
System design methodologies for a wireless security
processing platform

Srivaths Ravi, Anand Raghunathan, Nachiketh Potlapally and Murugan Sankaradass
C & C Research Labs, NEC USA, Princeton, NJ 08540

fsravi,anand,nachiketh,murugsg@nec-lab.com

Abstract
Security protocols are critical to enabling the growth of a wide range of
wireless data services and applications. However, they impose a high com-
putational burden that is mismatched with the modest processing capabilities
and battery resources available on wireless clients. Bridging the security
processing gap, while retaining sufficient programmability in order to sup-
port a wide range of current and future security protocol standards, requires
the use of novel system architectures and design methodologies.

We present the system-level design methodology used to design a pro-
grammable security processor platform for next-generation wireless hand-
sets. The platform architecture is based on (i) a configurable and ex-
tensible processor that is customized for efficient domain-specific process-
ing, and (ii) layered software libraries implementing cryptographic algo-
rithms that are optimized to the hardware platform. Our system-level design
methodology enables the efficient co-design of optimal cryptographic algo-
rithms and an optimized system architecture. It includes novel techniques
for algorithmic exploration and tuning, performance characterization and
macro-modeling of software libraries, and architecture refinement based
on selection of instruction extensions to accelerate performance-critical,
computation-intensive operations. We have designed a programmable se-
curity processor platform to support both public-key and private-key opera-
tions using the proposed methodology, and have evaluated its performance
through extensive system simulations as well as hardware prototyping. Our
experiments demonstrate large performance improvements (e.g., 31�0X for
DES, 33�9X for 3DES, 17�4X for AES, and upto 66�4X for RSA) compared
to well-optimized software implementations on a state-of-the-art embedded
processor.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General- System architectures;
C.1.0 [Computer Systems Organization]: Processor architectures- Gen-
eral; C.2.0 [Computer Systems Organization]: Computer-Communication
Networks- General, Security and protection; C.5.3 [Computer Systems Or-
ganization]: Computer System Implementation- Microcomputers, Portable
devices; E.3 [Data]: Data encryption- DES, Public key cryptosystems

General Terms
Security, Performance, Design, Algorithms

Keywords
Security, Security processing, Encryption, Decryption, Wireless, Handset,
Embedded system, Performance, DES, 3DES, AES, RSA, SSL, IPSec, De-
sign methodology, Platform, System architecture

1. INTRODUCTION
A large fraction of the applications and services that are of interest to

Internet users involve access to, and transmission of, sensitive information
(e.g., e-commerce, access to corporate data, virtual private networks, online
banking and trading, multimedia conferencing, etc.), making security a seri-
ous concern [1, 2]. The deployment of high-speed wireless data and multi-
media communications ushers in even greater security challenges. Wireless
communication relies on the use of a public transmission medium, making
the physical signal easily accessible to malicious entities. Surveys of current
and potential users of mobile commerce (m-commerce) services have indi-
cated security concerns as the single largest bottleneck to their adoption [3].

Several security mechanisms have been developed for wired and wireless
networks, based on providing security enhancements to various layers of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

3000

2G 2.5G 3G

10kbps

64kbps

2M bps

100

500

0.35µ 0.25µ 0.18µ 0.13µ 0.10µ

Intel
SA -1100

NE C
VR 5432

Intel
XS cale

NE C
VR 5500

M IP S

Silico n T echno lo gy

W ireless Com m unicatio n Techno lo gy

Hand set
processor
perfo rmance

Secu rity
processing
re quirem ents

W ireless Security
Processing G ap

Figure 1: The security processing gap: Projected trends in secu-
rity processing requirements and embedded processor perfor-
mance

protocol stack (e.g., IPSec at the network layer, SSL/TLS and WTLS at the
transport layer, SET at the application layer, etc.) [4, 5]. While the above
mechanisms provide satisfactory security if utilized appropriately, there is
a critical bottleneck that impedes their use to address security concerns in
wireless networks. Wireless clients (e.g., smart phones, PDAs) are, and will
always be, much more resource (processing capability, battery) constrained
than their wired counterparts. On the other hand, security protocols sig-
nificantly increase computational requirements at the network clients and
servers [6, 7, 8] to levels that exceed the capabilities of wireless handsets.
For example, a PalmIIIx handset requires 3.4 minutes to perform 512-bit
RSA key generation, 7 seconds to perform digital signature generation, and
can perform (single) DES encryption at only 13kpbs, assuming that the CPU
is completely dedicated to security processing [8]. Further, security process-
ing has been reported to rapidly drain the Palm’s batteries [8].

The increase in data rates (due to advances in wireless communication
technologies), and the use of stronger cryptographic algorithms (to stay be-
yond the extending reach of malicious entities) threaten to further widen the
gap between security processing requirements and embedded processor per-
formance (the “security processing gap”). Figure 1 compares the projected
trends in computational requirements (MIPS) for security processing, and
the increase in embedded processor performance (enabled by improvements
in fabrication technology and innovations in embedded processor architec-
ture). The inadequate performance of embedded processors in processing
security protocols leads to high network transaction latencies, and low effec-
tive data rates. Another critical bottleneck to security processing on wireless
handsets is battery capacity, whose growth (5-8% per year) is far slower
than the growth in processing requirements or processor performance [9].
In practice, various metrics such as performance, power, and cost, need to
be considered together and it is their interaction that poses the toughest chal-
lenges to the system designer. For example, power and cost are the main rea-
sons why embedded processors for wireless handsets are slower than their
desktop counterparts. The proposed system design methodology and secu-
rity processing platform architecture result in large improvements in perfor-
mance as well as energy efficiency. However, space restrictions dictate that
the discussions in this paper be limited to performance issues.

Algorithm-specific custom hardware implementations can always provide
the highest levels of efficiency [10, 11, 12, 13]. However, in practice, the
need for efficiency in security processing has to often be considered together
with, and traded off against, the need for flexibility. Each security proto-
col standard typically specifies a wide range of cryptographic algorithms
that the network servers and clients need to execute in order to facilitate
inter-operability [4, 5]. Further, a security processor is often required to
execute multiple distinct security protocol standards in order to support (i)
security processing in different layers of the network protocol stack (e.g.,
WEP, IPSec, and SSL), or (ii) inter-working among different networks (e.g.,
an appliance that needs to work in both 3G cellular and wireless LAN envi-

ronments). Finally, programmability is desirable in order to allow easy adap-
tation to future security protocols and evolving standards. Hence, novel tech-
nologies to alleviate the computational burden of security processing while
maintaining sufficient programmability are required.

1.1 Paper overview and contributions
We are developing a programmable security processor platform to en-

able secure data and multi-media communications in next-generation wire-
less handsets. The objective is to enable secure communications at data rates
provided by 3G cellular (100 kbps - 2 Mbps) and wireless LAN (10 - 55
Mbps) technologies, while allowing for easy programmability in order to
support a wide range of current and future security protocol standards. As
explained above, the growth in computational requirements for security pro-
cessing outstrips improvements in embedded processor performance, result-
ing in a significant performance gap. We believe that the use of novel system
architectures and system-level design methodologies is critical to bridge this
gap.

The system architecture of our security processing platform consists of

� A state-of-the-art commercial configurable and extensible processor
(the Xtensa processor from Tensilica Inc. [14]) that is customized for
efficient domain-specific processing, while retaining sufficient pro-
grammability, and

� Layered software libraries implementing cryptographic algorithms
that are optimized and tuned to the underlying hardware platform.

Our system-level design methodology is based on the co-design of opti-
mal cryptographic algorithms and an optimized system architecture. It al-
lows the system designers to efficiently match the software to the character-
istics of the hardware platform, and vice-versa. Our methodology includes
novel techniques for algorithmic exploration and tuning as well as architec-
ture refinement.

Concurrent development of the security algorithms and the underlying
hardware architecture requires that the performance of algorithms be evalu-
ated using either hardware models or instruction set simulation (ISS) models.
In such a scenario, algorithmic exploration may be infeasible due to the size
of the algorithm space, and the amount of time required to simulate realis-
tic network transactions with hardware models. For example, simulating a
single transaction of the SSL handshake protocol over a space of 495 RSA
algorithm configurations would require over a month of simulation time with
ISS models of the Xtensa processor, on a 440MhZ Sun Ultra 10 workstation
with 1 GB memory. We propose a novel methodology to enable efficient and
accurate exploration of the algorithm space, based on automatic performance
characterization and macro-modeling of software functions that implement
the various atomic steps in the cryptographic algorithm.

Architecture exploration is performed in our design flow through the gen-
eration and selection of custom instructions that accelerate performance-
critical, computation-intensive operations. For programs where several dis-
tinct parts (e.g. functions) need to be accelerated through custom instruc-
tions, the large number of candidate sets of custom instructions make it dif-
ficult to evaluate all possibilities explicitly. The problem is further compli-
cated by the fact that, it is often possible to have several different alternative
custom instructions for accelerating a single sub-program, which present a
tradeoff between the performance improvement and the overheads incurred
by the hardware additions. We have developed techniques to automate the
selection of custom instructions from a given candidate set, while consider-
ing the performance vs. hardware overhead tradeoffs.

We have designed a programmable security processor platform to support
both private-key (e.g., DES, 3DES, AES) and public-key (e.g., RSA, El-
Gamal) operations, using the proposed methodology. We have evaluated the
performance of the security processor through extensive system simulations,
and through hardware implementation using a prototyping platform. Our
experiments demonstrate large performance improvements (e.g. 31�0X for
DES, 33�9X for 3DES, 17�4X for AES, and upto 66�4X for RSA) compared
to well-optimized software implementations on a state-of-the-art embedded
processor. We believe that system-level design methodologies, such as the
one proposed here, are critical to overcoming the challenges encountered in
security processing on wireless handsets.

2. OVERVIEW OF THE SECURITY PROCESS-
ING PLATFORM

Figure 2 presents an overview of the target system architecture for
our security processor platform. Efficient security processing is attained
in this architecture through (i) the use of a configurable and extensible
processor that is customized through the selective addition of custom in-
structions, co-processors, and peripherals, which implement performance-
critical, computation-intensive operations, and (ii) optimized software li-
braries that are derived through extensive algorithmic exploration and tuning
of the cryptographic algorithms they implement.

2.1 HW Platform architecture
The hardware platform is based on the Xtensa T1040 processor from Ten-

silica, Inc. [14]. The Xtensa features a 32-bit RISC-like base processor
architecture. It offers a wide range of options to configure the base pro-
cessor, including selection of generic instructions (e.g., hardware multiplier,

Xtensa CPU

P
IF

C
IF

High-speed Bus

Program
RAM

Data
RAM

Custom
Instr. HW

Cache

Custom
Co-proc.

HW

Platform HW

Bridge

SOC
Bus

Custom
Peripheral

HW

Std. C libraries

Gnu GMP – basic ops

Security
primitives

SSL IPSec WTLS Apps.

Platform SW

Complex ops.

RSA_keygen(...)
RSA_encrypt(...)
DES_encrypt(...)
......

mpn_add_n(...
mpn_submul_1(...)
udivsi3(...
......

Mod_exp(...)
Mod_mul(...)
Sbox(...)
...

Xtensa CPU

P
IF

C
IF

High-speed Bus

Program
RAM

Data
RAM

Custom
Instr. HW

Cache

Custom
Co-proc.

HW

Platform HW

Bridge

SOC
Bus

Custom
Peripheral

HW

Std. C libraries

Gnu GMP – basic ops

Security
primitives

SSL IPSec WTLS Apps.

Platform SW

Complex ops.

RSA_keygen(...)
RSA_encrypt(...)
DES_encrypt(...)
......

mpn_add_n(...
mpn_submul_1(...)
udivsi3(...
......

Mod_exp(...)
Mod_mul(...)
Sbox(...)
...

Figure 2: Overview of the target security processing system ar-
chitecture

MAC, floating point unit, etc.), exceptions and interrupt mechanisms, en-
dianness, register window customization, cache and memory interface con-
figuration, debug and test hardware, etc. In addition to its configurability,
the Xtensa also provides the designer with the ability to extend the instruc-
tion set through the addition of custom instructions that execute on designer-
specified custom hardware units, which are tightly integrated into the pro-
cessor execution pipeline. In our work, we exploit the customizability of-
fered by the Xtensa processor platform in order to meet our performance
objectives for security processing. HW/SW partitioning at the granularity
of custom instructions often results in satisfactory performance improve-
ments. However, in some cases, the characteristics of the application re-
quire that more coarse-grained functions be mapped to custom hardware.
In such cases, one option is to use a HW co-processor that interfaces to
the Xtensa’s single-cycle cache interface. Alternatively, HW units that do
not require high-performance communication with the processor core can be
implemented as peripherals connected to the processor bus. In our work,
we attempt to use custom instruction extensions to the maximum extent pos-
sible since they allow for easier integration, and facilitate higher levels of
programmability and HW re-use, compared to the co-processor and periph-
eral options.

2.2 SW architecture
The choice of a suitable software architecture is critical to enable an effi-

cient system design methodology. The software architecture for our security
processor platform was designed using a layered philosophy, much like the
layering used in the design of network protocols [15]. At the top level, the
SW architecture provides a generic interface (API) using which security pro-
tocols and applications can be ported to our platform. This API consists of
security primitives such as key generation, encryption, or decryption of a
block of data using a specific public- or private-key cryptographic algorithm
(e.g. RSA, ECC, DES, 3DES, AES, etc.). The security primitives are im-
plemented on top of a layer of complex mathematical operations such as
modular exponentiation, prime number generation, Miller-Rabin primality
testing etc. [4]. These complex operations are in turn decomposed into ba-
sic mathematical operations, including bit-level operations (typically used
in private-key algorithms) and multi-precision operations on large integers
(typically used in public-key algorithms). The advantages of using the lay-
ered SW architecture approach include:

� The API interface at each software layer was fixed before implemen-
tation, allowing the design of each layer, and the porting of security
protocols to our platform, to proceed concurrently. This reduced de-
sign time significantly, and enabled the use of more realistic appli-
cation workloads to drive the design of each SW layer early in the

Performance
macro-models
for SW libs

Cross
compile

Simulate
with ISS

Regression
macro-modeling

Native
compile

Native
execution

Select
best algo.

Candidate
algorithms

SW library
(basic ops)

SW
(complex ops,

security
primitives)

PERFORMANCE
CHARACTERIZATION

ALGORITHM
EXPLORATION

CUSTOM INSTRUCTION
FORMULATION

GLOBAL
CUSTOM

INSTRUCTION
SELECTION

Identify
hot-spots

Specify
custom

instructions

Generate
A-D curves for
library routines

Profile
complete algo.

Propagate
A-D curves

thro. call graph

Select
custom

instructions

Xtensa CPU

P
IF

C
IF

Memory

Cache

Custom
Co-proc.

B
ri

dg
e

Cus tom
F Us

A-D curves
for individual

library routines

Area, Delay
constraints

HW PLATFORM

SW PLATFORM

Performance
Target Achieved?

No No

Board-level
prototyping

Yes

LOGIC & PHYSICAL DESIGN

Performance
macro-models
for SW libs

Cross
compile
Cross

compile

Simulate
with ISS
Simulate
with ISS

Regression
macro-modeling

Regression
macro-modeling

Native
compile
Native

compile

Native
execution

Native
execution

Select
best algo.

Select
best algo.

Candidate
algorithms
Candidate
algorithms

SW library
(basic ops)

SW
(complex ops,

security
primitives)

SW
(complex ops,

security
primitives)

PERFORMANCE
CHARACTERIZATION

ALGORITHM
EXPLORATION

CUSTOM INSTRUCTION
FORMULATION

GLOBAL
CUSTOM

INSTRUCTION
SELECTION

Identify
hot-spots

Specify
custom

instructions

Generate
A-D curves for
library routines

Profile
complete algo.

Propagate
A-D curves

thro. call graph

Select
custom

instructions

Xtensa CPU

P
IF

C
IF

Memory

Cache

Custom
Co-proc.

B
ri

dg
e

Cus tom
F Us

A-D curves
for individual

library routines

A-D curves
for individual

library routines

Area, Delay
constraints

HW PLATFORM

SW PLATFORM

Performance
Target Achieved?

No No

Board-level
prototyping

Yes

LOGIC & PHYSICAL DESIGN

Figure 3: Overview of the security processing system design methodology

design process.

� The generation of candidate custom instructions could proceed once
the software layer implementing basic operations was available (i.e.,
without waiting for the entire SW implementation), since computa-
tions of the desired granularity are exposed in the basic operations.

� The separation of the top-level algorithms from the primitives or
building blocks that are used to implement them enabled us to char-
acterize the primitives and derive high-level performance macro-
models, which were then used for efficient algorithmic exploration
As illustrated in Section 3.2, this novel performance characterization
methodology enabled the efficient exploration of a large number of
candidate algorithms, which would have required several months of
simulation time using ISS models.

3. DESIGN METHODOLOGIES
In this section, we present the methodology used to design the architec-

ture of our wireless security processing platform. Section 3.1 presents an
overview of the design methodology. Section 3.2 details the selection of the
software constituents of the platform, while Sections 3.3 and 3.4 describe
the steps involved in customizing the hardware platform.

3.1 Overview
Figure 3 outlines the system-level design flow used for our security pro-

cessing platform. There are four major phases in the flow: (i) performance
characterization of software libraries, (ii) algorithm exploration, (iii) formu-
lation of candidate custom instructions to accelerate individual library rou-
tines, and (iv) global custom instruction selection to generate the required
performance for each security algorithm. The methodology exploits the lay-
ered SW architecture in order to separate the above steps in a clean man-
ner. Specifically, only implementations of the lower SW layers (standard li-
braries, basic operations) are required for performance characterization and
formulation of custom instruction candidates, while algorithm exploration
and global custom instruction selection are performed using the higher SW
layers (complex operations, security primitives) while regarding the lower
SW layers as a black box.

We now briefly describe the salient steps of our methodology, details of
which are found in later subsections.

� The simulation time required for performance estimation is a signif-
icant bottleneck in algorithm design space exploration (in our con-
text, several hours to few days per candidate algorithm). The perfor-
mance macro-modeling phase effectively addresses this problem by
enabling performance estimation through native compilation and ex-
ecution, which can be orders of magnitude faster than Instruction Set
Simulation. During the performance macro-modeling phase, we char-
acterize the software library routines that constitute the basic steps
of the algorithm, using a cycle-accurate ISS. We use statistical re-
gression techniques to build macro-models that express the execution
time of each routine as a function of parameters characterizing its in-
put variables. The performance macro-modeling phase is explained
in further detail in Section 3.2.

� The algorithm exploration phase attempts to identify optimal algorith-
mic implementations of security processing algorithms such as RSA,
AES, 3DES etc. For each algorithm candidate, we instantiate the per-
formance macro-models for library routines in the source code, and
replace ISS runs with native compilation and direct execution on a
host workstation, resulting in large speedups in simulation time. In
our context, that allows exhaustive exploration of the algorithmic de-
sign space to be performed.

� In most scenarios, the optimized algorithm running on the base hard-
ware platform does not achieve the target performance. Therefore,
it becomes necessary to customize the underlying HW architecture,
through custom instruction extensions in our case. During the cus-
tom instruction formulation phase, we focus on speeding up individ-
ual software library routines. That allows our designers to focus on
small problem instances, where they best apply their creativity, leav-
ing the global tradeoffs to the subsequent phase. The routine under
consideration is profiled using traces derived from simulation of the
entire algorithm. The computation-intensive parts of the routine are
specified as a custom instruction. The hardware resources (functional
units, register files, lookup tables, etc.) used in the custom instruction
are varied to create a local area vs. delay tradeoff for the individual
library routine. Having a rich set of alternatives is critical to achiev-
ing a high-quality solution in the global custom instruction selection
phase. The custom instruction formulation phase is discussed further
in Section 3.3.

� The global custom instruction selection phase determines a combina-
tion of (possibly several) custom instructions to result in maximum

main

decrypt

modPow

modMul

mpz_mul

mpz_mod

mpz_add

mpz_tdiv_r

mpn_divrem

mpn_submul_1
udivsi3 umodsi3

mpn_sub_n

mpn_mul

mpn_add_n

mpn_mul_1

mpz_sub_ui mpz_invert

mpz_gcdext

mpz_tdiv_qr

mpz_sub

mpn_lshift mpn_divmod_1

mpn_rshift

mpn_addmul_1

mpn_cmp

1

2

2

1

1

311

309

2

2
1

2

2

59
1

75974

52

52

75974

37975

34737 3247

3388

4

3074

311

3074

444

2
1

3078

3074

2

273

546
25

311

Function name/ #calls

286

3071

 Call Graph Call Graph

Figure 4: Call graph for an optimized modular exponentiation
algorithm

speedup for the entire security algorithm subject to any applicable
area constraints. This phase proceeds by propagating A-D curves
for library routines through the function call graph of the entire al-
gorithm. The potential explosion in the number of instruction com-
binations is contained using several techniques. The global custom
instruction selection phase is described in detail in Section 3.4.

The optimized security processor platform is evaluated in the context of
the target environment (e.g., SSL and IPSec protocol processing, real-time
video encryption/decryption, etc.) through board-level prototyping. Inade-
quacies in performance are addressed through further refinements to the HW
or SW parts by iterating the steps described above with either relaxed area
constraints, additional candidate algorithms, or additional custom instruction
candidates.

3.2 Performance Macro-modeling for Algorithm-
level Design Space Exploration

In this section, we introduce performance macro-models and describe
their use in algorithmic design space exploration. A performance macro-
model is a function that expresses the number of cycles incurred by the actual
run of a library routine in terms of parameters that characterize the routine’s
input variables. For example, the performance of a routine mpn add n that
adds two arbitrary length integers in1 and in2 can be expressed as a function
of the bitwidths of the two inputs. The characterization process proceeds as
follows. The routine under consideration is invoked in a test program that
exercises it with a wide range of pseudo-randomly generated input stimuli.
This test program is simulated using the cycle-accurate ISS for the target HW
to generate performance data that consists of (i) the value of the parameters
(e.g., input variable bitwidths), and (ii) the number of execution cycles, for
each invocation of the routine. A statistical regression is performed to fit the
above data, resulting in the performance macro-model for the library routine.
Note that, characterization is a one-time process, and results in acceleration
of the overall performance estimation process.

Since the input space for a library routine can potentially be infinite, the
input values used for characterization are generated to lie within a bounded
super-space of the input space used by the application. For example, the
GNU GMP library [16] provides a wide variety of functions that can perform
arbitrary precision arithmetic on integers, rationals and floats. However, a
1024-bit RSA algorithm only requires operations restricted to (less than or
equal to) 1024-bit arithmetic. Therefore, we characterize the library routines
for this restricted domain only.

The performance profiles of arithmetic functions typically show a regular
behavior (piecewise linear, quadratic, etc.) over input bit-width subspaces.
Therefore, we can derive the performance model for a library routine fairly
easily and accurately using regression-based approaches. All library rou-
tines instantiated in the source code of an algorithm can now be augmented
with their respective performance models to allow performance estimation
through native code execution on any host workstation. Further details of
the performance macro-modeling technique can be found in [17].

3.3 Formulating custom instruction candidates
and A-D curves

Figure 4 shows the profile statistics of an optimized modular exponenti-
ation algorithm as a function call graph, with nodes representing function
names, and edges weighted by the number of calls made to each function.
For example, the function decrypt makes 4, 4, 2, 2 and 2 calls, to functions

mpz mul, modPow, mpz mod, mpz add and mpz sub, respectively. Each
node in the call graph may have more than one parent, since a function may
be invoked by multiple higher-level functions. For example, mpz mul is
called by three functions - decrypt , modMul, and mpz gcdext . For the sake
of simplicity, the call graph in Figure 4 is truncated at functions that are
highlighted with bold text, i.e., calls to lower-level functions are not shown.
The leaf nodes of the call graph in Figure 4 correspond to the library rou-
tines for which custom instructions are added in an interactive manner with
the designer’s involvement. It bears mentioning that, the granularity of the
leaf nodes is a critical choice that determines the effectiveness of the custom
instructions. Ideally, a function chosen to be a leaf node should contain suf-
ficient amount of computation so as to provide scope for optimization, while
being small enough that it is easy for a designer to understand and optimize.
Our methodology contains heuristics for the choice of the leaf node based on
the function’s size and the fraction of the total program execution time it ac-
counts for. However, we also provide the designer with an option to override
automatic choices and manually specify the leaf nodes.

Since the added custom instructions can be provided with a variable num-
ber of hardware resources, we can associate an area-performance trade-off
curve (also called A-D curve) with each custom instruction. The lower-most
set of points in Figure 5(a) shows the A-D curve for a sample library rou-
tine mpn add n that performs the addition of two vectors. The original li-
brary routine is represented by the design point that has a zero area overhead
and a performance of 202 cycles, as shown. All other design points are de-
rived through custom instruction additions with varying number of adder re-
sources, and hence, have non-zero area overheads. For example, the second
design point is achieved by adding custom load/store instructions load UR1,
load UR2 and store UR3, and an addition instruction add 2 that uses two
32-bit adder resources. When the number of adders is changed to 4 (add 4),
performance improves at increased area costs, creating the next design point
in the A-D curve. At some point, additional resources bring diminishing
returns (e.g., due to limits on parallelism or memory bottlenecks).

3.4 Global Custom Instruction Selection
In this section, we describe our methodology for selecting custom instruc-

tions using A-D curves of software library routines and the annotated call
graph of the entire algorithm. Our procedure for selecting custom instruc-
tions involves combining and justifying A-D curves in a bottom-up fashion
to derive a composite A-D curve for the root node of the call graph. The area
and performance constraints for the platform can then be applied at the root
node to pick the final custom instruction(s).

For any subgraph rooted at a node f , with children given by the set
children� f �, the performance of f is governed by the following equation

cycles� f � � local cycles� f �� ∑
g�children� f �

cycles�g� (1)

In the above equation, local cycles� f � refers to the number of cycles spent
in computations local to f , which do not involve calls to any of its children.
The above equation can be directly applied when all members of the set
children� f � have a single performance number associated with them (i.e.,
no A-D curves). However, when A-D curves of one or more functions in
children� f � need to be combined, there are a few issues involved, as illus-
trated below. When the root node of a subgraph in the call graph has multiple
children, the A-D curve computation simply degenerates to repeated appli-
cation of the following cases.

Two child nodes - one child with an A-D curve and another with no A-D
curve: Figure 5(a) illustrates this case for the graph rooted at node root ,
with one child mpn add n (which has an A-D curve), and a second child
other (which requires 10 cycles per call). In this case, for every design point
in the A-D curve of mpn add n, we have a corresponding design point in the
A-D curve of root , with the performance computed using Equation (1).

Two child nodes with A-D curves: Figure 5(c) illustrates this case
using a graph rooted at node root with two children, mpn add n and
mpn addmul 1, whose A-D curves are shown in Figures 5(a) and 5(b), re-
spectively. As in the previous case, the performance of root is the sum of
the performances of its children, each weighted by the number of calls made
to them. In general, every combination of design points (Cartesian product)
from the A-D curves of mpn add n and mpn addmul 1 must be represented
as a distinct point in the A-D curve of root . However, it turns out that when-
ever instructions are shared or dominated between design points, the number
of design points in the composite A-D curve can be significantly reduced, as
explained next.

Figure 6 shows the Cartesian product of the points on the A-D curves
for mpn add n and mpn addmul 1. Each entry corresponds to the union
of the custom instructions that constitute the individual design points (we
ignore load/store instructions, which are shared across both the children).
For example, the shaded entry add 2� mul 1 is the union of custom in-
structions add 2� mul 1 for function mpn addmul 1, and add 2 for func-
tion mpn add n. The symbol φ is used to denote the null set, i.e., no custom
instructions. Observe that the shaded entry add 2� add 4� mul 1 in Figure 6
is equivalent with many other design points. This is possible (i) when entries
have the same custom instructions or (ii) when entries reduce to the same
custom instructions. For example, the entry add 2� add 4� mul 1 has two
add instructions add 2 and add 4, which differ only in the number of adder

2000 4000 6000 8000 10000

No Custom
Instructions

P
e

rf
o

rm
a

n
ce

 (
c

y
cl

e
s

)

A rea

A-D curve for root

A-D curve for
m pn_add_n

0

50

100

150

200

250

300

350

400

450

root

m pn_add_n

 2 1

(10)

other
load_UR1, load _UR2,
store_U R3,
add_2(UR1, UR2, UR3)

0

100

200

300

400

500

600

700

5000 10000 15000

load_UR1, load _UR2,
store_U R3,
m ul_1(UR1, UR2, UR 3)
add_2(UR1, UR2, UR3)

load_UR1, load_UR2,
store_U R3,
m ul_1(UR1, UR2, UR 3)
add_4(UR1, UR2, UR3)

No Custom Instructions

P
e

rf
o

rm
a

n
ce

 (
cy

cl
e

s)

A rea

0

10000

20000

30000

40000

50000

60000

5000 10000 15000

P1

P2

P3

P
e

rf
o

rm
a

n
ce

 (
c

y
cl

e
s

)

m pn_add_n

root

m pn_addm ul_1

50 100

Area

(a) (b) (c)

Figure 5: (a) A-D curve for library routine mpn add n and its propagation through an example call graph, (b) A-D curve for
mpn addmul 1, and (c) computing the A-D curve for a node with two children that have A-D curves

resources available while realizing the same functional capabilities. Given
that add 4 can be used to perform add 2 with equal or better performance,
we say that add 4 dominates add 2, and reduce add 2� add 4� mul 1 to
add 4� mul 1. Figure 6 contains 25 candidate design points, which can be
reduced to only 9 points corresponding to the shaded entries in Figure 6. The
reduced set of 9 points are represented in the A-D curve for root , as shown
in Figure 5(c).

 ø

ø

ø

add_2

add_4

add_8

add_16

add_2
m ul_1

add_4
m ul_1

add_8
m ul_1

add_16
m ul_1

add_2

add_4

add_8

add_16

add_2
mul_1

add_2
mul_1

add_2
add_4
mul_1

add_2
add_8
mul_1
add_2
add_16
mul_1

add_4
add_16
mul_1

add_8
add_16
mul_1

add_16
mul_1

add_8
add_16
mul_1

add_4
add_8
mul_1

add_8
mul_1

add_4
mul_1

add_2
add_4
mul_1

add_4
mul_1

add_8
mul_1

add_16
mul_1

add_2
add_8
mul_1

add_2
add_16
mul_1

add_4
add_8
mul_1

add_4
add_16
mul_1

Figure 6: Combining the design spaces of two area-delay (A-D)
curves

Note that, at the root node of the entire call graph, the standard notion of
Pareto-optimality can be applied to eliminate inferior points. In Figure 5(c),
we can prune away design point P1 which has inferior performance while
incurring more area with respect to design points P2 and P3.

4. EXPERIMENTAL RESULTS
We used the design methodology presented in this paper to build a secu-

rity processing platform for wireless handsets that supports popular network-
layer and transport-layer security protocols (e.g., IPSec, SSL, WTLS, etc.).
Section 4.1 describes the different software and hardware tools used to carry
out the various steps of the methodology. Section 4.2 presents an overall
evaluation of the security processing platform, including its performance in
speeding up the secure socket layer (SSL) protocol. Section 4.3 discusses
the results of the algorithmic design space exploration methodology, focus-
ing on the efficiency and accuracy of the macro-modeling based performance
estimation technique.

4.1 Experimental Methodology
For algorithmic design space exploration, each algorithm candidate was

implemented as a highly modular, optimized C implementation using li-
brary routines from two well-known software libraries: (i) The GNU MP
library [16] provides a wide variety of functions that can perform arbitrary
precision arithmetic on integers, rationals and floats, and (ii) a hash library
that provides a reliable means for creating hash tables. The GNU based
cross-compiler, and the instruction set simulator for the target processor (an
Xtensa processor core running at 188 MHz in 0.18 micron technology) were
used to profile the different library routines. Performance macro-models
were constructed using the statistical modeling tool S-Plus [18]. Native sim-
ulation was then performed on a SUN Ultra 10 440 MHz workstation with 1
GB of memory to select the best algorithm configuration for the given target
hardware.

Custom instructions for the different library routines were implemented
as Tensilica Instruction Extension (TIE) descriptions and parameterized for
generating A-D curves. The TIE descriptions were compiled using the TIE
compiler [14], which generates both C-stubs and synthesizable RTL Ver-
ilog descriptions. The C-stubs were then instantiated as intrinsics in test

programs to derive the performance numbers in the A-D curves. The RTL
descriptions were subject to logic synthesis using Synopsys Design Com-
piler [19] and technology mapped to the NEC CB-11 0.18 micron technology
library [20] to determine the area numbers. The global instruction selection
procedure described in Section 3.4 was then used to evaluate the different
TIE candidates. The TIE solutions determined were combined with the base
Xtensa processor core using the Xtensa processor generator [14] to build the
enhanced target hardware.

Figure 7: Functional prototype of the security processing plat-
form

4.2 Evaluation of the security processing platform
We evaluated the performance of our security processor platform using

standard implementations of private-key algorithms such as DES, 3DES, and
AES, as well as the public-key algorithm RSA. The optimized HW platform
and SW implementation resulting from our system design methodology were
used to build a a board-level prototype implementation of the security pro-
cessing platform, which is shown in Figure 7. The prototype was built using
the Xtensa XT-2000 emulation board [21] with an EPSON graphics con-
troller card [22] interfacing with an NEC LCD panel [23] (see Figure 7). The
system prototype was used to demonstrate security processing performance
improvements under various application scenarios, including real-time video
decryption and SSL transaction acceleration.

Table 1: Performance speed-ups for popular security processing
algorithms

Processing Rates
Sec. Algo. Orig. Final Speedup

(cycle/byte) (cycle/byte)

DES enc./dec. 476.8 15.4 31.0X
3DES enc./dec. 1426.4 42.1 33.9X
AES enc./dec. 1526.2 87.5 17.4X
RSA enc. 34.29 * 103 3.16 * 103 10.8X
RSA dec. 12658 * 103 190.78 * 103 66.4X

Table 1 illustrates the performance speed-ups for the individual security
processing algorithms: 31.0X for DES, 33.9X for 3DES, 17.4X for AES,

0

10

20

30

40

50

60

70

80

90

100

Pu blic -k ey algo. M isc . Sym m etric A lgo.

SS
L

 c
om

pu
ta

ti
on

 t
im

e
br

ea
ku

p
(o

ri
gi

na
l n

or
m

al
iz

ed
 t

o
10

0%
)

Transaction size

O
ri

gi
na

l

O
pt

im
iz

ed

O
ri

gi
na

l

O
ri

gi
na

l

O
ri

gi
na

l

O
ri

gi
na

l

O
ri

gi
na

l

O
pt

im
iz

ed

O
pt

im
iz

ed

O
pt

im
iz

ed

O
pt

im
iz

ed

O
pt

im
iz

ed

1 K 4 K 8 K 16 K 32 K2 K

Note: Due to large speedups in the optimized case, the public-key and private-key
components are not always visible in the above graph

Figure 8: Estimated speedups for SSL transactions

and upto 66.4X for RSA. Note that, these improvements are obtained com-
pared to already optimized software implementations. We next see how the
enhancements made to these security algorithms help in speeding up the
popularly used transport layer security protocol, SSL [5]. SSL uses a combi-
nation of private-key and public-key algorithms to secure the data transferred
between a client and a server. The SSL handshake first allows the server and
client to authenticate each other, using public-key techniques such as RSA.
Then, it allows the server to create symmetric keys, which are exchanged and
used for rapid encryption and decryption of bulk data transferred during the
session. Figure 8 shows the estimated speedup of SSL transactions through
the use of our security processing platform. The breakup of the computation
workload for SSL processing between the private-key algorithm, public-key
algorithm, and other miscellaneous computations, is also indicated in Fig-
ure 8. Note that, the breakup depends on the session size, hence we con-
sidered various session sizes ranging from 1KB to 32KB. For small data
transactions (where public-key algorithm computations in the SSL hand-
shake dominate), our platform contributes to an overall transaction speedup
of around 2�18X. In the case of large transactions, (where the private-key
algorithm starts to dominate the overall computation) our platform achieves
an overall transaction speedup of 3�05X.

4.3 Algorithm design space exploration
We illustrate our algorithm design space exploration technique through

the example of modular exponentiation, which is used for encryption and
decryption in several public-key algorithms. Over 450 candidate algorithms
were considered for evaluation due to the permutations arising from five
modular multiplication algorithms, five input block sizes, three Chinese Re-
mainder Theorem implementations, two radix sizes and three different soft-
ware caching options [24]. Performance macro-model based evaluation of
all the algorithm candidates completes in under 4 hours and 40 minutes. In
comparison, only six algorithm candidates could be evaluated in nearly 66
hours of CPU time, using actual ISS runs. On an average, macro-model
based performance estimation was found to be 1407 times faster than actual
ISS runs. The performance estimated using the macro-models accurately
tracked the performance profile determined by actual target simulation. The
mean absolute error in the macro-model based estimates was only 11.8 %,
and the relative accuracy was more found to be than adequate for the purpose
of algorithm exploration.

5. RELATED WORK
Most of the efforts towards improving the efficiency of security process-

ing have been targeted at addressing performance issues in e-commerce
servers, network routers, firewalls, and VPN gateways [7, 25, 26, 27]. The
fact that public key algorithms often dominate security processing require-
ments has driven the recent development of alternative public-key algorithms
that offer reduced computational complexity [28, 29].

Various companies offer commercial security processor ICs to improve
the performance of transaction servers and network routers [30, 31, 32, 33,
34, 35]. Architectural enhancements to high-end microprocessor systems to
improve their performance in security processing have been investigated [25,
26]. Embedded processor designers have also developed security extensions
to their products, typically based on the addition of application-specific co-
processors and/or peripherals [36, 37]. Computer architects have researched
domain specific instructions for security processing, with an aim to maxi-
mize efficiency without compromising programmability [38, 39]. Our target
architecture and the system-level design methodologies presented here are
complementary to most of the above efforts, and can enable high efficiency
in security processing while maintaining programmability.

6. CONCLUSIONS
We presented the system-level design methodology used to design a pro-

grammable security processor platform for next-generation wireless hand-
sets. The methodology was constructed using off-the-shelf commercial tools
as well as novel in-house components where needed, in order to enable the
efficient co-design of optimal cryptographic algorithms and an optimized
HW platform architecture. Our experiments demonstrate large performance
improvements (e.g. 31�0X , for DES, 33�9X for 3DES, 17�4X for AES, and
upto 66�4X for RSA) compared to software implementations on a state-of-
the-art embedded processor. We believe that system-level design methodolo-
gies, such as the one proposed here, are critical to meeting the challenging
objectives and constraints encountered in security processing.
Acknowledgments: We acknowledge all brand or product names that are
trademarks or registered trademarks of their respective owners. We would
like to thank the members of the Tensilica support team for their invaluable
assistance with the use of the Xtensa processor and tools.

7. REFERENCES
[1] U. S. Department of Commerce, The Emerging Digital Economy II.

http://www.ecommerce.gov/ede/report.html, 1999.
[2] W. W. W. Consortium, The World Wide Web Security FAQ.

http://www.w3.org/Security/faq/www-security-faq.html, 1998.
[3] ePaynews. http://www.epaynews.com/statistics/ecappstats.html.
[4] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in

C. John Wiley and Sons, 1996.
[5] W. Stallings, Cryptography and Network Security: Principles and Practice.

Prentice Hall, 1998.
[6] S. K. Miller, “Facing the Challenges of Wireless Security,” in IEEE Computer,

pp. 46–48, July 2001.
[7] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Securing Electronic

Commerce: Reducing SSL Overhead,” in IEEE Network, pp. 8–16, July 2000.
[8] D. Boneh and N. Daswani, “Experimenting with Electronic Commerce on the

PalmPilot,” in Proc. Financial Cryptography, pp. 1–16, 1999.
[9] K. Lahiri, A. Raghunathan, and S. Dey, “Battery-driven system design: A new

frontier in low power design,” in Proc. Joint Asia and South Pacific Design
Automation Conf. / Int. Conf. VLSI Design, pp. 261–267, Jan. 2002.

[10] A. G. Broscius and J. M. Smith, “Exploiting parallelism in hardware
implementation of DES,” in Proc. CRYPTO’91, pp. 367–376, 1991.

[11] A. Curiger, H. Bonnenberg, R. Zimmermann, N. Felber, H. Kaeslin, and
W. Fichtner, “VINCI: VLSI implementation of the new secret-key block cipher
IDEA,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 15.5.1–15.5.4, May
1993.

[12] C. K. Koc, “RSA hardware implementation,” Tech. Rep. TR-801 (available
online at http://security.ece.orst.edu/koc/ece575/rsalabs/tr-801.pdf), RSA Data
Security Inc., Apr. 1996.

[13] T. Ichikawa, T. Kasuya, and M. Matsui, “Hardware evaluation of the AES
finalists,” in Third Advanced Encryption Standard (AES) Conference, Apr. 2000.

[14] Xtensa application specific microprocessor solutions - Overview handbook.
Tensilica Inc. (http://www.tensilica.com), 2001.

[15] A. S. Tanenbaum, Computer Networks. Prentice-Hall, Englewood Cliffs, NJ,
1989.

[16] T. Granlund, The GNU Multiple Precision Arithmetic Library.
http://www.gnu.org, 2000.

[17] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Algorithm
exploration for efficient public-key security processing on wireless handsets,” in
Proc. DATE Designers Forum, pp. 42–46, Mar. 2002.

[18] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S-PLUS.
Springer-Verlag, 1998.

[19] “Design Compiler, Synopsys Inc. (http://www.synopsys.com).”.
[20] CB-11 Family 0.18um CMOS Cell-based IC Design Manual. NEC Electronics,

Inc., December. 1999.
[21] Xtensa Microprocessor Emulation Kit XT 2000 - User’s Guide. Tensilica Inc.

(http://www.tensilica.com), 2001.
[22] S1D13806 Embedded Memory Display Controller. Epson Research &

Development Inc. (http://www.erd.epson.com).
[23] NL6448BC33-31 10.4 inch digital VGA LCD display. NEC Electronics Inc.

(http://www.necel.com).
[24] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Optimizing

Public-Key Encryption for Wireless Clients,” in Proc. IEEE Int. Conf.
Communications, May 2002.

[25] Intel Corp., Enhancing Security Performance through IA-64 Architecture.
http://developer.intel.com/design/security/rsa2000/itanium.pdf, 2000.

[26] K. Kant, R. Iyer, and P. Mohapatra, “Architectural Impact of Secure Sockets
Layer on Internet Servers,” in Proc. Int. Conf. Computer Design, pp. 7–14, 2000.

[27] A. Goldberg, R. Buff, and A. Schmitt, “Secure Server Performance Dramatically
Improved by Caching SSL Session Keys,” in ACM Wksp. Internet Server
Performance, June 1998.

[28] M. Rosing, Implementing Elliptic Curve Cryptography. Manning Publications
Co., 1998.

[29] NTRU Communications and Content Security. http://www.ntru.com.
[30] Broadcom Corporation, BCM5840 Gigabit Security Processor.

http://www.broadcom.com.
[31] Corrent Inc. http://www.corrent.com.
[32] HIFN Inc. http://www.hifn.com.
[33] Motorola Inc., MC190:Security Processor. http://www.motorola.com.
[34] NetOctave Inc. http://www.netoctave.com.
[35] Securealink USA Inc. http://www.securealink.com.
[36] ARM SecurCore. http://www.arm.com.
[37] SmartMIPS. http://www.mips.com.
[38] Z. Shi and R. Lee, “Bit Permutation Instructions for Accelerating Software

Cryptography,” in Proc. IEEE Intl. Conf. Application-specific Systems,
Architectures and Processors, pp. 138–148, 2000.

[39] J. Burke, J. McDonald, and T. Austin, “Architectural Support for Fast
Symmetric-Key Cryptography,” in Proc. Intl. Conf. ASPLOS, pp. 178–189, Nov.
2000.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

