
SAT with Partial Clauses and Back-Leaps

Slawomir Pilarski and Gracia Hu
Synopsys, Inc.

2025 NW Cornelius Pass Rd.
Hillsboro, OR 97124

Abstract

This paper presents four new powerful SAT optimiza-
tion techniques: partial clauses, back-leaps, immediate
implications, and local decisions. These optimization
techniques can be combined with SAT mechanisms used
in Chaff, SATO, and GRASP to develop a new solver
that significantly outperforms its predecessors on a large
set of benchmarks. Performance improvements for stan-
dard benchmark groups vary from 1.5x to 60x. Perfor-
mance improvements measured using VLIW micropro-
cessor benchmarks amount to 3.31x.

1 Introduction

Boolean Satisfiability (SAT) solvers have been success-
fully applied to solve various problems in EDA [8]. They
are useful in formal verification for combinational and
sequential equivalence checking [5], property checking,
and microprocessor verification [16]. They are known to
be effective in automatic test pattern generation (ATPG)
[6, 7, 14], which includes delay fault testing [1] and re-
dundancy removal. SAT solvers were used in logic syn-
thesis [2], timing analysis, and FPGA routing [12, 11].

The wide range of successful SAT applications in EDA
is due to the tremendous progress in the performance
of SAT solvers [9, 17]. A recently developed solver,
Chaff, demonstrated further dramatic performance gains
[10, 16, 18]. The speed of Chaff is due to very effi-
cient implementation of all mechanisms used in a standard
backtracking search algorithm.

This paper introduces four new powerful SAT opti-
mization techniques: partial clauses, back-leaps, immedi-
ate implications, and local decisions. It demonstrates that
the new optimization techniques can be successfully im-
plemented together with SAT mechanisms used in most
efficient SAT solvers. The resulting new solver signif-
icantly outperforms its predecessors on a large set of
benchmarks.

The paper is organized as follows. Improvements to
boolean constraint propagation (BCP) are introduced in

Table 1: Average BCP time per implication.

benchmark no optim. imm. impl. speedup

5pipe 800 cycles 599 cycles 1.33x
bug001 686 cycles 606 cycles 1.13x

Section 2. New SAT decision optimization techniques are
presented in Sections 3.1 and 3.2. Benchmark results are
given in Section 4. Concluding remarks are presented in
Section 5.

2 Improvements to BCP

Efficient boolean constraint propagation based on
watched literals [17, 10] can be further improved by us-
ing immediate implications and partial clauses. Both con-
cepts are presented below.

2.1 Immediate Implications

EDA-related CNF formulae are usually derived from
logic circuits. For example, a simple AND gate, ����������
	�����

, can be expressed as
� ��� 	���� ��� ���� ��� 	 � �� .

It is easy to note that CNF for AND, NAND, OR and NOR
gates are very similar, and they are dominated by two-
literal clauses. In a typical circuit-derived CNF formula,
55%-85% of all clauses have two literals. Now, note that a
0-assignment to a watched literal in a two-literal clause is
an immediate implication, and there is no need to search
the clause for non-watched literals, as it happens in Chaff
or SATO. The notion of immediate implications can be
used to speed up BCP. In the case of an already highly op-
timized BCP, immediate implications can noticeably im-
prove performance [13]. Table 1 presents examples of av-
erage time in machine cycles spent on BCP per implica-
tion with and without immediate implications. Note that
various benchmarks may have very different speedups –
not always as significant.

We also found out that SAT performance can be further
improved if BCP processes immediate implications first.

1

Table 2: Average BCP time per implication.

benchmark no optim. optim. speedup

5pipe 800 cycles 330 cycles 2.42x
bug001 686 cycles 369 cycles 1.86x

This, however, appears to be important for conflict clause
selection, not for BCP speed.

2.2 Partial Clauses

Conflict clauses are usually much longer than the origi-
nal benchmark clauses. The average conflict clause size
often exceeds 200 or even 300 literals. Since most liter-
als in an undeleted conflict clause are assigned to logic 0,
a significant fraction of BCP time is spent on finding the
next watched literal. This overhead could be reduced if,
during BCP, unsatisfied clauses are temporarily replaced
with clauses consisting of only unassigned literals. Such
a transformation would not affect SAT correctness since
0-assigned literals do not affect BCP, except for slowing
it down. Our observation leads to the concept of a partial
clause. A partial clause is created by elimination of most
0-assigned literals in its parent clause. It can be used in-
stead of its parent clause only when all eliminated literals
are assigned to logic 0. For example clause�
v ����� + v ����� + v ��� � + v !"� � + v #��%$ + v &�� $ + v '�� $),

where literals v � � v � � v � � v ! are assigned to logic 0 and
literals v # � v & � v ' are unassigned, can be replaced with
partial clause�

v !"� � + v #��%$ + v &�� $ + v '"� $).

In our implementation, validity of a partial clause is
linked to the highest decision level associated with elimi-
nated literals. Partial clause inherits watched literals from
its parent clause. Only conflict clauses are replaced with
partial clauses.

Partial clauses together with immediate implications
provide effective BCP optimization. Table 2 presents
examples of average time in machine cycles spent on
BCP per implication; column “no optim.” shows data
for BCP without optimizations; column “optim.” shows
data for BCP with immediate implications and partial
clauses. Note that various benchmarks may have very dif-
ferent speedups – not always as significant. In general,
the speedup due to partial clauses depends on the average
size of a conflict clause; it also depends on the fraction of
conflict clauses in the database, not to mention quality of
partial clause implementation.

3 Improvements to Decisions

Dynamic decision making mechanism used in Chaff can
be improved by using local decisions and back-leaps.
Both concepts are presented below.

3.1 Local Decisions

In general, as in many other SAT solvers, the decision pro-
cess used in Chaff selects a variable regardless of its rela-
tion to currently assigned variables. This means that non-
chronological backtracking often invalidates many deci-
sions and BCP computations unrelated to the conflict.
Such an observation suggests that a significant perfor-
mance gain is possible if the decision process could be fo-
cused on variables related to currently assigned variables.

In EDA formulae conflicts often express a correlation
between variables that are close in terms of circuit con-
nectivity. This suggests that the decision process should
be biased towards unassigned variables that share clauses
with already assigned variables. Relatively strong correla-
tion between variables distant in terms of circuit connec-
tivity can also be observed. Because of this, too much fo-
cus on circuit structure may lead to suboptimal decisions
and conflict clauses that prune the search space relatively
slowly.

Our decision strategy has two components:

(Local: select the “best” variable that shares a clause
with already assigned variables; and

(Global: select globally “best” variable.

The mechanism of ranking variables in both groups is
similar, though not identical, to that used in Chaff. We
use two priority queues one for local and one for global
decisions. We put less emphasis on literals in two-literal
clauses – they carry smaller weight than other literals.
About 80% of decisions select the locally “best” variable.

Our structure-oriented decisions appear to be especially
effective for hard-to-satisfy and unsatisfiable formulae.
Table 3 reports the impact of local decisions on SAT run
time measured for CMU benchmarks. Note that our im-
plementation also used immediate implications, but did
not use partial clauses.

3.2 Back-Leaps

Standard non-chronological backtracking is a powerful
mechanism used to prune the search space, but most back-
tracks are are still chronological (see Table 3 in [9]). This
observation suggests that a SAT solver would benefit from
a mechanism that guides the decision sequence out of
chronological backtrack regions. A crude version of such

2

Table 3: CMU benchmark [15] results (in seconds).
benchmark #tests zChaff local d. speedup

sss 1.0 48 99 33 2.96x
sss 1.0a 8 37 19 1.86x
sss-sat 1.0 100 672 358 1.88x
fvp-unsat-1.0 4 1480 839 1.76x
fvp-unsat-2.0 22 218268 55081 3.96x
vliw-sat 1.0 100 13626 9237 1.48x

a mechanism is provided by restarts. A more sophisti-
cated version of such a mechanism would monitor a num-
ber of most recent backtracks; if the majority of them are
chronological, cancellation of some recent decisions, a
back-leap, could be forced. Unlike backtracking, back-
leaping does not flip the value of the variable truth assign-
ment. This means that introduction of back-leaping does
not compromise SAT solver completeness.

In our implementation we monitor ten most recent
backtracks; if the total number of backtracked levels is
smaller than a threshold value, we consider a back-leap to
the second most recent decision level found in the the con-
flict clause; a back-leap takes place only if we can back-
leap at least five decisions. For example, conflict clause�
v � ���") *,+.-�+.*/� � + v � � ��) *,+0-�+1*/� ' + v � � ��) *,+0-�+1*/� �2# +

v ! ���") *,+.-�+1*/� �3� + v # ���") *,+.-�+1*/� �3� + v & ���") *,+.-�+1*/� �3� +
v ' ���") *,+.-�+1*/� !�#)
may trigger back-leaping to level 33 (since 4�57698:8<;=5).

Back-leaping seems to be especially effective for rela-
tively hard-to-satisfy formulae, but not very effective for
some unsatisfiable formulae.

A combination of back-leaping, local decisions, imme-
diate implications and partial clauses translate into signif-
icant performance gains.

4 Experimental Results

This section presents performance results for a SAT solver
that combines effective SAT techniques used in GRASP,
SATO and Chaff with the powerful SAT optimizations we
introduced in Sections 2 and 3. Table 4 summarizes re-
sults for the DIMACs benchmark suite [4]. Each row
presents benchmark name, number of tests in the bench-
mark, run time (in seconds) for GRASP, SATO, and Chaff,
run time for the new solver, and the speed up factor with
respect to Chaff. Table 5 summarizes results for the CMU
Benchmark Suite [15]. Both sets of benchmarks were
used in [10] to illustrate performance gains offered by
Chaff. We use the same benchmarks to demonstrate per-
formance gains due to our SAT optimizations.

Note that all experiments reported in Tables 4 and
5 were run on the same 4CPU/400MHz/4GB Ultra-

SPARC-4 machine. We used original unmodified
GRASP, SATO, and zChaff packages with the follow-
ing settings: GRASP(+T100 +B10000000 +C10000000
+S10000 +g20 +rt4 +dDLIS), SATO(default), and
zChaff(default). Best results are highlighted. A dash
means that at least one test was timed out.

5 Conclusions

This paper demonstrates that the new four SAT optimiza-
tion techniques introduced in Sections 2 can be success-
fully implemented together with efficient SAT mecha-
nisms used in Chaff, SATO, and GRASP. The result-
ing new SAT solver is optimized for EDA applications.
Benchmark results show performance improvements with
respect to Chaff ranging from 1.5x to 60x. It appears that a
revised variable scoring mechanism (e.g., the one used in
[3]) could amplify already significant performance gains.

References

[1] C.-A. Chen and S. K. Gupta. A satisfiability-based
test generator for path delay faults in combinational
circuits. In Proc.Design Automation Conference,
pages 209–214, June 1996.

[2] L. Entrena and K.-T. Cheng. Sequential logic op-
timization by redundancy addition and removal. In
Proc. International Conference on Computer-Aided
Design, pages 310–315, November 1993.

[3] Evgueni Goldberg and Yakov Novikov. Berkmin:
a fast and robust sat-solver. In Proc. Design Au-
tomation and Test in Europe, pages 142–149, March
2002.

[4] D. S. Johnson and M. A. Trick eds. Sec-
ond DIMACS implementation challenge.
In DIMACS benchmarks available at
ftp://dimacs.rutgers.edu/pub/challenge/sat/benchmarks, 1993.

[5] Andreas Kuehlmann, Malay K. Ganai, and Viresh
Paruthi. Circuit-based boolean reasoning. In Proc.
ACM/IEEE Design Automation Conference, pages
232–237, June 2001.

[6] T. Larrabee. Test pattern generation using boolean
satisfiability. IEEE Trans. CAD, 11(1):4–15, January
1992.

[7] J. Marques-Silva and K. A. Sakallah. Robust search
algorithms for test pattern generation. In Proc. of the
Fault-Tolerant Computing Symposium, pages 152–
161, June 1997.

3

Table 4: DIMACs benchmark results (in seconds)[4].
benchmark # tests GRASP SATO zChaff new Solver speed up w.r.t. zChaff

ii16 10 - 2.18 67.71 1.62 41.80x
ii32 17 4.47 2.47 2.75 1.06 2.59x
ii8 14 2.03 0.48 0.53 0.04 13.25x
aim200 24 5.81 0.77 1.11 0.37 3.00x
aim100 24 0.70 0.20 0.20 0.04 5.0x
pret 8 4.34 0.07 1.13 0.14 8.07x
par8 10 0.25 0.07 0.02 0.01 2.00x
ssa 8 3.30 3.78 0.28 0.27 1.04x
jnh 50 5.69 1.04 0.72 0.47 1.53x
dubois 13 0.35 0.17 0.14 0.05 2.08x
hole 5 - 142.73 42.76 48.61 0.88x
par16 10 - - 31.77 28.51 1.11x
hanoi 5 1 - - 76705 1299 59.05x

Table 5: CMU benchmark results (in seconds)[15].
benchmark # tests zChaff new Solver speedup

sss 1.0 48 99.14 40.39 2.45x
sss 1.0a 8 36.72 8.56 4.29x
sss-sat 1.0 100 671.75 278.76 2.41x
fvp-unsat-1.0 4 1480.24 216.97 6.82x
fvp-unsat-2.0 22 218268 92987 2.35x
vliw-sat 1.0 100 13626 4115 3.31x

[8] J. Marques-Silva and K. A. Sakallah. Boolean satis-
fiability in electronic design automation. In Proc.
ACM/IEEE Design Automation Conference, pages
675–680, June 2000.

[9] Joao P. Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satis-
fiability. IEEE Trans. Comput, 48(5):506–520, May
1999.

[10] Matthew W. Moskewicz, Conor F. Madigan, Ying
Zhao, Lintao Zhang, and Sharad Malik. Chaff: En-
gineering an efficient SAT solver. In Proc.Design
Automation Conference, pages 530–535, June 2001.

[11] G.-J. Nam, K.A. Sakallah, and R. Rutenbar. Satisfi-
ability based FPGA routing. In Proc. of the Interna-
tional Conference on VLSI Design, pages 574–577,
January 1999.

[12] G.-J. Nam, K.A. Sakallah, and R. Rutenbar.
Satisfiability-based layout revisited: Detailed rout-
ing of complex FPGAs via search-based boolean
SAT. In Proc. of the International Symposium on
Field- Programmable Gate Arrays, pages 167–175,
February 1999.

[13] Slawomir Pilarski and Gracia Hu. Speeding up SAT
for EDA. In Proc. Design Automation and Test in
Europe, page 1081, March 2002.

[14] P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Combinational test generation using
satisfiability. IEEE Trans. CAD, 15(9):1167–1176,
September 1996.

[15] M. N. Velev. CMU benchmark suite. In benchmarks
available at htpp://www.ece.cmu.edu/m̃velev.

[16] Miroslav N. Velev and Randal E. Bryant. Effective
use of boolean satisfiability procedure in the formal
verification of superscalar and VLIW microproces-
sors. In Proc. Design Automation Conference, pages
226–231, June 2001.

[17] H. Zhang. SATO: An efficient propositional prover.
In Proc. of the International Conference on Auto-
mated Deduction, pages 272–275, July 1997.

[18] L. Zhang, C. F. Madigan, M. H. Moskewicz, and
S. Malik. Efficient conflict driven learning in a
boolean satisfiability solver. In Proc. International
Conference on Computer-Aided Design, pages 279–
285, November 2001.

4

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

