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ABSTRACT
The ability to compute the parasitic inductance of the interconnect
is critical to the timing verification of modern VLSI circuits. A
challenging aspect of inductance extraction is the solution of large,
dense, complex linear systems of equations via iterative methods.
Accelerating the convergence of the iterative method through pre-
conditioning is made difficult due to the non-availability of the sys-
tem matrix. This paper presents a novel algorithm to solve these
linear systems by restricting current to a discrete solenoidal sub-
space in which Kirchoff’s law is obeyed, and solving a reduced
system via an iterative method such as GMRES. A preconditioner
based on the Green’s function is used to achieve near-optimal con-
vergence rates in several cases. Experiments on a number of bench-
mark problems illustrate the advantages of the proposed method
over FastHenry.

Categories and Subject Descriptors
B.7.2 [Integrating Circuits]: Design Aids—placement and rout-
ing, simulation, verification

General Terms
ALGORITHMS

Keywords
Inductance extraction, interconnect, solenoidal basis, iterative meth-
ods, preconditioning

1. INTRODUCTION
The effect of inductance is increasingly felt on-chip, mainly due

to long interconnect and high operation speed. Therefore fast and
accurate inductance extraction is increasing important to the design
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and verification of VLSI circuits. There are three types of induc-
tance extraction algorithms: loop inductance, partial inductance
and shape based. The loop inductance algorithms are the most ac-
curate but slowest, while the shape-based algorithms are the least
accurate but the fastest. FastHenry [8] computes the loop induc-
tance. Due to its high accuracy, FastHenry is often used as a ref-
erence for all other extraction algorithms. But FastHenry is very
slow, and to improve its speed is one of the most challenging prob-
lems. Partial inductance was first proposed by Rosa and introduced
to circuit design by Ruehli [13]. A number of algorithms have been
proposed, such as Krauter [10] and He [5]. Partial inductance al-
gorithms are faster than loop inductance algorithms. However it is
shown that partial inductance without current return paths is inac-
curate [3]. Shape-based algorithms, such as [9, 15], are fast but in-
accurate for complex structures. For multilayer dielectric, a mixed
potential integral equation method was proposed by Daniel [2] and
a multilayer Green’s function method was proposed by Liu [11].

In this paper, we study the extraction of loop inductance of 3D
electrical conductors in uniform dielectric. We present a solenoidal
basis method that gives a better formulation of the linear system
compared to FastHenry, and we also present a novel precondition-
ing method that works with the solenoidal basis method. FastHenry
and other 3D extraction algorithms for loop inductance are slow
mainly due to the ill-conditioning of the linear systems. Therefore,
our new formulation and preconditioning techniques address the
key issue of this problem. Experimental results show that our tech-
niques work well, and the new algorithm has several advantages
over FastHenry.

2. MATHEMATICAL PRELIMINARIES
The impedance of an s-conductor geometry can be summarized

by an s� s impedance matrix Z̃. The lth column of the impedance
matrix is determined as follows: a unit current is sent through con-
ductor l, and zero current is sent through other conductors. The
numerical value of the potential difference between the two ends
of conductor k gives values of the matrix element Z̃kl . The above
procedure is repeated s times to compute all columns of Z̃.

The current density J at a point r is related to the potential φ by
the following integral equation [8]

ρJ�r�� jω
�
V

µ
4π

J�r��
�r� r��dV � ��∇φ�r�� (1)

where µ is the magnetic permeability, ρ is the resistivity, r is a
three-dimensional position vector, ω is the frequency, �r� r�� is
the Euclidean distance between r and r�, and j�

��1. The volume
of conductors is denoted by V and incremental volume with respect



to r� is denoted by dV �.
A numerical solution of (1) can be obtained by discretizing the

conductors into n filaments V1�V2� ����Vn. Assuming current flows
along the length of the filament and current density is constant
within each filament, a linear system of the following form is ob-
tained:

�R� jωL� I � V�

where R is an n�n diagonal matrix of filament resistances, I is the
vector of filament currents, and V is the vector of the difference of
potential between ends of each filament. The kth diagonal element
of R is given by Rkk � ρlk�ak , where lk is the length of the kth
filament and ak is the cross-sectional area of the kth filament. Let
uk denote the unit vector along the kth filament Vk. The elements
of the inductance matrix L are given by

Lkl �
µ

4π
1

akal

�
rkεVk

�
rlεVl

uk �ul

�rk� rl�
dVkdVl � (2)

The current satisfies Kirchoff’s current law at each node according
to the constraints

BT I � Id �

where BT is the m�n branch index matrix and Id is the vector of
external source currents. Here, m and n denote the number of nodes
and filaments, respectively, in the mesh. The vector Id has non-
zero values only for those nodes where external current source is
applied. The potential difference across the filaments is expressed
as

V � BVd �

where Vd is the node potential vector of length m. To compute
the unknown filament currents and node potentials, the following
linear system must be solved�

R� jωL �B
BT 0

��
I

Vd

�
�

�
0
Id

�
� (3)

A straightforward approach to solve this system involves removal
of I by a block-step of Gaussian elimination. The resulting system
is defined in terms of the unknowns Vd only:

BT �R� jωL��1BVd � Id �

When solving this system by an iterative method, each iteration in-
volves a matrix-vector product with the system matrix. In practice,
this matrix is never computed explicitly. Instead, the matrix-vector
product is computed as a sequence of three steps: (i) product with
B, (ii) solution of the system �R� jωL�z� d, and (iii) product with
BT . The second step may require an inner iterative scheme, result-
ing in expensive outer iterations. Furthermore, with this kind of a
complicated system matrix, it is difficult to find efficient precondi-
tioners for the outer solver.

Alternately, one can compute a subspace for current that satis-
fies Kirchoff’s law at each node. The linear system in (3) is trans-
formed to a reduced system when current is restricted to this sub-
space, which is then solved by an iterative method. This approach is
competitive only when the iterative scheme is preconditioned effec-
tively. In the next section, we discuss how to compute the appropri-
ate subspace and precondition the reduced system without explic-
itly constructing the matrix. Experiments in Section 4 demonstrate
the superior properties of our approach over competing techniques.

3. THE SOLENOIDAL BASIS ALGORITHM
The difficulty in solving the system (3) arises partly due to the

constraints imposed by Kirchoff’s law on the flow of current at

each node. These constraints are identical to divergence-free con-
straints in incompressible fluids that arise from conservation laws.
A solenoidal basis is a basis for divergence-free functions that au-
tomatically satisfy conservation laws such as Kirchoff’s law. The
solenoidal basis algorithm constructs a basis for functions that sat-
isfy Kirchoff’s law. Expressing current in this basis leads to a re-
duced system which is solved by a preconditioned iterative method
such as GMRES.

3.1 A Solenoidal Basis Approach
The solenoidal basis method is used to solve the problem�

Z �B
BT 0

��
I

Vd

�
�

�
F
0

�
� (4)

where Z � R� jωL is the filament impedance matrix, L is an n�
n dense, symmetric and positive definite matrix, R is a diagonal
matrix, and B is an n�m sparse matrix. The filament current vector
I has size n, the node potential vector Vd has size m, and the right
hand side vector F has size n.

The main difference between (3) and (4) is that the boundary
conditions are specified for current in the first system whereas they
are specified for potential in the second system. To convert (3) to
(4), we let I � I�� Ip, where Ip is a current vector that satisfies the
constraints BT Ip � Id . The following linear system

�
Z �B

BT 0

��
I�

Vd

�
�

� �ZIp
0

�

is solved for the unknown current I�. The current vector Ip can
easily be found by number of techniques. For instance, when the
known branch current has unit magnitude, one can assign a unit cur-
rent to filaments on an arbitrary path from node with input source
current to the node with output source current (see Fig. 1). This
approach can be extended to more general boundary conditions in
a straightforward manner.

Since a unit current flowing in a closed loop in the mesh satis-
fies Kirchoff’s law, it also satisfies the constraints imposed by BT .
The solenoid basis method for (4) uses these mesh currents to rep-
resent the unknown current I. This scheme is similar to the mesh
current approach proposed in [6, 7] with the exception of the treat-
ment of source current. In addition, the preconditioning proposed
in section 3.2 is more powerful than those suggested in [7].

The null space of BT represents a basis for current that obeys
Kirchoff’s law. Given a full-rank matrix P � Rn��n�m� such that
BT P � 0, a current vector computed as follows

I � Px� x � R�n�m�

will satisfy the constraint BT I � 0 for all x. A purely algebraic
approach such as QR factorization of B cannot be used to compute
P due to the prohibitive cost of computation and storage. We define
a unit current flow in a closed loop as a local solenoidal function.
Each such mesh current is represented as a vector and the set of
these vectors forms the columns of P. The local nature of these
mesh currents leads to efficient computation and storage schemes
for P.

Since the current vector I � Px automatically satisfies the con-
straint BT I � 0, we only need to solve

ZPx�BVd � F�

After eliminating the branch potential unknowns Vd by multiplying
this equation with PT , we get

PT ZPx � PT F� (5)
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Figure 1: Discretization of a ground plane with a mesh of filaments. Current flowing through the filaments must satisfy Kirchoff’s
law at each node in the mesh. The bold line indicates a path for current that satisfies boundary conditions. The current is made up
of two components: constant current along the bold line shown in the left figure and a linear combination of mesh currents as shown
in the partial mesh on the right.

This reduced system can be solved via a suitable iterative scheme
such as the GMRES method [14]. Once x is obtained, current is
computed as I � Px. The potential difference across each filament
is given by

V � ZI�F�

The potential difference between two nodes is computed by adding
the potential difference across filaments on any path connecting the
nodes. This allows computation of impedance between the points
where source current is applied.

3.2 Preconditioning the Reduced System
To accelerate the convergence of the iterative method, one must

devise robust and effective preconditioning schemes for the system
matrix in (5). The task of designing effective preconditioners is
made especially challenging due to the unavailability of L. Pop-
ular techniques based on incomplete factorizations of the system
matrix compute parts of the system matrix selectively, followed by
incomplete factorizations. These schemes tend to be expensive and
limited in their effectiveness [7].

The success of the solenoidal basis method depends on effec-
tive preconditioning of the reduced system (5). A preconditioner
is said to be optimal when the condition number of the precondi-
tioned system, computed as the ratio of the largest and the smallest
singular values, is bounded by a constant. In such a case, iterative
methods may converge to the solution in fixed number of itera-
tions regardless of the frequency ω and mesh width h of the mesh
used for discretizing the conductor. The system matrix PT ZP can
be analyzed using the observation that the matrices P and PT are
equivalent to discrete curl operators. Furthermore, the matrix PT P
is equivalent to a discrete Laplace operator in the divergence-free
space. We approximate �PT P��1 by the matrix L̃2, where L̃ is de-
fined as follows:

L̃kl �
µ

4π
1

akal

�
rkεVk

�
rlεVl

1
�rk� rl�

dVkdVl � (6)

Here, L̃kl gives the mutual inductance between parallel filaments
placed at the centers of loop k and l.

The reduced system (5) can be approximated by

PT ZP� L̃�1 �R̃� jωL̃
�

L̃�1

where R̃ is a diagonal matrix of resistance to mesh currents. The
preconditioner for the reduced system (5) is defined as

M �1 � L̃
�
R̃� jωL̃

�
�1 L̃� (7)

The matrix M �1 must be multiplied to the reduced system before
the iterative method is employed. At each iteration, the precondi-
tioning step consists of the matrix-vector product z �M�1r which
can be computed in the following three steps

u � L̃r� v �
�
R̃� jωL̃

�
�1

u� z � L̃v�

The matrix-vector products in the first and third steps use approx-
imate hierarchical techniques identical to those used for L. The
second step is implemented via an inner iterative solver which is
used to solve the system �

R̃� jωL̃
�
v � u

to obtain v.
At very low frequency operation, the preconditioner takes the

form

M �1
low � L̃R̃�1L̃�

in which inverting the diagonal matrix R̃ is inexpensive. At very
high frequency operation, the preconditioner takes the form

M �1
high �� j

ω
L̃

which is also inexpensive to apply to a vector. In each case, the
preconditioning step is relatively cheap since it doesn’t involve an
inner solve. For intermediate frequencies, however, one must use
the preconditioner (7).

There are several advantages of our preconditioning approach.
The preconditioning step requires a matrix-vector product which is
relatively inexpensive compared to incomplete factorization based
preconditioners. The latter involve incomplete factorizations of
partially computed PTZP and triangular solves which are expen-
sive, especially on parallel platforms. In addition, experimental ev-
idence suggests that the preconditioner is robust and very effective
for the a wide range of frequencies.



3.3 The Algorithm
An outline of the solenoidal basis method to compute Z̃ is given

below.

ALGORITHM 1. Solenoidal Basis Method.

1. Generate a uniform mesh for each conductor in the circuit.

2. Compute the solenoidal basis matrix P.

3. For each conductor l � 1� � � � �s,

(a) Compute the particular solution I�l�p for a unit current
flow through conductor l and the corresponding in-
duced potential drop vector F�l�.

(b) Solve the preconditioned system

PT ZPM x � PT F�l�� x�l� �M x

to determine the mesh current vector x�l� and compute
filament current vector

I�l� � Px�l�� I�l�p �

Use GMRES algorithm with variants of the precon-
ditioner (7). Use approximate hierarchical methods
such as FMM or Barnes-Hut to compute matrix-vector
products with L and L̃ at each iteration.

(c) For each conductor k � 1� � � � �s, determine the con-
ductor impedance matrix element Z̃k�l by computing
the potential difference between the two ends of the
conductor. This is done by adding the potential drop
across all the filaments along a path from one end to
the other end of the conductor due to the current I�l�.

An efficient implementation of this algorithm can use a num-
ber of optimizations. The matrix P is never computed explicitly.
A matrix-vector product with P is used to compute filament cur-
rents from mesh currents. Since this computation is defined lo-
cally, it can be performed by accumulating the contribution of each
mesh current to the four filaments that comprise the mesh or loop.
Knowledge of the structure of the discretization mesh is sufficient
to develop an implementation in which P is not computed and
stored explicitly. Similarly, matrix-vector products with PT are
used to compute mesh currents from filament currents. These prod-
ucts can also be computed without explicitly computing PT . This
approach leads to significant saving in storage without increase in
computation.

The most expensive operations in the algorithm are matrix-vector
computations with the system matrix PT ZP and preconditioning
steps involving matrix-vector products with L̃. A matrix-vector
product with PT ZP is computed as a sequence of three products:

u � Px� v � �R� jωL�u� y � PT v�

Among these, the product with the dense matrix L is by far the
most time-consuming computation. Since the matrix L̃ used in the
preconditioning step is similar to L, improving the computational
complexity of this matrix-vector product can reduce the overall
computation time significantly. There are several approximate hier-
archical methods to compute products with such matrices in which
accuracy is traded for a reduction in computational complexity.

Accurate matrix-vector products with the dense matrices L and
L̃ require O�n2� operations where n is the size of these matrices.
A number of techniques have been developed to exploit the rapid

decay of the kernel in (2) and (6) with distance to compute ap-
proximate matrix-vector products in O�n logn� or O�n� operations.
These include hierarchical techniques such as Barnes-Hut [1] and
Fast Multipole Method (FMM) [4, 12] which use a truncated se-
ries approximation of filament currents within a localized region to
estimate impact on well-separated sets of filaments. The method
of Barnes and Hut relies only on filament-cluster interactions to
achieve an O�n logn� computational bound for uniform filament
distributions. The Fast Multipole Method uses both filament-cluster
and filament-filament interactions to achieve an O�n� bound for
uniform distributions. In each case, reduction in computational
complexity is associated with decrease in accuracy of the matrix-
vector product.

We use a variant of the Barnes-Hut algorithm developed specifi-
cally for the inductance extraction problem. A hierarchical quadtree
is used to partition the filaments in the mesh. Internal nodes of the
tree represent hypothetical filaments carrying current equal to the
sum of currents in that subtree. The coordinates of these hypothet-
ical filaments are computed as a weighted sum of coordinates of
the subtree filaments in which the weights correspond to the mag-
nitude of current flowing in those filaments. This strategy exploits
the fact that the combined inductance effect of a cluster of filaments
can be approximated by the inductance effect of a single filament
placed at the “center of current” of that group. This approximation
is used to compute inductance on a filament which is well-separated
from the cluster. This is analogous to the center of mass concept in
Barnes-Hut algorithm. The leaf nodes of the quadtree are filaments
of the mesh. Inductance on a leaf node is computed by travers-
ing the tree in a top down manner. A subtree is traversed only
if the corresponding box is not well-separated from the leaf node.
Well-separatedness is established by using a distance metric to de-
termines if the leaf node is sufficiently “far off” such that the error
in the associated truncated expansion is below a threshold. The in-
ductance due to filaments in a well-separated subtree is computed
by direct interaction with the corresponding hypothetical filament.
Remaining interactions consist of leaf-leaf interactions which con-
sist of mutual inductance computation between pairs of filaments.
Care should be taken to ensure that the algorithm doesn’t check
the well-separatedness criteria for the box containing the leaf node
itself.

4. EXPERIMENTS

4.1 Ground Plane
We consider the problem of computing impedance of a 1cm�1cm

ground plane with unit inflow current from the left edge and unit
outflow current at the right edge (see Fig. 1). This benchmark prob-
lem allows discretization by uniform two-dimensional meshes with
varying mesh width h. This problem exhibits the dependence of
the condition number of the system matrices on h via the growth in
iterations of the unpreconditioned GMRES algorithm. Such con-
vergence behavior is ideal for testing the effectiveness of the pre-
conditioning approach for different levels of refinement as well as
operating frequencies.

Table 1 shows the number of iterations needed by the precon-
ditioned GMRES to solve the linear system. The width of each
filament is one-third of its length, and thickness is 2�13cm. A tol-
erance of 10�3 was specified on the relative residual norm. The
table shows that the rate of convergence is independent of the fre-
quency ω and the mesh width h indicating that the preconditioner
is optimal for the benchmark problem .



Table 1: Ground plane: Iterations for convergence of precon-
ditioned GMRES.

Mesh Filament Frequency (in GHz)
Size Length (cm) 1 10 100 1000

33�33 2�5 6 5 5 5
65�65 2�6 6 6 5 5

129�129 2�7 8 7 7 6
257�257 2�8 11 9 8 8

4.2 Spiral Inductor
This is a more complicated problem consisting of a conductor

in the shape of a coil (see Fig. 2) which is discretized by a two-
dimensional mesh. The coil is contained within a square region of
size 1 cm�1 cm. Table 2 shows the number of iterations needed
by the preconditioned GMRES to solve the linear system with a
tolerance of 10�3 on the relative residual norm. Filament width
and thickness are identical to the previous experiment. The number
of iterations required by the solver are nearly independent of the
mesh width for the range of frequencies considered here.

CURRENT SOURCE

Figure 2: Spiral inductor.

Table 2: Spiral inductor: Iterations for convergence of precon-
ditioned GMRES.

Mesh Filament Frequency (in GHz)
Size Length (cm) 1 10 100 1000

33�33 2�5 7 6 6 6
65�65 2�6 8 7 7 7

129�129 2�7 10 9 9 9
257�257 2�8 16 12 11 11

4.3 Wire Over Ground Plane
We consider a 3D problem of determining impedance of a hor-

izontal wire of length 0.25cm suspended at a distance of 0.1cm
over a 1cm�1cm ground plane (see Fig. 3). The wire is discretized
along its length. The ground plane is discretized by a two-dimensional
mesh similar to the one in the ground plane problem discussed ear-
lier. Filament width and thickness are identical to previous experi-
ments. Table 3 shows the number of iterations needed by the pre-
conditioned GMRES. Solver parameters were identical to earlier
experiments. These experiments also indicate that the number of
iterations required by the solver are nearly independent of the mesh
width for the range of frequencies considered here.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

Figure 3: Wire over ground plane.

Table 3: Wire over ground plane: Iterations for convergence of
preconditioned GMRES.

Mesh Filament Frequency (in GHz)
Size Length 1 10 100 1000

33�33 2�5 5 4 4 4
65�65 2�6 6 5 5 5

129�129 2�7 8 6 6 6
257�257 2�8 12 8 8 7

4.4 Comparison with FastHenry
The performance of the solenoidal basis method was compared

to FastHenry on two problems: the 2D ground plane problem and
the 3D problem of a wire over the ground plane. FastHenry uses
mesh currents to generate a reduced system which is then solved
by the preconditioned GMRES method. Fast Multipole Method is
used to compute matrix-vector products with dense matrices. Pre-
conditioners are derived from incomplete factorizations of approx-
imations to the reduced system. These approximations are com-
puted by various techniques to sparsify the inductance matrix L.
The software allows preconditioners such as CUBE and SHELL, in
which the off-diagonal non-zeros in each column of L are restricted
to those resulting from mutual inductance between filaments in the
same box at a specific level in the quad tree and mutual inductance
between filaments within a specific radius, respectively. The DIAG
preconditioner corresponds to the case when all mutual inductances
are ignored.

For the solenoidal basis method, the Barnes-Hut variant described
in Section 3 was used to compute products with the system matrix
L and preconditioner L̃ directly without explicitly computing these
matrices. The resulting implementation is a matrix-free code in
which neither the system matrix nor the preconditioner matrix is
ever computed. This reduces the storage requirement considerably,
thereby allowing larger problems to be solved.

Ground Plane
Table 4 shows the number of iterations needed by preconditioned
GMRES for 10GHz frequency. A tolerance of 10�3 was specified
on the relative residual norm of both the methods. FastHenry was
allowed to use default values for all other parameters. In these ex-
periments, the inductance computed by the solenoidal basis method
was within 3% of that obtained by FastHenry.

FastHenry requires significant amount of memory to construct
the preconditioner matrix and compute its LU factorization. The
entries marked “–” indicate the inability of FastHenry to solve the



Table 4: Ground plane problem.
FastHenry-DIAG FastHenry-CUBE Solenoidal Method

Mesh Iter. Time (s) Mem. (MB) Iter. Time (s) Mem. (MB) Iter. Time (s) Mem. (MB)
33�33 13 2.04 10 13 2.36 10 5 2.03 1
65�65 16 12.70 42 17 16.59 42 6 11.91 5

129�129 21 95.30 177 19 142.42 177 7 67.61 17
257�257 26 835.66 734 28 1364.19 734 9 409.21 69
513�513 – – – – – – 14 2924.58 298

Table 5: Wire over ground plane problem.
FastHenry-DIAG FastHenry-CUBE Solenoidal Method

Mesh Iter. Time (s) Mem. (MB) Iter. Time (s) Mem. (MB) Iter. Time (s) Mem. (MB)
33�33 13 2.03 10 11 2.20 10 4 1.43 1
65�65 13 11.60 42 14 16.01 42 5 9.20 4

129�129 13 79.06 178 12 123.96 178 6 55.12 15
257�257 3 718.93 735 3 2732.73 735 8 351.19 61
513�513 – – – – – – 12 2426.73 260

problem within the available system memory. These experiments
were conducted on a 1.5GHz Pentium Dell Workstation with 1GB
of memory. Furthermore, a growth in the number of iterations with
mesh size indicates a sub-optimal preconditioning scheme which
contributes an additional factor towards the increase in cost of solv-
ing these systems as the mesh size is increased. In contrast, the
solenoidal basis method is able to solve the systems in almost fixed
number of iterations.

Wire Over Ground Plane
Table 5 shows the number of iterations needed by preconditioned
GMRES for 10GHz frequency. Again, a stopping tolerance of 10�3

was used for the relative residual norm of both the methods. Fas-
tHenry was allowed to use default values for all other parameters.
These results also demonstrate the comparative advantage of the
solenoidal basis method. The performance is similar to the ground
plane problem.

Discussion
The modest performance of the preconditioners in FastHenry come
with a significant cost of computing the preconditioners themselves
as well as storing them. While these storage requirements can be
reduced by computing incomplete factorizations, often this results
in a weak preconditioner. The slower convergence rates associated
with ineffective preconditioning may lead to overall higher compu-
tational cost. The comparative advantage of the solenoidal method
is expected to grow with larger mesh sizes.

5. CONCLUSIONS
This paper presents a solenoidal basis method for inductance ex-

traction of VLSI circuits. The proposed approach solves a linear
system of equations to compute the mutual inductance effect on a
filament mesh using eddy currents defined on the mesh loops. The
resulting reduced system is solved iteratively by the preconditioned
GMRES method. The preconditioner suggested for the system ma-
trix exhibits convergence in a relatively few iterations irrespective
of the mesh refinement and operational frequency. Experimental
results indicate that the algorithm has several advantages over Fas-
tHenry. Since our algorithms is kernel independent, it can be ap-
plied to multi-layer dielectric by using multi-layer Green’s func-
tion.
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