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Abstract

We present strategies for “online” dynamic power man-
agement(DPM) based on the notion of the competitive ra-
tio that allows us to compare the effectiveness of algorithms
against an optimal strategy. This paper makes two contribu-
tions: it provides a theoretical basis for the analysis of DPM
strategies for systems with multiple power down states; and
provides a competitive algorithm based on probabilistically
generated inputs that improves the competitive ratio over
deterministic strategies. Experimental results show that our
probability-based DPM strategy improves the efficiency of
power management over the deterministic DPM strategy by
25%, bringing the strategy to within 23% of the optimal of-
fline DPM.

1. Introduction

Dynamic Power Management(DPM) has gained consid-
erable attention over the last few years as a way to save
energy in devices that can be turned on and off by operating
system control. Dynamic power management is an inher-
ently onlineproblem in that an algorithm governing power
management must make decisions about the expenditure of
resources before all the input to the system is available. For
DPM strategies, the input is the length of an upcoming idle
period and the decision to be made is whether to transition
to a lower power dissipation state while the system is idle.
Analytical solutions to online problems are best described
in terms of acompetitive ratio[9] that compares the cost
of an online algorithm to the optimal offline solution which
knows the input in advance.

Earlier work on competitive analysis of dynamic power
management strategies presented bounds on the quality of
DPM solutions [11, 5]. Competitive analysis has proven
to be a powerful tool in providing a guarantee on the per-

formance of an algorithm for any input. We address here
two chief limitations of this earlier work: real systems often
have multiple idle states with transition energy costs that
must be taken into account. This paper presents analytical
bounds on the performance of strategies for systems with
multiple idle states. Secondly, competitive analysis often
gives overly pessimistic bounds for the behavior of algo-
rithms. This is inherently the result of the fact that compet-
itive analysis is a worst-case analysis. Competitive analysis
still has great value in situations where it is impractical to
obtain and process information for predicting future inputs.
However, in many applications, there is structure in the in-
put sequence that can be utilized to fine tune online strate-
gies and improve their performance. Indeed, earlier work
[1, 10] has relied on modeling the distribution governing
interrival times as an exponential distribution. In practice,
such stochastic modeling seems to hold well for specific
kinds of applications. However, these assumptions have
led to complications in other settings due to such phenom-
ena as the non-stationary nature of the arrival process, clus-
tering, and the lack of independence between subsequent
events. These problems have been addressed to some extent
in [8, 3]. Our approach relies upon a probability distribution
governing the arrival sequence of requests which is learned
based on historical data. One of the strengths of this method
is that we make no assumptions about the form of this dis-
tribution. Once the distribution is learned, we can automat-
ically generate a probability-based DPM strategy that min-
imizes the expected power dissipation given that the input
is generated according to that distribution. We compare the
expected power dissipation of our online algorithm to that
of the optimal offline algorithm to get aprobabilistic com-
petitive ratio. This method has been used in the context of
two-state systems [5, 6]. We generalize this work for multi-
state systems.

In the literature, one can find many strategies proposed
and evaluated for DPM, such as predictive strategies [4, 12],



stochastic modeling based strategies [1, 10], session clus-
tering and prediction strategies [8], on-line strategies [11],
and adaptive learning based strategies [3]. In [7], one
can find a quantitative comparison between various existing
management strategies. Previous work on prediction based
dynamic power management can be categorized into two
groups: adaptive and non-adaptive. Non-adaptive strategies
set a threshold on the idle time interval for transitioning
from the active to the sleep state. For multiple state sys-
tems, there is a sequence of thresholds each of which indi-
cates when to transition to the next lower power consump-
tion state. In either case, non-adaptive strategies set these
thresholds once and for all and do not alter them based on
observed input patterns. Adaptive strategies, on the other
hand, use the history of idle periods to guide the decisions
of the algorithm for future idle periods. There have been
a number of adaptive strategies proposed in the literature
[4, 5, 1, 2]. In particular, Chung, Benini and De Micheli [3]
address multiple idle state systems. In addition, they use
a prediction scheme based on adaptive learning trees that
proves to be robust under a variety of systems.

The work of Chunget al. (along with most of the adap-
tive algorithms in the literature) seeks to make a single pre-
diction for what the upcoming idle period will be. The
algorithm then behaves as if this prediction will hold and
pays a price in the event that it is wrong. Since we use a
probability distribution to predict the upcoming idle period
length, we allow for some degree of uncertainty in our pre-
diction for the future and optimize our algorithm in a way
that takes the nature of this uncertainty into account. An
interesting aspect of this work is that we present analytical
as well as empirical bounds for the performance of our al-
gorithms. This provides a baseline to compare different al-
gorithms and even the effects of individual decisions made
by an algorithm.

All of the previous work on competitive analysis for dy-
namic power management has concentrated on two-state
systems [5, 6, 11]. We say that an algorithm isc-competitive
if for any input, the cost of the online algorithm is bounded
by c times the cost of the optimal offline algorithm for that
input. Thecompetitive ratioof an algorithm is the infi-
mum over allc such that the algorithm isc-competitive. It
has been proven that 2 is the best competitive ratio achiev-
able by any deterministic online algorithm [9]. We ex-
tend this analysis to show a 2-competitive algorithm for the
multi-state case. This result is tight in the sense that there
is no constantc < 2 such that there is a deterministicc-
competitive algorithm which works for all multiple power
down state systems. However, it may be possible to have a
competitive ratio less thanc for a specific system, depend-
ing on the parameters of the system (e.g. number of states,
power dissipation rates, start-up costs, etc.)

Probabilistic analysis for online DPM algorithms in two-

state systems has been given in [5, 6]. They assume, as we
do here, that the distribution over the upcoming idle period
is known and optimize the algorithm based on that distri-
bution. They give a method for determining the best online
algorithm given a distribution and show that for any distri-
bution, the expected cost of this online algorithm is within
a factor ofe=(e�1) � 1:58 of the expected cost of the op-
timal offline algorithm. This result is tight in that there is a
distribution for which the ratio is exactlye=(e�1), although
for some distributions the ratio may be less. We extend this
work to the multi-state case, showing an algorithm which
also achieves a ratio ofe=(e� 1) for any system. Similar
to the deterministic case, it is impossible to have a better
bound for all systems, although it may be possible to have
an algorithm which achieves a better bound for a particular
system depending on the parameters of that system.

The idea of modeling idle period lengths by a probability
distribution leads to two distinct questions:

1. If the upcoming idle period length will be generated
according to a probability distribution known the al-
gorithm, how can this information be used to optimize
power consumption?

2. Given historical data for previous idle periods, how can
we use this information to reliably construct a proba-
bility distribution describing future idles periods?

It should be noted that we only address the first question in
this paper. The second question is a very important direction
for future work which will complement the work presented
here.

2. Online Algorithms for DPM

First we define some notation that will be useful in de-
scribing both the deterministic and probability-based algo-
rithms. The number of states will bek+ 1: statek is the
active state and state 0 is the completely powered down (or
sleep) state.αi is the power dissipation rate for statei. βi

is the total energy dissipated in moving from statei back to
statek. We will assume that the states are ordered so that
αi � αi�1 for all 1� i � k. Thus, we have thatβk = 0. We
will also assume thatα0 = 0, i.e. no energy is consumed
in the deepest sleep state. If this is not the case, then any
algorithm will dissipate power at a rate of at leastα0 re-
gardless of its policy. Thus, we can subtractα0 from the
power dissipation rate of each state and isolate the power
dissipation which is due to the choices made by the algo-
rithm. Subtractingα0 in this manner only serves to increase
the competitive ratio.

Once an idle interval starts, the algorithm can choose to
be in any of thek+ 1 states at any point in time. When a
request for service arrives, the algorithm must immediately
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Figure 1. Energy consumption for each state for a four state
system. Each state is represented by a line which indicates
the energy used if an algorithm stays in that state as a func-
tion of the length of the idle period. For each state, the slope
is the power dissipation rate and the y intercept is the energy
required to power up from that state.

transition back to statek. The online algorithm does not
know the length of the idle interval until it ends. It costs
nothing for the algorithm to drop to a lower power dissi-
pation state (i.e. a lower numbered state). This can be as-
sumed because the power-down energy can be incorporated
into the start-up energy without loss of generality. Note that,
from the power dissipation point of view, there is no incen-
tive for the algorithm to transition to a higher power dissipa-
tion state until the algorithm is forced to serve an incoming
request in the active state.

2.1. The Deterministic Algorithm

To get the optimal cost, plot each linec= αi t +βi . This
is the cost of spending the entire interval in statei as a func-
tion of t, the length of the interval. Take the lower envelope
of all of these lines. Call this functionLE(t). The optimal
cost for an interval of lengtht is LE(t) = minifαi t + βig.
The online algorithm called the Lower Envelope Algorithm
(LEA) will also follow the functionLE. It will remain in
the state which realizes the minimum inLE and will tran-
sition at the discontinuities of the curve. That is, LEA will
remain in statej as long asα j t + β j = minifαit + βig, for
the current timet.

For j = k to 1, lett j be the solution to the equationα j t +
β j = α j�1t + β j�1. t j is the time that LEA will transition
from statej to statej�1. We will assume here that we have
thrown out all the lines which do not appear on the lower
envelope at some point. This is equivalent to the assumption
thattk < tk�1 < � � �< t2 < t1. (See Figure 1).

Theorem 1 The Lower Envelope algorithm is2-
competitive.

The proof of Theorem 1, is provided in the appendix.

As emphasized earlier, this algorithm, does not take into
account input patterns. Thus, the worst case scenario, ob-
tained via Theorem 1, shows that the energy cost resulting
from the on-line decisions can be no worse than 2 times the
energy cost of the optimal offline strategy which knowns
the input sequence in advance. We show later that depend-
ing on request arrival patterns, this worst case bound may
not really happen, and the empirical ratio of the online to
offline costs may be much lower.

However, as shown in [10, 3, 1], input sequences are of-
ten interrelated, and hence modeling of the input pattern
and exploiting that knowledge in the design of the algorithm
can help bridge the gap between the performance of online
strategy and that of the optimal offline strategy. In the next
subsection, we discuss our probability-based algorithm and
show that if the request interrival time probability distribu-
tion is known before hand, the worst case competitive ratio
can be improved by 21%, with respect to the deterministic
case. Moreover, we show through experimental evaluation
that this worst case bound is pathological. In fact, we can
bring the energy cost of the online algorithm within 27% of
the optimal offline one.

2.2. The Probability-based Algorithm

In this section, we assume that the length of the idle inter-
val is generated by a fixed, known distribution whose den-
sity function isπ. We first discuss systems with two states
and then give our generalization to the multi-state case. let
β be the start-up energy of the sleep state andα the power
dissipation of the active state. Suppose that the online algo-
rithm usesτ as the threshold at which time it will transition
from the active state to the sleep state if the system is still
idle. In this case, the expected energy cost for the algorithm
for a single idle period will be

Z τ

0
π(t)(αt)dt+

Z ∞

τ
π(t)[ατ+β]dt:

The best online algorithm will select a value forτ which
minimizes this expression. The offline algorithm which
knows the actual length of an upcoming idle period will
have an expected cost of

Z β=α

0
π(t)(αt)dt+

Z ∞

β=α
π(t)βdt:

It is known for the two state case, that the online algorithm
can pick its thresholdτ so that the ratio of its expected cost
to the expect cost of the optimal algorithm is at moste=(e�
1) [5, 6]. That is, for anyπ, and anyα andβ,

minτ
�R τ

0 π(t)(αt)dt+
R ∞

τ π(t)[ατ+β]dt
	

R β=α
0 π(t)(αt)dt+

R ∞
β=α π(t)βdt

�
e

e�1
:



This is optimal in that for anyα andβ, there is a distribution
π such that this ratio is at leaste=(e�1).

Let us now consider the multi-state case. As in the previ-
ous section, lett j be the solution to the equationα j t +β j =
α j�1t + β j�1. t j is the time that LEA will transition from
state j to state j � 1. We will assume here that we have
thrown out all the lines which do not appear on the lower
envelope at some point. This is equivalent to the assump-
tion thattk < tk�1 < � � �< t2 < t1. For ease of notation, we
will define tk+1 to be 0 andt0 to be∞. The cost (expected
energy consumption) of the optimal offline algorithm is:

k

∑
i=0

Z ti

ti+1

π(t)[αit +βi]dt:

Now to determine the online algorithm, we must determine
k thresholds, where the thresholdτi is the time at which the
online algorithm will transition from statei to statei�1. In
the spirit of the deterministic online algorithm for the multi-
state case, we will letτi be the same as the threshold which
would be chosen ifi andi�1 were the only two states. We
call this algorithm the Probability-based Lower Envelope
Algorithm(PLEA). The proof of the following theorem ap-
pears in the appendix.

Theorem 2 For any distribution, the expected cost of the
Probability-based Lower Envelope Algorithm is within a
factor of e=(e� 1) of the expected cost for the optimal of-
fline algorithm.

3. Experimental Results

To demonstrate the utility of our probability-based al-
gorithm, we use a mobile harddrive from IBM [14]. This
drive has four power down states, as shown in Figure 3.
Here, the start-up energy refers to the energy cost in tran-
sitioning from a state to the active state. For application
disk access data, we used trace data from auspex file server
archive which is available at [13]. From this data, we col-
lected the inter-arrival time for requests for disk access for
0:4 million disk accesses divided into multiple trace files,
corresponding to different hours of the day.

To evaluate the deterministic algorithm, we ran it on fif-
teen different traces. For each trace, we calculated the total
energy expenditure by the online algorithm and the total en-
ergy expenditure by the optimal offline algorithm and took
the ratio between those two values. This data appears in the
first column of numbers in Figure 3. Note that for all the
traces, the ratio is significantly less than 2 (the theoretical
upper bound). This demonstrates that the algorithm does
much better in practice than the competitive ratio indicates.

To test the probability-based algorithm, we usedeach
trace to build a distribution over idle period lengths. The
probability distribution was constructed by first building a

Power Start-up Transition
State Consumption Energy Time

in Watts in Joules to Active
Sleep 0 4.75 5 S

Stand-by .2 1.575 1.5 S
Idle .9 .56 40 mS

Active 2.4 0 0

Figure 2. Values for the power dissipation and start-up en-
ergy for the IBM mobile harddrive at [14] used in our ex-
periments.

histogram in which all the idle period lengths were stored.
The histogram was then used as the basis of a probability
distribution as follows: each bin in the histogram represents
a range of values for an idle period. Each bin was chosen
in proportion to the weight of that bin in the histogram. An
idle period length was then chosen by uniformly selecting a
value from the range for that bin. We did not use uniform
ranges for the bins since the data contained a few very long
idle periods. Thus, we used a finer granularity for the bins
representing shorter idle periods.

Once the probability distribution was constructed, we
use this data to determine the thresholds for the Probability-
based Lower Envlope Algorithm. Then we generated 10000
idle period lengths according to this distribution. For each
idle period, we calculated the ratio between the total energy
expenditure of PLEA and the total energy expenditure of
the optimal offline algorithm. Thus, we assume for these
experiments that we have perfect knowledge of the distri-
bution generating the idle periods. Our goal is to exam-
ine how effectively we use this information in optimizing
power management. The traces were useful as the basis for
determining typical probability distributions. The second
column of numbers in Figure 3 shows the ratio of the cost
of the probability-based online algorithm to the offline algo-
rithm on the data generated by the probability distributions
based on each trace.

Figure 4 shows the average energy consumption for all
four algorithms: deterministic online, deterministic offline,
probability-cased online, probability-based offline. Thus,
the deterministic column in Figure 3 is the ratio of the
heights of the first two bars from Figure 4 for each trace.
Similarly, the probability-based column in Figure 3 is the
ratio of the values in the last two bars. The second bar for
each trace in Figure 4 is the actual average offline cost for
the idle periods in each trace. The fourth bar for each trace
in Figure 4 is the average offline cost for idle periods gen-
erated according to a probability distribution based oneach
trace. Thus we expect the two values to be close, although
not identical.

The results demonstrate that knowledge of the probabil-



ity distribution over idle periods can improve power con-
sumption by 25% over the deterministic algorithm, bring-
ing the power consumption down to 1.23 times the optimal
offline algorithm on average. Earlier experiments for two-
state models show that the deterministic algorithm com-
pares favorably with respect to other adaptive algorithms
in the literature [11]. Since the probability-based algorithm
given here improves upon the deterministic algorithm, this
comparison would be even more favorable for PLEA.

The worst case for the deterministic algorithm is a com-
petitive ratio of 2. Thus, 2 is a theoretical upper bound
for the the first column of numbers in Figure 3. In many
cases, the results are actually much better than 2, showing
that the theoretical bound is often a pessimistic estimate on
the performance of the algorithm. In general, the determin-
istic online algorithm will do well for short idle periods in
which case it does not drop to a lower energy consumption
state. In these cases, the ratio of the cost of the online to the
offline algorithms is close to one. The deterministic algo-
rithm will do the most poorly for idle periods which are just
longer than one of its threshold times. That is, it will do the
most poorly in comparison to the optimal offline algorithm
when a new request arrives just after it has transitioned to
a lower power dissipation state. The very worst case which
will force its ratio closest to 2 is when a request arrives just
after it transitions to the sleep state. Thus, one would ex-
pect that on those traces where the deterministic competi-
tive ratio is very close to two, the distribution of idle period
lengths is tightly clustered just after the longest threshold
for the algorithm.

The probability-based algorithm will, in general, per-
form better on those distributions that are highly clustered
since those distributions give the most information about
what idle periods lengths are more likely to occur. This
is born out in our experimental results: those traces which
result in ratios which are very close to two for the deter-
ministic algorithm achieve ratios that are relatively close
to one for the probability-based algorithm. Analysis of the
two-state case tells us that the distributions that result in the
worst ratio for the probability-based algorithm are exponen-
tially distributed. They give the online algorithm very little
information about the length of the upcoming idle period.
The exponential distribution is the distribution that results in
PLEA achieving a ratio ofe=(e�1)� 1:58 for the two-state
case. Notice that on the traces used in our experiments, the
results are much better than the worst casee=(e� 1) since
the distributions resulting from the traces give the online al-
gorithm more information about the upcoming idle period
length.

Deterministic Probability-based
Trace Competitive Competitive Trace

Ratio Ratio Length

Trace 1 1.6556 1.3499 33626
Trace 2 1.4173 1.1595 67176
Trace 3 1.6277 1.2270 34006
Trace 4 1.8747 1.1540 7233
Trace 5 1.765 1.3032 1507
Trace 6 1.7328 1.3787 10304
Trace 7 1.9963 1.0124 558
Trace 8 1.7708 1.2252 7100
Trace 9 1.5256 1.2384 70280
Trace 10 1.6717 1.3792 43404
Trace 11 1.9688 1.0638 2167
Trace 12 1.5899 1.2891 24145
Trace 13 1.63277 1.1573 15839
Trace 14 1.7313 1.3313 17360
Trace 15 1.848 1.2479 12270
Average 1.7206 1.2345

Figure 3. Ratios of the performance of online algorithms to
the optimal offline algorithms in our experiments.

4 Conclusions

This paper presents two algorithms for dynamic power
management for systems with multiple sleep states. Com-
petitive analysis is used to guarantee a bound on the per-
formance of the deterministic algorithm for any input se-
quence. Our empirical results show that it actually performs
better than this bound on the harddisk data used in our study.
The next algorithm assumes that the idle periods are gener-
ated according to a known probability distribution. In this
case, we show, analytically and empirically, that this knowl-
edge can be used to greatly enhance the performance of a
DPM strategy.

The most important direction for future work is to de-
velop methods for finding a probability distribution which
will accurately predict future idle periods lengths based on
past idle period lengths.
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Comparison of Energy Dissipation between the Deterministic and Probability Based
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A. Appendix

Proof of Theorem 1. First we establish that the worst case for
the algorithm will always be just after a transition time. Consider
the timet j + γ, for somek� j � 1 and 0� γ < t j�1� t j . For any
value ofγ in the given range, the optimal cost will be

α j�1(t j + γ)+β j�1:

For any value ofγ in the given range, the online cost will be:

αktk+
k

∑
l= j

αl�1(tl�1� tl )+α j�1γ+β j�1:

The ratio of these two will be maximized forγ = 0.
Now suppose that the interval ends just aftert j for somek�

j � 1. Using the cost for the online and offline determined above,
the ratio of the online cost to the offline cost will be

αktk+∑k
l= j αl�1(tl�1� tl )+β j�1

α j�1t j +β j�1

= 1+
αktk +∑k

l= j αl�1(tl�1� tl )�α j�1t j

α j�1t j +β j�1

Thus, it is sufficient to prove that

αktk+
k

∑
l= j

αl�1(tl�1� tl )�α j�1t j � α j�1t j +β j�1:



Rearranging, we must prove that

k

∑
l= j

(αl �αl�1)tl �α j t j�1 � α j�1t j +β j�1: (1)

Eachtl was chosen so that

(αl �αl�1)tl = βl�1�βl ;

so we can substitute these values into Inequality 1 to get that

(βk�1�βk)+ � � �+(β j�1�β j )�α j t j�1

� α j�1t j +β j�1:

Collapsing the telescoping sum, we get that

β j�1�βk�α j t j�1 � α j�1t j +β j�1:

Since all theα’s, β’s andt ’s are non-negative, the equation holds.

Proof of Theorem 2. Consider a system in which there are
only two states:i and i�1. Both online and offline must pay at
leastαi�1t for an interval of lengtht. In addition, each must pay
at leastβi for the start-up cost. These costs which are incurred
by both algorithms, regardless of their choices will only serve to
decrease the competitive ratio. In determining,τi , we will disre-
gard these additional costs. Consider the system where the power
consumption rate in the ON state isαi �αi�1 and is 0 in the OFF
state. The energy required to transition from the ON to the OFF
state isβi�1�βi . We will chooseτi to the be the transition time
for the optimal online policy in this system. Thus, we will choose
τi to be

argmin
τ

Z τ

0
π(t)t(αi�αi�1)dt

+
Z ∞

τ
π(t)[τ(αi�αi�1)+(βi�1�βi)]dt:

The online cost for this new system is the above expression evalu-
ated atτ = τi :

ONi =
Z τi

0
π(t)t(αi�αi�1)dt

+
Z ∞

τi

π(t)[τi(αi�αi�1)+(βi�1�βi)]dt:

Let ti be defined to be(βi�1�βi)=(αi�αi�1). Note that this
is the same definition in the previous proof: the point where the
linesαit +βi andαi�1t +βi�1 meet. The offline cost for the new
system is

OFFi =
Z ti

0
π(t)t(αi�αi�1)dt

+
Z ∞

ti
π(t)(βi�1�βi)dt:

We are guaranteed that the ratio of the expected online to offline
costs is at moste=(e�1) [5, 6].

Since the ratio of ONi to OFFi is at moste=(e�1) for eachi,
we know that

∑k
i=1 ONi

∑k
i=1OFFi

�
e

e�1
:

We will now prove that∑k
i=1ONi is exactly the expected cost

for PLEA on the multi-level system. We will also prove that
∑k

i=1OFFi is exactly the expected cost of the optimal algorithm
for the multi-level system.

We will rephrase ONi by separating the integral into the inter-
vals fromτ j+1 to τ j . To simplify notation,τk+1 will denote 0 and
τ0 will denote∞.

ONi =
k

∑
j=i

Z τ j

τ j+1

π(t)[t(αi�αi�1)]dt

+
i�1

∑
j=0

Z τ j

τ j+1

π(t)[τi(αi�αi�1)+(βi�1�βi)]dt:

In the sum over all ONi , we will group together all the contribu-
tions from each ONi over the interval[τ j+1;τ j ] for k� j � 1. Note
that this is the interval that the algorithm will spend in statej. This
value will be:

k

∑
i= j+1

Z τ j

τ j+1

π(t)[τi(αi�αi�1)+(βi�1�βi)]dt

+
j

∑
i=1

Z τ j

τ j+1

π(t)[t(αi�αi�1)]dt: (2)

Thus, we have that

k

∑
i=1

ONi =
k

∑
j=0

f ( j);

where

f ( j) =
k

∑
i= j+1

Z τ j

τ j+1

π(t)[τi(αi�αi�1)+(βi�1�βi)]dt

+
j

∑
i=1

Z τ j

τ j+1

π(t)[t(αi�αi�1)]dt

Putting the summations inside the integrals and collapsing the
telescoping sums, the expression in (2) becomes:

Z τ j

τ j+1

π(t)cost(t)dt;

where

cost(t) = (β j �βk)+ τkαk

+
k

∑
l= j+2

(τl�1� τl )αl�1+(t� τ j+1)α j :

Note that

(β j �βk)+ τkαk+
k

∑
l= j+2

(τl�1� τl )αl�1+(t� τ j+1)α j

is exactly the energy expended by PLEA if the idle periodt is in
the range[τ j+1;τ j ]. Thus, the expected cost for PLEA is:

k

∑
j=0

Z τ j

τ j+1

π(t)cost(t)dt =
k

∑
i=1

ONi :

The proof that the expected offline cost is equal to∑k
i=1 OFFi is

the same as the proof for the online cost, except that the integrals
are separated into intervals according to theti ’s instead of theτi ’s.
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