
CHESMIN: A Heuristic For State Reduction In Incompletely Specified Finite
State Machines

Sezer Gören F. Joel Ferguson
Department of Computer Engineering

University of California
Santa Cruz
Abstract

A heuristic is proposed for state reduction in incompletely
specified finite state machines (ISFSMs). The algorithm is
based on checking sequence generation and identification
of sets of compatible states. We have obtained results as
good as the best exact method in the literature but with
significantly better run-times. In addition to finding a
reduced FSM, our algorithm also generates an I/O
sequence that can be used as test vectors to verify the
FSM´s implementation.

1: Introduction

Finite state machines (FSMs) have been widely used to
express algorithms, communication protocols, systems (at
a high-level of abstraction,) sequential logic circuits, and
sequential logic cells. State reduction of FSMs is a well-
known and important problem in sequential circuit syn-
thesis. The flow-table of an FSM often contains redun-
dant states that may have been introduced by the
designer. Elimination of redundant states in an FSM
reduces the logic needed to implement, synthesize, and
verify it.

In this paper we propose a heuristic algorithm,
chesmin (checking sequence based state minimization)
that minimizes large incompletely specified FSMs. The
effectiveness of our approach is shown with a number of
benchmark examples.

The paper is organized as follows. In the next sec-
tion, we review the previous work in the literature. We
present the preliminaries and an outline of the algorithm
with an example in Section 3. The algorithm’s perfor-
mance is shown in Section 4. Section 5 concludes the
work in this paper. Detailed pseudocode of the algorithm
is given in the Appendix.

2: Previous Work

The state reduction problem for completely specified
FSMs can be solved in polynomial time [1][2]. For

incompletely specified FSMs (ISFSMs,) the problem is
known to be NP-complete [3]. The standard approach for
the reduction of ISFSMs is based on the enumeration of
the set of compatibles and satisfaction of a set of con-
straints. Paul and Unger [4] developed a general frame-
work and proposed methods for generating the maximal
compatibles and obtaining the minimal closed cover.
Grasselli and Luccio [5] proposed prime classes and for-
mulated the minimization problem in the form of a binate
covering problem. Based on this approach a number of
researchers proposed techniques that use explicit [6] and
implicit [8] enumeration of the compatibles. Rho et al.
[6] presented a program called stamina that runs in exact
and heuristic modes using explicit enumeration for the
state minimization problem. The exact mode of stamina
is based on Grasselli and Luccio’s binate covering
approach. Higuchi and Matsunaga [7] proposed a heuris-
tic program called slim that is based on generating the
sets of all maximal compatibles and reducing the size of
the initial solution by iterative improvements. Kam and
Villa [8] proposed an exact state minimization technique
using implicit enumeration of the compatibles. The
implementation of their technique is called ism.

Pena and Oliveira [9] presented an exact state mini-
mization algorithm based on mapping ISFSMs to tree
FSMs (TFSMs) which combined Bierman’s search algo-
rithm [10] with Angluin’s L* algorithm [11]. Pena and
Oliveira compared their method, bica, with ism and stam-
ina in the exact mode and showed that bica was more
robust in most cases.

In this work we propose a heuristic for state reduc-
tion of ISFSMs. This algorithm can reduce ISFSMs that
have deadlock and unreachable states and is based on a
checking sequence generation technique [12]. A checking
sequence is an I/O sequence which distinguishes an FSM
from all other FSMs. Checking sequences are functional
tests [13] that provide a fault and realization independent
testing method for sequential circuits. In the next sections
we will present our heuristic and then compare its perfor-
mance with the exact algorithm bica and the heuristics
stamina and slim.

3: Proposed Algorithm

3.1: Definitions

This section describes the form of inputs and outputs to
our algorithm and defines their relationships.

Definition 1: An FSM is a tuple M = (Σ, ∆ , Q, q0, δ, λ)
where Σ is a finite set of input symbols, ∆ is a
finite set of output symbols Q is a finite set of states,
q0 Q is the initial state, δ (q,a): Q Σ Q {φ} is
the transition function, λ (q,a): Q Σ ∆ {ε} is the
output function. We will use a Σ to denote a particular
input symbol, b ∆ a particular output symbol, φ to
denote an unspecified transition, and ε to denote an
unspecified output.

Definition 2: An output bi is compatible with an output bj
(bi bj) iff bi = bj or bi = ε or bj = ε.

Definition 3: Two states are output incompatible when,
for some particular input, the two states produce a differ-
ent output. Two states are transitively incompatible if, on
the same input, they lead to incompatible states. Incom-
patibility function I:

Definition 4: A set of states, C, is a compatible iff ∀ qi, qj
C are pairwise compatible, i.e., I(qi, qj) = 0.

Definition 5: Compatibility cover is a set of compatibles
S = {C0, C1,..., Ck} such that every state in Q belongs to
one or more compatibles in S.

Definition 6: A set of states, denoted IS(C, a), is an
implied set of a compatible C for input a that are the next
states reachable from the states in C,
IS (C, a) = {qd | δ(qs ,a) = qd, ∀ qs C}. A set S of com-
patibles is closed in M if, for each C S, all of its
implied sets IS(C, a) are contained in some element of S
for each input a. (A minimum cardinality cover that is
consistent with this covering and closure requirement is a
solution for the exact state minimization problem of
ISFSM [8][9].)

Definition 7: An output b is compatible with a set B =
{b0, b1,..., bk} of outputs iff b is output compatible with

every element of B.

Let M´ = (Σ , ∆ , Q', q0', δ',λ') be an incompletely
specified FSM. Let M = (Σ , ∆ , Q, q0 , δ, λ) be the mini-
mized FSM. Let S´ be a set of compatibles and a closed
cover in M´.

Definition 8: We overload the interpretation of the output
function λ' such that λ'(C',a): S' Σ B where
B = {bi | bi ∆ {ε}} is a set of outputs and C' is a
compatible in M' and C' S':

Definition 9: Similarly, we also overload the interpreta-
tion of the transition function δ' such that
δ'(C',a) : S' Σ S' where C' is a compatible:

Definition 10: A function F: Q S' is a valid one-to-one
mapping function between the set of states of M and a
closed set S' of compatibles in M' iff it satisfies:

The equation (5) states that function F maps each
state q to a compatible C' in M' that satisfies the output of
M' for every possible input sequence s. The next equation
(6) states that the implied set of a compatible is correctly
mapped. These output and transition requirements for a
valid mapping function F are depicted in Figure 1. In this
figure, it is shown that if Cd' is the implied set of a com-
patible Cs' for input a, B is the corresponding set of out-
puts, and qs is mapped to Cs', then the implied set of Cs',
Cd', has to be mapped to the next state of qs and the out-
put set B and output b have to be compatible.

We will use the same example given in [9] and
shown in Figure 3a to demonstrate the mapping between
FSMs M' and M. State q0 of M is mapped to the compati-
ble C0' = {q0' , q2'} of M', whereas state q1 is mapped to

=/ 0/ =/ 0/
=/ 0/

∈ × → ∪
× → ∪

∈
∈

=

I (qs1
,qs2

)

=

1 if ∃ a λ (qs1
,a) λ (qs2

,a)
1 if ∃ a δ (qs1

,a) = qd1
and

δ (qs2
,a) = qd2

and
I (qd1

,qd2
) = 1

0 otherwise

=/

(1)

∈

∈
∈

b B iff ∀ bi B b bi (2)= ∈ =

× →
∈ ∪

∈

λ'(C',a) = B where B = {bi | λ' (q',a) = bi ∀ q' C'} (3)∈

× →

δ'(C',a) = IS(C',a) (4)

→

∀ s λ (q0 ,s) λ'(F (q0) ,s) (5)=

∀ s F (δ(q0 ,s)) = δ'(F (q0) ,s) (6)

Cs'

qs qd

Cd'a/B

a/b

Requirements:
δ'(Cs',a) F(qd)
b B

⊆
=

F(qd) = Cs'

Figure 1: Output and transition requirements for a val-
id mapping function F.

the compatible C1' = {q1' , q2'}. The implied sets and the
output sets of C0' and C1' in M' versus the outputs and the
next states of q0 and q1 for the same input are as follows:

1. IS (C0',0) = {q0 ', q2'} = C0' and δ(q0 ,0) = q0 ,

2. IS (C0' ,1) = {q1' , q2'} = C1' and δ(q0 ,1) = q1 ,

3. IS (C1',0) = {q2'} C0' and δ(q1,0) = q0 ,

4. IS (C1' ,1) = {q0' , q2'} = C0' and δ(q1 ,1) = q0 ,

5. λ'(C0',0) = {0} and λ (q0 ,0) = 0,

6. λ'(C0',1) = {0,ε} and λ (q0 ,1) = 0,

7. λ'(C1',0) = {0} and λ (q1 ,0) = 0,

8. λ'(C1',1) = {1,ε} and λ (q1 ,1) = 1.

Since the output and the transition requirements are satis-
fied, therefore the function F is a valid mapping function
for M and M', and as a result M is compatible with M'.

3.2: How The Algorithm Works

In this section we will explain how the algorithm works
by referring to the variables and procedures of the
pseudocode given in the Appendix section (Figure 4.)
Our state reduction algorithm constructs a consistent
FSM, M, with no more than upperBound number of
states by traversing the specification FSM, M', and fitting
specification transitions which are obtained from the con-
structed input sequence, seq, into the FSM under con-
struction, M. We define “consistent” in terms of an FSM
generating an output sequence that is compatible with the
output sequence generated by M' on the same input
sequence. The upperBound is initially set to one less than
the number of states of M'.

The flow diagram of the algorithm is shown in
Figure 2. The loop in the diagram corresponds to the
search for consistent FSM M that gives compatible output
with the FSM M' for an input sequence. This input

sequence is incrementally constructed by concatenating
the contradicting sequence, seqContra, found when M
and M' are incompatible. If M is found to be compatible
with M', we output M. After outputting M, the search for
a better solution continues with a upperBound equal to
|Q| - 1, where |Q| is the number of states of M.

Our state reduction algorithm for ISFSMs is based
on a checking sequence generation technique [12]. We
incrementally construct an I/O sequence similar to this
technique [12] but without the deriving entire checking
sequence. Checking sequence generation requires that all
states are reachable and connected, therefore we augment
the FSM to get out of deadlock states and to reach every
state. In the main program of the pseudocode, the specifi-
cation FSM, M', is augmented by adding a reset state and
transitions (AugmentResetState procedure in Figure 4.)
We introduce this extra state and its transitions to take
care of deadlock and unreachable states as the example
below illustrates.

Next, we will explain how the algorithm works step
by step with an example by using the FSM shown in
Figure 3a:

Step 1: First we augment the ISFSM in Figure 3a
(flow-table is shown in Table 1) by introducing an extra
state qr' , a transition from every other state to this extra

⊂

upperBound = |Q'|-1
seq = <>

Construct partial FSM, M, that
complies with the sequence, seq,
and |Q| <= upperBound.

exit

Output M
upperBound = |Q|-1

seq = seq.seqContra

fail success

fail successBuild contradicting sequence,
seqContra, for M and M'.

Figure 2: Flow diagram of the algorithm. |Q'|: number
of states of M'. |Q|: number of states of M.

(concat. seq & seqContra)

0 1
q0' q0' , 0 q1', 0
q1' q2' , 0 q0', 1
q2' q2' , 0 q2' , ε

Table 1: Original flow-table of the specification M'.

00 01 10
q0' q0' , 00 q1' , 00 qr', 10
q1' q2', 00 q0' , 01 qr', 10
q2' q2' , 00 q2' , 0ε qr', 10
qr' q0', 10 q0', 10 qr', 10

Table 2: Flow-table of the augmented specification
M'.

q0

q1q1'
q2'

q0' M' M

0/0

1/1

0/0

1/ε

1/0 1/1 0/0

0/0

0/0

1/0

Figure 3: FSM M is compatible with FSM M´. F (q0) =
{q0' , q2'} and F (q1) = {q1', q2'}.

a. b.

state, and transitions from the extra state to the initial
state q0'. If there is no initial state, one of the original
states is picked as the initial state. Note that the newly
added state qr' should be incompatible with every state
q0' , q1' , q2' . In order to make the newly added state
incompatible, we introduce an extra input and an output.
flow-table representation of the augmented FSM is shown
in Table 2. In Table 2, the leftmost input and output bits
are newly added. The leftmost output bit of each of the
original transitions is set to “0” whereas the leftmost
input bit is set to “0.” The output of each of the new tran-
sitions is set to “10.” By introducing an extra state and
extra transitions, every state of the augmented M'
becomes reachable. We also introduce a reset state and
transitions to the FSM under construction. The flow-table
representation of the augmented FSM under construction
is shown in Table 3.

After adding a reset state and transitions, a search for
FSM M that is consistent with the input sequence
(seq=<>) is started by means of a branch and bound pro-
cedure, FindConsistenFSM shown in Figure 4. This pro-
cedure is recursive. Every recursion corresponds to a state
transition and the depth of recursion is the length of I/O
sequence. The I/O sequence is incrementally constructed
by using the procedure FindContradictingSequence
shown in Figure 4. This procedure is based on breadth-
first search and therefore it returns the shortest contradict-
ing sequence for M and M’. Also note that the ordering of
the vertices can be randomly chosen during the breadth-
first search.

In Table 3 there is an initial state q0 and a reset state
qr. We set F(qr) to qr' . We initially apply input sequence
“10” at Step 1 in Table 3 and expect output sequence
“10” from both M nd M'. When this sequence (seq=
<10/10>) is applied, M' is in state qr' and M is in qr.

Step 2: Then we call the FindContradictingSequence
procedure to check whether M (Table 3) and M' are com-
patible. A contradicting sequence (seqContra=<00/00>)
is found since M' gives an output “00,” whereas M gives
an undefined output and next-state. We concatenate seq-
Contra to seq (seq=<10/10, 00/00>.) Then we fill the
flow-table of M as shown in Table 4. We set F(q0) to q0'.

Step 3: Next we call the FindContradictingSequence
procedure. A contradicting sequence (seqCon-
tra=<01/00>) is found, since output and next-state of M
are undefined for this input. If we pick q0 as next-state,
then we have to set F(q0) to {q0' ,q1'} but these states are
incompatible as per Def. 3 (λ'(q0',1)=0 and λ'(q1',1)=1.)
Therefore we introduce a new state q1 and set F(q1) to
{q1'}. We fill the flow-table for M. Then we check
whether M and M' are compatible by calling the Find-
ContradictingSequence. A contradicting sequence (seq-
Contra=<00/00>) is found, since at input “00,” output
and next-state are undefined. We can choose q0 as next-
state because it does not give any contradiction when we
set F(q0) to {q0' ,q2'}. We fill the flow-table of M as
shown in Table 5. At this point seq is equal to <10/10,

00 01 10
q0 φ, εε φ, εε qr, 10
qr q0 , 10 q0 , 10 qr, 10

Table 3: Step 1.

00 01 10
q0 q0 , 00 φ, εε qr, 10
qr q0, 10 q0 , 10 qr, 10

Table 4: Step 2.

00 01 10
q0 q0 , 00 q1 , 00 qr, 10
q1 q0 , 00 φ, εε qr, 10
qr q0, 10 q0, 10 qr, 10

Table 5: Step 3.

00 01 10
q0 q0 , 00 q1 , 00 qr, 10
q1 q0 , 00 q0 , 0ε qr, 10
qr q0, 10 q0, 10 qr, 10

Table 6: Step 4.

00 01 10
q0 q0 , 00 q1 , 00 qr, 10
q1 q0 , 00 q0 , 01 qr, 10
qr q0, 10 q0, 10 qr, 10

Table 7: Step 5.

0 1
q0 q0 , 0 q1 , 0
q1 q1 , 0 q0 , 1

Table 8: Step 6.

0 1 2 3 4 5 6 7 8 9
I 10 00 01 00 01 01 10 00 01 01
O 10 00 00 00 0ε 0ε 10 10 00 01

SM' qr' q0' q1' q2' q2' q2' qr' q0' q1' q0'
SM qr q0 q1 q0 q1 q0 qr q0 q1 q0

Step1Step2 Step3 Step4 Step5

Table 9: Incrementally constructed I/O sequence. #:
Sequence number, I: Input, O: Output:, SM': Current
state in M', SM: Current state in M.

.

BENCHMARKS Nfinal RUN-TIME in seconds (s.)
COMPARISON
Nfinal / Run-time

FSM PI Ninit bica stamina slim chesmin bica stamina slim chesmin vs.
bica

vs.
stamina

vs.
slim

alex_1 5 42 6 6 6 6 19.11 7.10 0.25 0.33 / + / + / –

intel_edge 3 28 4 4 4 4 1.39 0.29 0.04 0.04 / + / +

isend 7 40 4 4 4 4 10.01 0.80 0.07 0.31 / + / + / –

rcv-ifc 8 46 2 2 2 2 9.08 0.15 0.47 1.0 / + / – / –

rcv-ifc.m 8 27 2 2 2 2 4.71 0.05 0.03 0.8 / + / – / –

send-ifc 8 70 2 2 3 2 34.83 0.63 0.09 1.7 / + / – + /

send-ifc.m 8 26 2 2 2 2 12.07 0.04 0.03 1.1 / + / – / –

vbe4a 6 58 3 3 3 4 27.29 99.14 1.41 0.8 – / – / – /

ifsm0 7 38 3 3 3 3 2.92 0.08 0.05 1.98 / + / – / –

th.20 2 21 4 6 6 4 0.46 0.07 0.07 0.03 / + + / + /

th.30 2 31 5 9 7 6, 5 0.98 0.37 0.04 0.12, 7.54 / – + / + /

th.40 2 41 8 15 9 9, 8 1.68 0.36 0.11 0.12, 4 / – + / + /

th.55 2 55 8 24 13 10, 9 2088.65 1.84 2.91 0.46, 3.09 – / + / + /

fo.20 2 21 3 4 3 3 0.45 0.05 0.01 0.08 / + + / / –

fo.30 2 31 3 5 4 3 0.72 0.31 0.05 0.34 / + + / + /

fo.40 2 41 4 8 7 5, 4 7.96 55.61 0.11 0.05, 7.05 / + + / + /

fo.50 2 51 6 11 9 7, 6 5.11 2.96 0.07 0.24, 26.19 / – + / + /

fo.70 2 71 FAILS 14 10 8, 7 FAILS 7.01 0.19 0.37, 0.55 + / + + / + /

e271 2 19 2 2 2 2 2.37 0.02 0.01 0.02 / + / –

e285 2 19 2 2 2 2 0.68 0.02 0.01 0.02 / + / –

e304 2 19 2 2 2 2 0.64 0.02 0.02 0.02 / +

e423 2 19 2 3 3 2 0.42 0.31 0.03 0.31 / + + / + /

e680 2 19 2 2 2 2 0.78 0.02 0.02 0.02 / +

rubin18 1 18 3 3 3 3 0.12 0.02 0.11 0.02 / + / –

rubin600 1 600 3 FAILS 3 3 29.47 FAILS 4.23 12.52 / + + / / –

rubin1200 1 1200 3 FAILS 3 3 229.26 FAILS 17.96 95.30 / + + / / –

rubin2250 1 2250 3 FAILS 3 3 1384.98 FAILS 66.33 616.04 / + + / / –

Table 10: Experimental results. PI: Number of primary inputs. Ninit: Initial number of states. Nfinal : Final number of
states. Comparison rules (Nfinal /Run-time) : 1) Compare run-times only if Nfinal is equal. 2) Blank Nfinal if Nfinal is
equal. 3) + if Nfinal is fewer. 4) – if Nfinal is more. 5) Blank run-time if Nfinal is fewer. 6) + if run-time is less. 7) – if
run-time is more.
00/00, 01/00, 00/00>.

Step 4: Then we call the FindContradictingSequence
procedure to check whether M (Table 5) and M' are com-
patible. A contradicting sequence (seqContra=<01/0ε,
01/0ε>) is found. The first “01” of the sequence requires
F(q1) equal to {q1' ,q2'}, and this will not contradict with
our definition of a valid mapping function. At the second
“01” input we can choose q0 as next-state and then we fill
the flow-table entry as shown in Table 6.

Step 5: We call the FindContradictingSequence pro-
cedure to check whether M (Table 6) and M' are compati-

ble. It returns a contradicting sequence
(seqContra=<10/10, 00/10, 01/00, 01/01>.) We fill the
flow-table of M as shown in Table 7.

Step 6: After calling the FindContradictingSequence
procedure, M (Table 7) and M' are found to be compatible
(seqContra = <>.) Finally, the extra state qr , the transi-
tions to and from qr, and the leftmost inputs and outputs
are discarded. We obtain an FSM shown in Table 8 that is
same as the FSM shown in Figure 3b. The constructed
I/O sequence, seq, and corresponding states that M and
M' are in are given in Table 9. Note that this sequence
does not have to be a complete checking sequence.

4: Results and Performance

To evaluate our algorithm we used the same set of prob-
lems used in previous work [7][9]. These problems come
from a variety of sources: Standard benchmarks, asyn-
chronous synthesis, learning problems, and synthesis of
interacting FSMs.

The final number of states and run-times obtained
from bica, heuristic mode of stamina, slim and chesmin
are given in Table 10. The run-times of bica, stamina,
and chesmin are obtained by running on the same Pen-
tium/133MHz PC with Linux. Unfortunately, we were
unable to obtain the source code of slim or its executable
for our platform. Therefore, we could not run it on our
platform. However, Higuchi et. al [7] presented run-times
of slim and stamina on their platform. Since we have
stamina’s run-times on our platform, we have scaled
slim’s run-times by a factor of “stamina-run-time-on-our-
platform / stamina-run-time-on-[7].” In Table 10 for some
cases two numbers are given for the number of states for
chesmin. This is because chesmin is an incremental algo-
rithm and hence continues to search for solutions with
fewer states when it finds a solution.

In Table 10 we labeled Nfinal/Run-time using the fol-
lowing rules:

• + when chesmin’s Nfinal is fewer.

• – when chesmin’s Nfinal is more.

• Blank when chesmin’s Nfinal is equal.

• Compare run-times only when chesmin’s Nfinal is equal.
+ when chesmin’s run-time is less. – when chesmin’s
run-time is more.

• We highlighted the rows to point out cases: (th.55:
2088s vs. 3.09s) where chesmin ran remarkably faster
than bica but had one additional state, and (fo.70)
where bica fails, stamina’s Nfinal (14) and slim’s Nfinal
(10) is more than chesmin’s Nfinal (8, 7).

• We used the term “FAILS” when we waited for several
hours but no solution was found.

Fewer states is our key criterion in comparing the
methods. We believe run-time is only a factor if two
methods are comparable in their ability to reduce the
number of states. Having said that chesmin is much supe-
rior than stamina and slim. Chesmin surpasses both stam-
ina and slim in 10 cases, loses only in 1, and ties it in 13.
Since bica is an exact method, chesmin is not expected to
find the minimum number of states. (However, note that
bica fails in one benchmark.) Hence, chesmin’s advantage
is in its faster run-times. Here is how chesmin compares
to bica:

• Chesmin tied bica in 24 benchmarks.

• Out of 24, chesmin had faster run-times in 21 of them.
In 3 of them, it ran slower.

• In 2 cases, chesmin’s solutions had one more state
(vbe4a, th.55.)

• However, one of the above cases (th.55) chesmin ran
675X faster than bica.

• In one case (fo.70), bica failed and chesmin found a
solution.

• Chesmin on the average ran 46X faster than bica.

From our empirical results, we have observed that
chesmin runs in polynomial between O(Ninit

2) and
O(Ninit

3.) However, the worst-case run-time can be expo-
nential as this is an NP-complete problem [3].

5: Conclusion

We have proposed a heuristic algorithm for the state
reduction problem of incompletely specified FSMs. We
have obtained fewer or equal number of states and better
run-time than the previous work in the literature. In some
cases we have found a solution where other algorithms
could not. Chesmin performed as good as the exact algo-
rithm and the run-time is much better with almost no
compromise in the final number of states. Chesmin has
the additional advantage that, in addition to finding a
reduced compatible FSM, it generates an I/O sequence
that can be used as test vectors to verify the FSM’s
implementation.

Appendix

main begin
seq = <initialInput>;
upperBound = |Q'| - 1;
M' = ReadKiss();
M = NewFSM();
//add extra reset and transitions
M'.AugmentResetState(); M.AugmentResetState();
F(qr) = {qr'};
FindConsistentFSM(qr, q0 , qr', q0', upperBound, seq, 0);

end

FindContradictingSequence(qs, qs', input) begin
seqContra = <>;
(q', i) = GetContradictingTransition((qs', input), (qs, input));
while ((q', i) (qs', input)) begin

seqContra = seqContra.i;
(q', i) = Parent(q ', i);

end
return seqContra;

end

Figure 4: Pseudocode of chesmin.

=/

GetContradictingTransition((qs', input), (qs , input)) begin
queueM' = {(qs', input)};
queueM = {(qs , input)};
while (queueM' EMPTY) begin

(q', iparent) = PopHead(queueM');
(q , iparent) = PopHead(queueM);
MarkAsVisited(q', q, iparent);
qd' = δ'(q', iparent); qd = δ(q , iparent);
foreach ichild Adjacent(iparent) begin

if (δ'(qd', ichild) == φ) continue;
if (Visited(qd', qd, ichild) == TRUE) continue;
output = λ (qd , ichild);
output' = λ'(qd', ichild);
foreach bit i begin

if ((output'[i] ε) and (output[i] output'[i])) begin
Parent(qd', ichild) = (q', iparent);
return (qd', ichild);

end
end
Push((qd', ichild), queueM'); Push((qd , ichild), queueM);
MarkAsVisited(qd', qd, ichild);

end
end

end

FindConsistentFSM(qs , qd , qs', qd', upperBound, seq, index) begin
if (TimeOut()) exit;
if (|Q| > upperBound) return;
if (index == |seq|) begin

seqContra = FindContradictingSequence(qs, qs', seq[index-1]);
if (seqContra == <>) begin

//found a compatible FSM with M'
Output(M, RunTime ());
upperBound = |Q| - 1;
return;

end
else seq = seq.seqContra; //concatenate
end
input = seq[index];
if (q' such that q' F (qd), I(qd', q') == 1) return;
output = λ'(qs',input);

if (δ(qs',input) φ) and δ(qs,input) qd) return;

if (λ (qs,input) output)) return;
//See Table 11 for definition of .
λ (qs,input) = λ (qs,input) output;
δ(qs,input) = qd;
F (qs) = F (qs) {qs'};
index++;
if (|Q| < upperBound) Q = Q qnew;
input = seq[index];
q' = λ'(qd',input);
output = λ (qd,input);
qdd = δ(qd,input);
foreach q Q begin

Fqd = F (qd);
FindConsistentFSM(qd , q , qd', q', upperBound, seq, index);
λ (qd,input) = output; //Undo
δ(qd,input) = qdd; //Undo
F (qd) = F qd; //Undo

end
index--;

end

Figure 4: Pseudocode of chesmin continues.

References

[1] D.A. Huffmann, “The Synthesis of Sequential Switching
Circuits,” Journal of the Franklin Institute, vol. 257, no. 3,
pp. 161-190, 1954.

[2] J.E. Hopcroft, “NlogN Algorithm for Minimizing States in
Finite Automata,” Tech. Rep. CS 71/190, Stanford Univer-
sity, 1971.

[3] C.F. Pfleeger, “State Reduction in Incompletely Specified
Finite State Machines,” IEEE Trans. on Computers, vol. C-
22, pp. 1099-1102, 1973.

[4] M.C. Paull and S.H. Unger, “Minimizing the Number of
States in Incompletely Specified Sequential Switching
Functions,” IRE Trans. on Electronic Computers, vol. EC-
8, pp. 356-367, 1959.

[5] F. Luccio, “Extending the Definition of Prime Compatibil-
ity Classes of States in Incompletely Specified Flow Tables
with the Help of Prime Closed Sets,” IEEE Trans. on Elec-
tronic Computers, pp. 953-956, 1969.

[6] J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby, “Exact
and Heuristic Algorithms for the Minimization of Incom-
pletely Specified Finite State Machines,” IEEE Trans. on
Computer-Aided Design, vol.13, no.2, pp. 167-177, 1994.

[7] H. Higuchi, Y. Matsunaga, “A Fast State Reduction Algo-
rithm for Incompletely Specified Finite State Machines,”
Design Automation Conference, pp. 463-466, 1996.

[8] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincen-
telli, “Synthesis of FSMs: Functional Optimization,” Klu-
wer Academic Publishers, 1997.

[9] J.M. Pena, A.L. Oliveira, “A New Algorithm for Exact
Reduction of Incompletely Specified Finite State
Machines,” International Conference on Computer Aided
Design, pp. 482-489, 1998.

[10] A.W. Biermann and J.A. Feldman, “On the Synthesis of
Finite State Machines from Samples of Their Behavior,”
IEEE Trans. on Computers, vol. 21, pp. 592-597, 1972.F

[11] D. Angluin, “Learning Regular Sets from Queries and
Counter Examples,” Inform. Comput., vol. 75, no. 2, pp. 87-
106, 1987.

[12] S. Gören, F.J. Ferguson, “Checking Sequence Generation
for Asynchronous Sequential Elements,” Int. Test Confer-
ence, pp. 406-413, 1999.

[13] F.C. Hennie, “Fault Detecting Experiments for Sequential
Circuits,” Int. Symp. on Swit. Circuit Theory and Logic
Design, pp. 95-110, 1964.

=/

∈

=/ =/

∃ ∈

=/ =/

=/
⊗

⊗

∪

∪

∈

0 1 ε
0 0 N/A 0
1 N/A 1 1
ε 0 1 ε

Table 11: operation. N/A: Not Applicable.

⊗

⊗

	Main Page
	DATE'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

