signer.

• Process fluctuations for instance at oxide thickness,
threshold voltage, or transistor width variation, are mod-
eled by statistical parameters s ∈ R

ns and their dis-
tribution function. As shown in [7], all practically im-
portant parameter distributions can be transformed into a



Gaussian distribution with zero mean value and covari-
ance matrix C: s ∼ N(0,C). The probability density
function pdf (s) is then given by:

pdf (s) = (2π)−
ns
2 (det C)−

1
2 · exp

(

−
β2(s)

2

)

(1)

β2(s) = sTC−1s . (2)

In integrated circuit design, most statistical parame-
ters appear as transistor model parameters (e.g. tox, or
vth0) and cannot be adjusted by the circuit designer if a
“frozen”, fully qualified production process is assumed.

• Operating parameters θ ∈ R
nθ (e.g. supply voltage,

temperature) describe the circuit’s operating conditions.
The circuit must satisfy its performance specification for
a given range Tθ of the operating parameters, defined by
their lower bounds θL and upper bounds θU:

Tθ = {θ |θL ≤ θ ≤ θU} . (3)

The circuit’s performance values f (e.g. gain, delay) can
be calculated for a given parameter set using an analog
circuit simulator: (d, s, θ) 7→ f . Depending on the per-
formance, a circuit simulation means solving a system of
nonlinear equations (DC- and AC-analysis) or integrating a
system of nonlinear algebro-differential equations (transient
analysis).

For the circuit performances, lower and/or upper speci-
fication bounds fb,i, i = 1, . . . , nb are defined that have to
be met for a correctly operating circuit:

∀
i=1,... ,nb

fi(d, s, θ) ≥ fb,i ⇔ f(d, s, θ) ≥ fb . (4)

Here, upper bounds are included by −fi ≥ fb,i where
fb,i < 0. Considering variations in the operating condi-
tions, the specification bounds have to be met for the whole
operating range:

∀
θ∈Tθ

f(d, s, θ) ≥ fb . (5)

The parametric yield Y is the percentage of circuits that
satisfy (5):

Y (d) =

∫

{s| ∀
θ∈T

θ

f(d,s,θ)≥fb}

pdf (s) ds . (6)

During sizing, process and operating variations can be
considered by means of worst-case parameter sets that rep-
resent a certain standard deviation βmax of process varia-
tions [3]: For each performance specification bound fb,i, a
worst-case parameter deviation is determined according to

(swc,i, θwc,i) = argmin
s,θ

fi(d, s, θ)

subject to β2(s) ≤ β2
max and θ ∈ Tθ .

(7)

For instance, βmax = 3 corresponds to a 3σ design. Satis-
fying (5) at the worst-case parameter sets guarantees a min-
imum parametric yield

Y ≥ Y l
1 (ns) = Fns

(β2
max) , (8)

Performance nominal 3σ slow/fast 3σ worst-case
Delay ↑ [ns] 1.35 1.91 (+42%) 1.92 (+42%)
Delay ↓ [ns] 1.43 1.90 (+33%) 1.90 (+33%)
Hysteresis [mV] 612 563 (–8.0%) 441 (–28%)

Table 1: Performance values for a Schmitt trigger compared at
slow/fast parameter sets and at worst-case parameter sets
according to Eq. (7).

where Fns
is the probability function of a χ2-distribution

with ns degrees of freedom. If f is monotonous with regard
to s, then another loose lower bound can be given by

Y ≥ Y l
2 (nf ) = 1 − Φ(−βmax) · nb , (9)

where Φ is the probability function of the normal distribu-
tion. For example, if βmax = 3 then

Y l
2 (nf ) ≈ 100%− 0.135% · nb . (10)

Since Y l
1 depends on the number ns of statistical parame-

ters, and Y l
2 depends on the number nb of bounds, either

lower bound can be the greater one.
For digital circuits, it turned out that the swc,i of delay

and power consumption are practically independent from
sizing and topology. Therefore it is common practice to cal-
culate a set of slow/fast worst-case parameter sets once for
a manufacturing process and then use it for all digital cells.
The worst-case operating points θwc,i are also practically
independent from sizing and topology, but Tθ is part of the
circuit specification, not of the process. Therefore, the θwc,i
of delay and power are to be determined once for Tθ.

For analog circuits, slow/fast sets are insufficient. First
they do not incorporate “non-digital” performances. Tab. 1
compares the performance values of the Schmitt trigger
buffer of Fig. 2 at the slow/fast corners of a 0.18µm-process
with the performance values at the actual worst-case pa-
rameter sets calculated directly for this topology and sizing
according to Eq. (7). As can be seen, the slow/fast perfor-
mance values of the delays conform to the actual worst-case
performance values. In contrast to that, the 3σ worst-case
value of the third performance “hysteresis” is in fact much
worse than indicated by a simulation at the slow or fast pa-
rameter set. Using these parameter sets to verify a specifi-
cation regarding hysteresis will therefore pretend an unreal-
istically high robustness.

Secondly, worst-case parameter sets depend on the ana-
log circuit’s topology. Assume for instance a process con-
sisting of only two random variables, sn that influences
solely NMOS transistors and sp for the PMOS transis-
tors. Further given are a current mirror completely built
of NMOS transistors and another one completely built of
PMOS transistors. It is then obvious, that the first circuit
is only affected by sn, whereas the second one is affected
only by sp. Hence the 3σ worst-case parameter sets will be
orthogonal.

Third, worst-case parameter sets depend on sizing, see
Sec. 4.



3 Sizing and adaption of worst-case parame-
ter sets

Worst-case sizing is the task of finding a design param-
eter vector d that guarantees a minimum yield according to
Eqs. (8, 9). Since the worst-case parameter sets depend on
the sizing in a non-linear manner, we propose an iterative
numerical optimization. Since the exact calculation of the
worst-case parameter sets (swc,i, θwc,i) is computationally
expensive, we introduce an approach to relaxed calculation
of worst-case parameter sets based on linear approxima-
tions. An update of the approximated worst-case parameter
sets is performed at each iteration step.

Beginning with µ = 0, the following actions are per-
formed in each iteration step (µ) of the algorithm, The steps
1 through 6 are performed for each specification fb,i (see
Fig. 1).

1. the corresponding performance fi is linearized with re-
spect to the operating parameters θ at its respective
worst-case parameter set (s̄(µ−1)

wc,i , θ̄
(µ−1)
wc,i ) and design pa-

rameter set d(µ−1) of the previous step :

g
(µ)
i = ∇θfi

∣

∣

∣

d(µ−1),s̄
(µ−1)
wc,i ,θ̄

(µ−1)
wc,i

. (11)

2. Then, the components j of the worst-case operating pa-
rameter set θ̄

(µ)
wc,i are calculated:

(

θ̄
(µ)
wc,i

)

j
=

{

(θL)j if
(

g
(µ)
i

)

j
≥ 0

(θU )j else
. (12)

3. Performance fi is linearized with respect to the statisti-
cal parameters s at the worst-case parameter set from the
previous iteration step (s̄

(µ−1)
wc,i ) and at the worst-case op-

erating parameter set of the current iteration step (θ̄
(µ)
wc,i):

h
(µ)
i = ∇sfi

∣

∣

∣

d(µ−1) ,s̄
(µ−1)
wc,i ,θ̄

(µ)
wc,i

. (13)

4. Thereafter, s̄(µ)
wc,i is defined by

s̄
(µ)
wc,i = −

β2
max

√

h
(µ)
i

T
·C · h

(µ)
i

· C · h
(µ)
i . (14)

5. Performance fi is then linearized with respect to design
parameters d at the worst-case parameter set of the cur-
rent iteration step (s̄

(µ)
wc,i, θ̄

(µ)
wc,i)

1:

k
(µ)
i = ∇dfi

∣

∣

∣

d(µ−1),s̄
(µ)
wc,i,θ̄

(µ)
wc,i

(15)

1Please note that each iteration step is divided into 3 update steps ac-
cording to the 3 parameter types. First, the worst-case operating parameter
set is updated: θ̄

(µ−1)
wc

�
θ̄

(µ)
wc . Thereafter this updated worst-case op-

erating parameter set θ̄
(µ)
wc is already used for the sensitivity calculation

that leads to an updated worst-case parameter set s̄
(µ−1)
wc

�
s̄
(µ)
wc . The

updated worst-case parameter set is then used for the sensitivity calcula-
tion leading to an updated design parameter set d(µ−1) �

d
(µ). Using

the latest available parameter sets for each update step contributes to the
efficiency of the algorithm.

µ := 0, d := d(0)

µ := µ + 1

For each specification fb,i

Determine g
(µ)
i , θ̄

(µ)
wc,i

Determine h
(µ)
i , s̄(µ)

wc,i

Determine k
(µ)
i

Minimize ϕ(µ)(d) subject to d ∈ F
(µ) �

d(µ)

Until ∀i fi(d
(µ), s̄

(µ)
wc,i, θ̄

(µ)
wc,i) > fb,i

Figure 1: Structure of optimization algorithm.

f̄
(µ)
wc,i(d) = fi(d

(µ−1), s̄
(µ)
wc,i, θ̄

(µ)
wc,i)

+k
(µ)
i

T
· (d − d(µ)) . (16)

6. The parameter distance function α
(µ)
i (d) [15] is then de-

fined as

α
(µ)
i (d) =

f̄
(µ)
wc,i(d) − fb,i

∥

∥k
(µ)
i

∥

∥

. (17)

The objective function ϕ(µ)(d) is calculated based on
the parameter distances α

(µ)
i for the specifications fb,i,

i = 1, . . . , nb:

ϕ(µ)(d) =

nb
∑

i=1

exp
(

−a · α
(µ)
i (d)

)

, a > 0 . (18)

The positive constant factor a is a weighting factor. High
values of a make the optimizer focus stronger on violated
specifications.

7. The objective function ϕ(µ)(d) is then minimized by
means of a trust region method presented in [15]:

d(µ) = argmin
d

ϕ(µ)(d) subject to d ∈ F
(µ)

, (19)

where F is the feasibility region that guarantees the basic
functionality and robustness of a circuit [10]. The con-
straint d ∈ F ensures that functional constraints like “all
transistors must be in saturation” are fulfilled during the
sizing.

The feasibility region F is the subset of the design space
where all functional constraints are fulfilled. Considering
F is crucial for automated sizing of circuits:

• The result of the sizing has to be feasible in order to rep-
resent a technically correct circuit. Only parameter vec-
tors d ∈ F are technically valid solutions.

• Most performances are only weakly nonlinear in the fea-
sibility region. Therefore, the reduction of the design
space to the feasibility region significantly improves the
precision of the used linearized performance models.



Performance Hysteresis Delay↑ Delay↓
[V] [ns] [ns]

Spec. fb,i > 0.50 < 1.75 < 1.75

In
iti

al fi(d
(Initial), s

(Initial)
wc,i ) 0.44

�
1.92

�
1.90

�

Yi 2.0% 55.0% 73.5%
Ytot 2.0%

Fi
na

l

fi(d
(Final), s

(Final)
wc,i ) 0.51 1.75 1.74

fi(d
(Final), s

(Initial)
wc,i ) 0.51 1.75 1.74

Yi 100.0% 99.5% 100.0%
Ytot 99.5%

Table 2: Results for Schmitt trigger, with partial yields Yi and total
yield Ytot.

• The constraints reduce the exploration space for the op-
timization algorithm and therefore improve the conver-
gence of the algorithm.

During the optimization, a linear approximation F
(µ)

is
used and is updated in each iteration step.

4 Results
The proposed method was applied to two example cir-

cuits using statistical data of an industrial fabrication pro-
cess. The first circuit, a Schmitt trigger (Fig. 2), is a typical
digital circuit from a cell library.

VDD
VDDP

enabq

padi outi

Figure 2: Schematic of a Schmitt trigger.

The yield values listed in this section were all obtained
from a 200 sample Monte-Carlo analysis, with considera-
tion of operational parameters according to Eq. (6). Please
note, that this Monte-Carlo analysis is not part of the al-
gorithm itself, but only to illustrate the yield improvement
obtained with this approach. The results of the optimiza-
tion are compiled in Table 2. As can be seen, the initial
total yield Ytot was insufficient 2.0% for this circuit, mainly
due to the low partial yield Yi of the hysteresis. The row
fi(d

(Initial), s
(Initial)
wc,i ) unveils that all specifications were vio-

lated at their appropriate 3σ worst-case parameter set before
the optimization. After only 5 iterations of the worst-case
sizing algorithm all specifications could be met at their final
worst-case parameter sets (d(Final), s

(Final)
wc,i ). This improve-

ment led to a total yield of 99.5%.
In Table 2, the performance values for the final design

parameter set d(Final) have been simulated for both, the ini-
tial worst-case parameter sets s

(Initial)
wc,i and the final worst-

case parameter sets s
(Final)
wc,i . Obviously, both worst-case pa-

rameter sets lead to identical performance values.

Performance Hysteresis Delay↑ Delay↓�
(s(Initial)

wc,i , s
(Final)
wc,i ) 12.4◦ 5.4◦ 4.3◦

Table 3: Angles between initial and final worst-case parameter sets
of the same performance of the Schmitt trigger.

Cloadibias
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Figure 3: Schematic of a Miller operational amplifier.

In Table 3, the angles between the initial and final worst-
case parameter sets are given for each performance. Appar-
ently, the initial and final worst-case parameter sets are very
similar for the hysteresis and nearly identical for the two
delays.

In Table 4, angles of initial and final worst-case param-
eter sets are compared between the different performances.
The differences between initial and final angles are around
10◦ comparing the hysteresis with the delays and almost 0◦

between rising and falling delay.

Hysteresis Delay↑ Delay↓
Hysteresis — 66.4◦ 60.0◦

Delay↑ 74.4◦ — 10.6◦

Delay↓ 76.1◦ 10.5◦ —

Table 4: Angles between the worst-case parameter sets of different
performances of the Schmitt trigger before the optimization
(unshaded upper right triangle) and after the optimization
(light gray shaded lower left triangle).

These experiments illustrate, that for digital circuits,
worst-case parameter sets are rather independent from the
sizing.

The second example, a Miller operational amplifier
(Fig. 3), is a typical analog circuit. For the initial sizing
all specifications but the one for the power consumption
were violated at their 3σ worst-case parameter sets (row
fi(d

(Initial), s
(Initial)
wc,i ) of Table 5), leading to a total yield of

0.0%. Again after 5 iterations of the sizing algorithm, all
specifications could be fulfilled at their worst-case points
(d(Final), s

(Final)
wc,i ).

Unlike the Schmitt trigger, the worst-case parameter sets
of the Miller operational amplifier change significantly with
the sizing. Conducting the same experiment as with the
Schmitt trigger of transfering the initial worst-case param-
eter sets s

(Initial)
wc,i to the final sizings d(Final) again, this time

leads to considerably different performance values com-
pared to the values at the actual final worst-case parameter
sets (d(Final), s

(Final)
wc,i ). The same holds for the positions of the

initial and final worst-case parameter sets (Table 6 and 7).
Given these variabilities and the spread of the worst-case

parameter sets over the space of the statistical parameters
(Table 7), it becomes apparent that the worst-case condi-
tions for analog circuits cannot be represented only by pre-



Performance A0 ft Φm SRp Power
[dB] [MHz] [◦] [V/µs] [mW]

Spec. fb,i > 80 > 1.3 > 60 > 3 < 1.3

In
iti

al fi(d
(Initial), s

(Initial)
wc,i ) 64.8

�
0.7

�
9.6

�
0.2

�
0.2

Yi 95.5% 0.0% 0.0% 0.0% 100.0%
Ytot 0.0%

Fi
na

l

fi(d
(Final), s

(Final)
wc,i ) 80.1 2.5 64.2 3.2 1.2

fi(d
(Final), s

(Initial)
wc,i ) 85.6 2.5 66.8 4.5 1.1

Yi 100.0% 100.0% 100.0% 100.0% 100.0%
Ytot 100.0%

Table 5: Results for Miller operational amplifier, with partial yields
Yi and total yield Ytot.

Performance A0 ft Φm SRp Power�
(s(Initial)

wc,i , s
(Final)
wc,i ) 30.6◦ 13.0◦ 93.9◦ 165.5◦ 68.2◦

Table 6: Angles between initial and final worst-case parameter sets
of the same performance of the Miller operational amplifier.

defined digital slow/fast worst-case parameter sets. In con-
sequence one worst-case parameter set has to be determined
for each specification at every sizing individually.

Table 8 compiles the computational costs for the sizing
of both circuits. The results were obtained on a network of 5
computers (Sun Ultra I for the Schmitt trigger and 500 MHz
Pentium III for the Miller operational amplifier), using the
Infineon in-house simulator TITAN [8]. One can see that
the whole synthesis process takes 385 and 685 simulations
respectively (1 simulation includes DC, AC and transient
simulation), equivalent to 20 minutes and 5 minutes elapsed
time (exclusive computer usage). Hence a complete sizing
can be done at the cost of a Monte Carlo analysis.

Conclusion
A method for analog circuit sizing has been presented

that performs nominal design at worst-case parameter sets
for operating conditions and for manufacturing variations.
It has been illustrated that these worst-case parameter sets
are dependent on the circuit topology, on the circuit perfor-
mances and of the design parameter values. The presented
method features a relaxed calculation of worst-case param-
eter sets based on performance linearizations. In this way,
sizing of robust analog circuits can be achieved at lower
simulation costs than by design centering approaches.

A0 ft Φm SRp Power
A0 — 13.6◦ 130.0◦ 91.1◦ 164.5◦

ft 28.0◦ — 117.2◦ 79.1◦ 162.4◦

Φm 141.1◦ 125.1◦ — 41.5◦ 54.2◦

SRp 105.1◦ 79.5◦ 61.9◦ — 88.1◦

Power 81.1◦ 106.2◦ 112.1◦ 172.9◦ —

Table 7: Angles between the worst-case parameter sets of different
performances of the Miller operational amplifier before the
optimization (unshaded upper right triangle) and after the
optimization (light gray shaded lower left triangle).

Circuit # Simulations Wall clock time

Schmitt trigger 385 20 min
(5 Sun Ultra I)

Miller
685 5 min

(5 Pentium III 500 MHz)

Table 8: Computational costs
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