
Abstract: In this paper we show that an embedded FPGA

core is an ideal host to implement infrastructure IP for yield

improvement in a bus-based SoC. We present methods for

testing, diagnosing, and repairing embedded FPGAs, for

which complete testability is achieved without any area over-

head or performance degradation. We show how an FPGA

core can provide embedded testers for other cores in the SoC,

so that cores designed to be tested with external vectors can

be tested with BIST, and the entire SoC can be tested with a

low-cost tester.

Categories and Subject Descriptors: B.8.1 [Performance

and Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms: Algorithms, Design, Reliability

1.  Introduction
Reusing embedded IP cores in System-on-Chip (SoC)

design has become the primary means of improving the pro-

ductivity of designers faced with very large and complex

circuits. One problem in manufacturing a SoC with millions

of transistors using deep-submicron technologies (0.13µm

and below), is an increase in the probability of defects in sil-

icon, which results in decreasing manufacturing yield. The

economic consequences of low yield for expensive SoC

devices can be disastrous. To effectively deal with this

increased defect density, we need efficient methods for fault

detection, location, and fault tolerance implemented on-chip.

Typically, such methods are implemented by embedded IP

blocks referred to as infrastructure IP. In this paper we will

show that an embedded FPGA core is an ideal vehicle for

infrastructure IP.

But an embedded FPGA is also a very useful functional

SoC component. A SoC design where at least part of the

user-defined logic is implemented in an embedded FPGA

provides the following benefits:

1) Usually fixing logic design errors in an ASIC requires a

“respin” to change a set of manufacturing masks. The cost

of a respin is around $1M, and it also causes a 2-to-6

months hit in the time-to-market. In contrast, a fix that can

be done in the FPGA can be completed in one day.

2) The embedded FPGA may be reused for different func-

tions at different times. For example, a cell phone may

work with different protocols (CDMA, GSM, etc.) in dif-

ferent geographical areas, and the logic implementing each

protocol can be downloaded in the FPGA on a demand

basis.

3) Although FPGA clock speeds are slower than ASIC clock

speeds, the massive parallelism of an FPGA can be

exploited to implement many algorithms (such as image

processing, signal processing, cryptography, etc.) at higher

performance levels than on µPs or DSPs. Usually such

FPGA implementations consume less power than µP or

DSP implementations, because they can be run at lower

clock frequency.

4) The same SoC can be used as a platform for different

products, or for different versions of the same product,

which are created by different FPGA configurations.

5) A good strategy is to use the embedded FPGA to imple-

ment protocols and algorithms likely to change in the

future (for example, hardware support for a standard not

yet officially adopted). In this way, future changes will be

easy to implement without changing the SoC.

6) The embedded FPGA can support remote and Inter-

net-based field-upgrades, which may be very important

features for system manufacturers.

2.  Using an FPGA Core for Infrastructure IP
In addition to the functional features described above, an

embedded FPGA can also provide great benefits in imple-

menting infrastructure IP. SoC yield-improvement requires

detecting faults, locating them, and repairing them so that the

SoC will work correctly in their presence. Methods for

detecting, locating, and repairing faults in RAMs are

described in [9]. The problems we address in this paper are

detecting, locating, and repairing faults in an embedded

FPGA; some of our previous work dealt with the same prob-

lems in the context of on-line testing [4], and some of the

solutions developed for on-line testing can be directly applied

to, or adapted for, manufacturing testing of an embedded

FPGA. Another contribution of this paper is novel ways to

use an embedded FPGA to test other cores in the SoC.

We assume a bus-based SoC architecture, where the

embedded cores are connected by a common system bus. The

FPGA core can become the bus master. The SoC is tested by

automatic test equipment (ATE) for manufacturing testing, or

by a maintenance processor for in-system testing. In either

case, the tester also controls the configuration process for the

embedded FPGA core via the boundary-scan access mecha-

nism of the SoC [22]; the same mechanism can be used both

for manufacturing test and for in-system test. Various config-

urations for the FPGA are stored on disk. We will refer to the

external tester as test and reconfiguration controller (TREC).

If BIST is used within the SoC, TREC initiates the internal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.

Copyright 2002 ACM 1-58113-461-4/02/0006...$5.00.

This material is based upon work supported in part by the DARPA ACS
program under contract F33615-98-C-1318, and by Lucent
Technologies.

Using Embedded FPGAs for SoC Yield Improvement
Miron Abramovici Charles Stroud Marty Emmert

Agere Systems University of North Carolina Wright State University
Murray Hill, NJ 07974 Charlotte, NC 28223 Dayton, OH 45435

miron@agere.com cestroud@uncc.edu marty.emmert@wright.edu



BIST controller and processes the results. TREC also per-

forms diagnosis and fault tolerance functions that will be

described in the following sections. Later we will show that

the embedded FPGA allows TREC to be a low-cost tester

(possibly PC-based).

Our basic principle for using reconfigurable logic for infra-

structure IP is “create the infrastructure only when needed.”

Hence instead of having the infrastructure for test always

present in the circuit, we download it in the embedded FPGA

only when we want to test the SoC. In most cases, this infra-

structure will be used only once for manufacturing testing, so

having it permanently in the system is clearly wasteful (we

can recreate it for maintenance testing, if and when needed).

Even if the FPGA implements user-defined system functions

during normal operation, this logic is not needed when the

SoC is under test and may be temporarily replaced by test

logic. This is a generalization of our “free lunch” FPGA

BIST [24]. Typically, logic BIST for ASICs introduces about

20% area overhead and some performance degradation. In

contrast, BIST for FPGAs is a “free lunch” with no area
overhead or delay penalties, since the entire FPGA is config-

ured only for BIST, and all the BIST logic disappears when

the FPGA is no longer under test.

Our basic principle can have surprising consequences. For

example, the proposed IEEE P1500 Standard for Embedded

Core Test [16] specifies that embedded cores should provide

a wrapper for test purposes. An embedded FPGA core, how-

ever, can safely ignore this requirement, since the wrapper

can be downloaded in the FPGA only during the SoC test.

Taking advantage of FPGA features, such as reconfig-

urability and regular structure, allows FPGA testing to

achieve features that are impossible for ASICs: for example,

FPGAs can be tested pseudo-exhaustively [20] and faults can

be very precisely located. Pseudo-exhaustive testing results

in practically complete fault coverage without the use of

computationally expensive ASIC test tools, such as fault sim-

ulation and automatic test-pattern generation (ATPG).

Two types of fault tolerance exist for FPGAs. The first,

manufacturer-level fault-tolerance, relies on providing spare

resources that can be used to replace the faulty ones. For

example, some FPGAs have a spare column and a hardware

mechanism that allows any column to be replaced by an adja-

cent one [8]; the replacement for each column is controlled

by a fuse. After the faulty column is diagnosed, all columns

between the faulty one and the spare are “shifted” by one

position, so that the faulty one is completely avoided, and the

change is invisible to the outside world. The costs of this

approach - the additional area needed for the spare resources

and the performance penalty introduced by the column selec-

tion hardware - are paid by all chips, including the

non-defective ones.

The second approach, user-level fault-tolerance, avoids

these costs since it relies on the spares naturally available in

an FPGA, where any application uses only a subset of the

existing resources. Knowing the user circuit to be imple-

mented in the FPGA, and the exact location of the faulty

resources, one can modify the existing implementation (map-

ping, placement, routing) to replace the faulty resources with

fault-free spares. For example, this approach allowed the

Teramac custom computer [10] to be build from 864 FPGAs,

out of which 75% were defective. Note that configuration

data for each faulty FPGA should be separately maintained.

Unlike manufacturing-level fault tolerance, which is inde-

pendent of the target circuit, user-level fault tolerance can

ignore any fault that does not affect the circuit. User-level

fault tolerance requires testing and diagnosis of FPGAs to be

done by users, and this may be unacceptable for off-the-shelf

FPGAs typically tested by their manufacturers.

In contrast, an embedded FPGA core is tested only as part

of an newly fabricated SoC, and the SoC designer is also

responsible for its testing. In this environment, user-level

fault-tolerance is clearly the right solution for yield

improvement.

The remainder of the paper is organized as follows. Section

3 explains why a commonly used approach - testing the

user’s circuit - is not good for FPGA test. Section 4 presents

techniques for testing and diagnosing logic cell faults in an

embedded FPGA. Section 5 describes techniques for detect-

ing and locating faults in the programmable interconnect

network. Section 6 shows how to use an embedded FPGA to

create the infrastructure for testing other cores. Section 7 pre-

sents fault tolerance methods that allow the embedded FPGA

to work correctly in the presence of the located faults. Section

8 concludes the paper.

3.  A Wrong Approach: Testing User’s Circuit
Many FPGA design and test flows generate tests for the cir-

cuit implemented in the FPGA using ATPG tools for ASICs.

However, such an approach will not completely test the

FPGA hardware. The first problem is testing of a configura-

tion multiplexer (MUX), which is a commonly used

hardware mechanism to select subcircuits for various modes

of operation. A configuration MUX is controlled by configu-

ration memory bits to select one input to be connected to its

output. In Figure 1a, assume that we set the configuration bit

S to 0 to connect subcircuit C0 to X. Then subcircuit C1 dis-

appears from the circuit model seen by the user. This is

correct from a design viewpoint, because the value V1 pro-

duced by C1 can no longer affect the MUX output in the

current configuration. But from a testing viewpoint, in any

test for the MUX, we need to set V0 and V1 to complementary

values. In general, for a MUX with k inputs, if V is the value

of the selected input, all the other k-1 inputs should be set to

value V.

The problem arises because FPGA CAD tools generate the

configuration bitstream based on the user model, which will

never include the functionally inactive subcircuits (called

0

X

V1
S=0

Figure 1. Configuration MUX

1

V0

V1
S=0

V0

X
x
s-a-1

1
0

1
a) b)

C0

C1



“invisible logic” in [1]). Thus in Figure 1a, when S=0, V0 will

be set to both 0 and 1, but V1 cannot change. Similarly, the

user logic cannot control V0 in any configuration where S=1.

Hence the testing of the MUX may not be complete. For

example, the s-a-1 fault in the gate-level MUX model in

Figure 1b is detected only when S=0, V0=0, and V1=1. But

this pattern may never be applied if V1 cannot be controlled

when S=0.

In most previous work dealing with testing FPGAs, the

problem of testing a configuration MUX is either not

addressed or it is “solved” functionally, by connecting every

input in turn to the output, and providing both 0 and 1 values

to the selected input. However, the invisible logic driving the

inactive inputs is incorrectly ignored. Since an FPGA has

tens of thousands of configuration MUX structures, such a

test is likely to have a poor quality.

Our solution relies on separately configuring the invisible

logic so that it will generate the proper values needed for the

inactive MUX inputs. Then we “overlay” the resulting con-

figuration files over the main configuration file with the

active logic, and we “merge” them without changing any

MUX setting done in the main configuration. This process is

conceptually simple, but its implementation requires knowl-

edge of the FPGA configuration stream structure.

A second problem with testing only the user’s circuit is that

spare resources are never tested, and when the need arises to

replace a faulty resource with a spare one, we cannot be sure

that the spare is fault-free. Our approach is to test the entire

FPGA and to construct tests that are independent of the appli-

cations to be implemented in the device.

4.  Testing the Logic Cells
4.1  BIST for Logic Cells

The embedded FPGA is composed of an array of program-

mable logic cells connected by programmable interconnect

resources. Usually the logic and the interconnect of an FPGA

are separately tested. The goal of logic tests is to detect any

faults (single or multiple) affecting the operation of a cell,

and also any combination of multiple faulty cells.

Figure 2 illustrates our logic BIST architecture [1]. Some

of the cells are configured as test-pattern generators (TPGs)

and output-response analyzers (ORAs), while another group

of cells are configured as blocks under test (BUTs). The two

TPGs provide identical test patterns to alternating rows of

identically configured BUTs. The outputs of the BUTs are

compared by the ORAs which latch any mismatches. The

Pass/Fail result flip-flops of all ORAs are connected in a scan

chain. The BUTs are then repeatedly reconfigured so that

they are tested in all of their modes of operation. Each recon-

figuration of the embedded FPGA to test a different cell mode

of operation is referred to as a test phase. A test session is a

collection of test phases that completely test the BUTs in all

of their modes of operation. The number of test phases is a

function of the cell architecture. Once the BUTs have been

tested, the roles of the cells are reversed, so that in the next

test session the previous BUTs become TPGs or ORAs, and

vice versa. Figure 3 shows the cell functions in the two test

sessions for an 8×8 FPGA. Since half of the cells are BUTs

during each test session, only two test sessions are needed to

test all cells in the embedded FPGA.

In every test phase, TREC performs the following steps:

1) reconfigure the embedded FPGA with a BIST configura-

tion retrieved from the disk, 2) initiate the BIST sequence,

and 3) read the Pass/Fail results from the ORAs. The down-

loading of the BIST configuration and the control of the BIST

process are done via the boundary-scan access mechanism of

the SoC [22]. Since the test application time for any phase is

dominated by the embedded FPGA reconfiguration time, an

important goal of the BIST approach is to minimize the total

number of test configurations.

Figure 4 illustrates the typical structure of a cell, consisting

of a memory block that can function as a look-up table (LUT)

or RAM, several flip-flops, and multiplexing output logic.

The LUT/RAM block may also contain special-purpose logic

for arithmetic functions (counters, adders, multipliers, etc.)

The RAM may be configured in various modes of operation

(synchronous, asynchronous, single-port, dual-port, etc.).

The flip-flops can also be configured as latches, and may

have programmable clock-enable, preset/clear, and data

selector functions. Our TPG applies exhaustive patterns to

every subcircuit of a cell for each one of its modes of opera-

tion, except for the RAM modes, where the memory block is

checked with RAM March tests which cover most RAM-spe-

cific faults. Exhaustive testing of every subcircuit is feasible

since their number of inputs is reasonably small. This results

in practically complete cell fault coverage without explicit

fault model assumptions and without fault simulation.

Figure 2. Logic BIST architecture

ORA

BUT

TPG #1

ORA

BUT

BUT

BUT

BUT

ORA

BUT

BUT

ORA

BUT

TPG #2

Pass/Fail

BIST Start

BIST_Done

Figure 3. Cell functions for the two test sessions

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

Figure 4. Typical cell structure

LUT/RAM FFs
Output

Logic



Although there are situations that make detection of multi-

ple faulty cells more complicated (a pair of compared BUTs

have equivalent faults and do not cause a mismatch; a faulty

ORA does not detect a mismatch; a faulty TPG skips patterns

that detect a faulty BUT), almost any combination of multiple
faulty cells is guaranteed to be detected by our two test ses-

sions. We have shown that the conditions that would allow a

group of faulty cells to escape detection are extremely restric-

tive, so that they are very unlikely to occur in practice [1].
4.2  Logic Cell Diagnosis

Figure 5 illustrates a test session where two faulty BUTs

(denoted by black squares) are detected. Errors are observed

at the ORAs bordering the faulty cells (shaded squares).

Clearly, the set of failing ORAs is unique for every faulty

BUT, and therefore it can be used to locate single faulty cells.

(As a consistency check, the two failing ORAs observing the

same BUT must fail in the same phases [1].)

Actually in Figure 5 we are deal-

ing with a group of two faulty cells,

but because they are observed at dis-

joint ORAs, they do not interact.

Locating BUTs that are observed at

common ORAs is more difficult, but

we have developed diagnostic proce-

dures [1] that can locate almost any

combination of multiple faulty cells

likely to occur in practice. These pro-

cedures rely on analyzing the sets of failing test phases

obtained at different ORAs, and by applying additional BIST

configurations when needed.

In addition to diagnosing the faulty cells, we can also

identify the faulty subcircuits (LUTs, flip-flops) or the defec-

tive modes of operation (e.g., count-up, multiply) within a

faulty cell [2].

Although our tests are application-independent, we can

take advantage of knowing the circuits to be implemented in

the embedded FPGA. Specifically, TREC may avoid apply-

ing additional diagnostic configurations when the suspected

cells are not used in any of the target circuits. However, accu-

rate diagnosis of unused cells may be required later to allow

these cells to replace other defective cells for fault tolerance.

If a configuration memory bit that controls a resource in

a logic cell is stuck, this fault is detected by the tests for the

corresponding resource. However, the faulty resource and the

stuck fault in its controlling configuration bit cannot be dis-

tinguished, unless the configuration memory has a readback

feature that can detect the stuck bit.

5.  Testing the Interconnect Network
5.1  BIST for Interconnect

The programmable interconnect network consists of wire

segments of different lengths that can be connected via pro-

grammable switches referred to as configurable interconnect
points (CIPs). Wire segments connecting non-adjacent cells

form global routing resources, while local routing resources

connect a cell to global routing resources or to adjacent cells.

The basic CIP structure consists of a transmission gate con-

trolled by a configuration memory bit (Figure 6a). There are

three types of CIPs which we refer to as the cross-point CIP
(Figure 6b), the break-point CIP (Figure 6c), and the multi-
plexer (MUX) CIP (Figure 6d) [18]. While a cross-point CIP

connects wire segments located in disjoint planes (a horizon-

tal segment with a vertical one), a break-point CIP connects

two wire segments in the same plane. The MUX CIP comes

in two varieties: decoded and non-decoded. A decoded MUX

CIP is a group of 2k cross-point CIPs sharing a common out-

put wire and controlled by k configuration bits, such that the

input wire being addressed by the configuration bits is con-

nected to the output wire. A non-decoded MUX CIP contains

a configuration bit controlling each transmission gate; here

only one of the configuration bits is active for any configura-

tion. There is also a compound CIP (Figure 6e), which is a

combination of four cross-point and two break-point CIPs,

each separately controlled by a configuration bit [31].

The fault model we consider is typical for interconnect:

CIPs stuck-closed (stuck-on) and stuck-open (stuck-off),

wires stuck at 0 or 1, open wires, and shorted wires. A

stuck-closed CIP creates a short between its two wires. We

assume that no detailed layout information is available

regarding adjacency relations between segments. Instead, we

use only “rough” physical data (available in data books) to

determine adjacent “bunches” of wires, where a bunch is a

group of wires that may have pair-wise shorts, but not every

wire is necessarily adjacent with every other wire in the

bunch. This treatment makes our method

layout-independent.

Detecting a CIP stuck-open (closed) fault also detects the

stuck-at-0 (1) fault in the configuration memory bit that con-

trols that CIP. However, most previous work in FPGA

interconnect testing has ignored the problem of shorts involv-

ing configuration memory bits. This is understandable,

because the configuration memory does not appear in any

model available to users. Nevertheless, this is an important

class of faults, since the configuration memory is physically

distributed across the entire chip, so that each bit is close to

the resource it controls. Hence shorts between configuration

bits (or the wires that transmit them) and the wire segments

in the interconnect network are quite likely and cannot be

ignored. We will analyze the effect of such faults at the end

of Section 5.

Figure 7 illustrates the concepts of the interconnect BIST.

We configure subsets of routing resources (wire segments

Figure 5.

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

T

B

O

B

O

B

O

B

Figure 6. Configurable interconnect points

b) cross-point CIP

c) break-point CIP

wire A
wire B

wire Bwire A

a) basic structure

wire Bwire A

configuration
memory bit

wire Bwire A

output
d) MUX CIP

CB

CBCB

CB

CB

CB

e) compound
 CIP



and CIPs) to form two groups of wires under test (WUTs)

that receive exhaustive test patterns from a TPG, while the

values at the other end of the WUTs are compared by an ORA

[26]. A WUT consists of several wire segments connected by

closed CIPs. To check local routing resources, WUTs may

also go through cells configured to pass their inputs directly

to outputs. In Figure 7, the WUTs are shown by bold lines,

and the activated (closed) CIPs are shown in gray, while the

open CIPs are white. To test the open CIPs for stuck-on

faults, when the TPG drives a value v on the WUTs (0 in

Figure 7), v must be applied to the wire segments on the

opposite side of the open CIPs.

The TPG applies exhaustive patterns to the WUTs, all pos-

sible 2n test vectors to every group of n WUTs. For

reasonably small n, the application time for 2n test vectors is

still negligible compared to the reconfiguration time of the

FPGA. The TPG also provides test patterns to the opposite

sides of open CIPs that isolate the WUTs from the rest of the

interconnect.

If the two compared sets of WUTs have identical (or equiv-

alent) faults, then no mismatch will be detected at the ORA

[15]. For example, each set of WUTs could have a different

CIP stuck-open in its ith wire. To overcome this problem, we

test every set of WUTs (at least) twice, each time being com-

pared with a different set of WUTs [25].

The basic routing BIST architecture shown in Figure 7 is

implemented within self-testing areas (STARs), where each

STAR spans two columns or two rows of the embedded

FPGA to test vertical or horizontal interconnect resources,

respectively [4][5]. Figure 8 illustrates the structure for test-

ing the horizontal interconnect. Testing within STARs is

done concurrently.

While most of the interconnect resources are tested either

in an horizontal or in a vertical STAR, testing the cross-point

CIPs connecting global horizontal and vertical busses

requires both a vertical and an horizontal STAR, where the

cross-point CIPs at the intersection of the STARs are under

test (Figure 9).

5.2  Interconnect Fault Diagnosis
Our diagnosis procedure begins by analyzing the BIST

results to narrow the search area, and proceeds only in the

failing STARs. We use an adaptive strategy, where the next

diagnostic phase is determined based on the results obtained

so far. Figure 10 illustrates several diagnosis techniques (fail-

ing ORAs are darkened).

In Figure 10a, after the first phase we do not know which

group of WUTs is faulty. During the second test phase, the

WUTs are swapped between TPGs, and the faulty group can

be identified by checking whether the failure moves to the

other ORA or stays at the first ORA.

Figure 10b depicts one technique used to identify the faulty

region in a set of WUTs. We add several ORAs to observe the

WUTs at different points and use two phases with opposite

directions of the test pattern flow through WUTs. Faults are

located between the highest failing ORA in the first phase

and the lowest failing ORA in the second phase. An alterna-

tive technique is to divide the WUTs into pairs of shorter

WUTs and retest (Figure 10c). This “divide and conquer”

method can be recursively repeated to obtain a very high

diagnostic resolution.

Identifying the faulty WUT in a group can be accomplished

by either testing one wire at a time (and comparing with a

known-good wire), or by making different ORA connections

with the faulty set of WUTs and observing the movement of

ORA failures (a similar idea to that of Figure 10a). The faulty

wire segment or CIP is then identified by re-routing to elim-

inate a segment (or CIP) at a time during the subsequent tests

(Figure 10d).

Diagnostic phases can be either precomputed and stored on

disk, or generated “on the fly” by TREC. In general, the diag-

nostic phases illustrated in Figure 10a through 10c can be

precomputed, while the detailed diagnostic phases implied

Fail

Figure 7. Interconnect BIST architecture

TPG

B WUTs

Pass/

A WUTs

ORA

BIST

BIST

cell

Start

Done

0

0

0

1

1

1

1 1

0

T O

T O

T O

T O

Figure 8. Horizontal
interconnect testing

Figure 9. Global
cross-point CIP test

O

T

OO

O

T

OO

Figure 10. Diagnostic configurations

T

1st test 2nd test

a) swapping WUTs

O O

T

O

T T

O O

O

O

T

T

O

O

O

1st test 2nd test

b) adding ORAs

O

T

O

T

O

T

1st test 2nd test
c) divide & conquer

O

T

1st test 2nd test
d) re-route wire segments

single
wire

O

T

single
wire

known
good
wires



by Figure 10d would be generated “on the fly” for most

FPGA interconnect architectures.

A tool like JBITS [29] that can efficiently generate config-

uration streams without relying on CAD tools, would be ideal

to use during testing. Since no such tools are commercially

available, we rely on commercially available place-and-route

tools used incrementally, followed by configuration-genera-

tion software; these may run for several minutes to generate

multiple diagnostic phases, but this time could be acceptable

if TREC is a low-cost tester. A limit on the time allowed for

computing diagnosis configurations can be established based

on factors such as the cost of a SoC, the production volume,

the current yield, the probability of repairing the defective

SoC given the number of faults found so far, the target reso-

lution, etc. The use of precomputed diagnostic phases in

conjunction with an adaptive diagnostic procedure mini-

mizes the total time spent on TREC, while maintaining

defect-tolerant capabilities.

To illustrate the diagnostic resolution that can be obtained

with these techniques, we will assume a single fault in a typ-

ical configuration of interconnect resources illustrated in

Figure 11a. Here segment X is bounded by break-point CIPs

that control its connections to Y and Z, while segment W
shares no CIPs with X. For example, if a cross-point CIP is

stuck-open (Figure 11b), this is the only condition that would

allow the vertical and the horizontal segments connected by

the that CIP to be driven to complementary values. A similar

reasoning identifies an open wire segment (Figure 11c) In

these cases, diagnostic resolution is to a CIP or a segment.

However, we cannot distinguish between an open in a seg-

ment and a stuck-open fault in its adjacent break-point CIP

(Figure 11d). Figure 11d also shows another pair of equiva-

lent faults - a short between two segments separated by a

break-point CIP and that CIP being stuck-on. On the other

hand, shorts between two segments that do not share a CIP,

such as W and X in Figure 11e, can be diagnosed by checking

that each segment is fully functional while the other segment

it is shorted to is unused, but when both segments are driven

to opposite values, then we detect a failure on at least one of

them.

For multiple faults in the same area, there are cases where

we will not always be able to identify the faulty resources

among a set of suspects. These cases arise when some faults

interfere with the routing configurations needed to diagnose

other faults. In such cases, we will “play it safe” by labeling

the entire set of suspects as faulty, so that all of them will be

bypassed by fault tolerant techniques.

To illustrate the problem of detecting and diagnosing

shorts with configuration memory bits, consider a short

between a configuration bit B and an interconnect segment S,
and let us assume that B controls a CIP C. Note that the value

b of B is constant during a phase. This short may be detected

in any configuration where S is used and at least once is set

to value b. The detection will occur in one of the two cases:

1) the short creates a wrong value on B and C is under test; 2)

the short creates the wrong value on S and S is under test.

The problem is that C may be under test in different config-

urations, and the value of B may be affected in only some of

them. Similarly, S may be tested in different configurations,

and the value of B may affect only some of them. This behav-

ior would seem to be that of an intermittent fault, as the same

resource looks like it fails only some of the configurations

where it is tested. So an interconnect diagnosis procedure that

looks for consistency in all cases is doomed to fail. The prac-

tical solution in such situations is to label all the suspected

resources as faulty. Avoiding all the potential defects is a rea-

sonable strategy for yield enhancement.

6.  Testing Other Cores with the FPGA Core
The embedded FPGA can also be used to test any other

embedded core connected to the same system bus. We will

separately analyze BIST-cores, whose testing is based on

in-core BIST, and externally-tested-(ET)-cores, which rely

on vectors external to the core.

6.1  BIST-Cores
For a BIST-core, its BIST logic may be moved from the

core to the embedded FPGA, as illustrated in Figure 12.

(Similar techniques have been described for using an FPGA

installed on a board to test other devices on the board

Figure 11. Diagnostic resolution examples

a) typical

interconnect

configuration

W

X

Y Z

W

X

Y Z

W

X

Y Z

W

X

Y Z

W

X

Y Z

b) diagnosing

stuck-open

cross-point CIPs

c) diagnosing

wire segment

open

d) equivalent

interconnect

faults

e) diagnosing

shorts between

wire segments

s-open

) (

open

) (

open

s-openshort

s-closed

short

eFPGA

BIST-Core

BIST

Figure 12. Relocating the BIST logic

a) b)eFPGA

BIST

Orig. Core

Orig. Core

b

c

d

c

d



[22][27].) In practice, this means that the core providers do

not have to implement BIST in embedded cores; instead, they

provide the BIST logic as an additional IP to be implemented

in the FPGA core. Several conditions must be satisfied to

make this transformation possible. First, the BIST logic

should not be intrusive, that is, it should be easy to separate

from the rest of the logic. Let b, c, and d denote, respectively,

the number of connections between the BIST logic and the

original core (without BIST), between the core (with BIST)

and the system bus, and between the embedded FPGA and

the system bus. The relocation of the BIST logic is possible

if and . Another condition is for the FPGA to sup-

ply test patterns at the speed required to test the core. Of

course, the BIST logic implemented in the core would be

faster than its FPGA implementation, but this speed may be

higher than the one used in normal operation, when the core

is accessed over the system bus. So if the FPGA can apply the

test at the same speed the core is accessed over the system

bus, and if the bus width conditions are also satisfied, the

BIST logic may be relocated in the FPGA.

We will illustrate this scheme for testing an embedded

RAM core. Figure 13 illustrates a typical RAM BIST archi-

tecture. Data In, Address, Control, and Data Out are included

in the system bus. During BIST, the inputs Data In, Address,

and Control are replaced with the signals produced by an

integrated BIST controller and TPG, which generate a March

test for the RAM block. The controller/TPG also produces

the expected output responses to be compared with the RAM

output data by the ORA, which latches any mismatches

observed to produce a failure indication at the end of the

BIST sequence. (Note that separate tests are needed to check

the connections between the RAM block and the I/Os of the

RAM core.)

Using the embedded FPGA, we can follow the scheme in

Figure 12, remove all the BIST logic from the RAM core,

and download the BIST controller/TPG and the ORA logic in

the FPGA only when we need to test the RAM. This results

in several advantages. First, the RAM core is smaller, being

reduced to only the shaded RAM block, and faster, since we

no longer need multiplexers to select between system and

BIST data (this selection is now done by the system bus).

Second, when the BIST logic is in the same core with the

RAM (Figure 13), we also need to test the BIST logic to

make sure that it will correctly test the RAM; this is no longer

necessary when the RAM BIST logic is implemented in the

FPGA core, because the self-test of the embedded FPGA

(described in the previous sections) completely tests all its

resources. Third, while defects in the BIST logic of a RAM

core cannot be repaired and will likely cause the entire SoC

to be discarded, defects in the embedded FPGA core can be

easily tolerated (see Section 7).

If we have several RAM cores in the SoC, one drawback of

this approach is that it can test only one RAM at a time,

because the FPGA can observe the output of only one core at

a time. In contrast, with the BIST logic in the same core with

the RAM, all embedded RAMs may be tested in parallel, pro-

vided that the power dissipation constraints of the SoC are

not violated.

A compromise solution, illustrated in Figure 14, moves

only part of the BIST logic in the embedded FPGA core,

while allowing several RAMs to be tested concurrently. We

move only the BIST controller/TPG in the embedded FPGA,

and we leave the ORA and a separate data generator block in

the RAM core to produce only the expected data. The FPGA

provides the same Data In, Address, and Control inputs to all

RAMs under test. All embedded RAMs can be tested concur-

rently, since here results analysis is independently done

within each RAM core. This scheme still avoids the BIST

multiplexers which cause the performance degradation.

Similarly, the embedded FPGA core can be used in turn to

implement (at least part of) the BIST logic for most embed-

ded BIST-cores that are connected to the system bus. Moving

the BIST logic in the embedded FPGA requires analyzing the

trade-offs involving the area overhead and the performance

b c≤ b d≤

Figure 13. Typical RAM BIST architecture

2K×M RAM1

0
control

data out

data inaddress

01 01

M-bit ORA

Data Out

Control

K M

M

Data In

BIST Controller & TPG

M data bits

K M

K address

address
generator

data
generator

bits

read/write
generator

Pass/Fail

BIST
Start

BIST
Done

M
expected
response

C control

bits

C

Address

2K×M RAMcontrol

data out

data inaddress

M-bit ORA
Data Out

K M

M

Pass/Fail

data
generator expected

response

M

C

BIST
Start

BIST Controller & TPG

MK

address
generator

data
generator

read/write
generator

BIST
Done

C

Data InAddressControl

system bus

eFPGA

Reduced BIST
RAM core

Figure 14.  Partial move of RAM BIST logic



penalties introduced by in-core BIST, the total test time, and

the SoC power constraints. This analysis is the responsibility

of the SoC designer; to make the choice possible, the core

provider should supply both BIST and non-BIST (and, where

applicable, partial-BIST) versions of the same core.

6.2  ET-Cores
In this section we consider embedded ET-cores that are

tested with externally applied vectors. Typically, these cores

use scan DFT and the vectors are generated by an ATPG pro-

gram. Applying an external test to an embedded core is a

difficult problem (for example, the core may have more pins

than the SoC); the solution usually consists of inserting DFT

structures to allow the input stimuli and the core responses to

be transported between core and SoC pins [16]. If the

ET-core is connected to the system bus, our approach is to

change the core testing mode from external to BIST and
implement the BIST circuit in the embedded FPGA. Note

that the ET-core does not have to be changed, since the

source for its input vectors and the sink for its output vectors

are still external to the core under test. But from the SoC’s

perspective, this is a significant change.

Given a full-scan circuit C, many procedures exist to create

a TPG that produces a pseudo-random test of reasonable

length that always achieves 100% fault-coverage for C;

[7][28][30] are more recent techniques of this type. The key

concept is generating vectors whose signal probabilities are

dynamically changed so that the random-pattern-resistant

faults [6] of C not yet detected will be more likely (or even

certain) to be detected by the subsequent vectors. Although

some of these techniques require a large area overhead for

circuits with multiple scan-chains, the area overhead is no
longer a primary concern when BIST is implemented in
reconfigurable logic (the only constraint is to fit within the

embedded FPGA).

Figure 15 illustrates this scheme for an ET-core with a sin-

gle scan-chain. The circuit under test (CUT) is the

combinational part of the full-scan circuit. An input vector is

applied at primary inputs (PIs) and via the scan chain, and an

output vector is observed at primary outputs (POs) and via

the scan chain. The scan chain in the ET-core is extended by

a register RI that supplies the PI values, and by a register RO

that captures the PO values; RI and RO are implemented in

the embedded FPGA, along with a TPG and an ORA. (A sep-

arate TPG per chain is needed for multiple scan chains.) The

TPG provides the input sequence to the extended scan-chain,

and the ORA processes the CUT outputs captured in the

extended scan-chain. The ORA is a signature analyzer [6].

Note that the FPGA must have access to the serial data input,

serial data output, and the scan-enable pins of the scan chain.

If the synthesis of the TPG is based on the structure of the

CUT, which is not available to the SoC designer, then the tool

that generates the TPG will be run by the core provider, and

the TPG may be offered as an additional IP to be imple-

mented in the FPGA core. Alternatively, if (non-compacted)

ATPG vectors for the CUT are provided with the core, the

TPG can be constructed to generate a pseudo-random test set

that includes the given vectors. This solution allows the TPG

to be created without access to the CUT implementation.

If this approach is feasible for every full-scan embedded

core, then the entire SoC can be tested without external vec-
tors. The FPGA core takes turns to implement an embedded
tester for every ET-core connected to the system bus. If

TREC does not need to store and apply vectors, then it can be

a low-cost PC-based tester. The total test time will increase

because most cores will not be concurrently tested, but this

becomes less important when TREC is a low-cost tester.

7.  Fault Tolerance Techniques
Our approach for user-level fault-tolerance for the embed-

ded FPGA starts with the circuit implemented in the

reconfigurable logic and with the location and type of every

diagnosed fault. Note that we may have different circuits

residing in the FPGA core at different times, either to per-

form different functions, or to implement various BIST

circuits for other cores; the fault-tolerance analysis is sepa-

rately done for each such circuit.

Given a circuit C implemented in the FPGA and a fault f,
the first question is whether f affects the operation of C. If it

does, then we have to reconfigure a region of C to bypass f.
We will try to limit the extent of the reconfigured region as

much as possible, to avoid changing the critical timing paths

of C. The computation of most fault-bypassing configura-
tions (FABCOs) is done by TREC. Although this

computation may involve CAD tools, they are used only

incrementally on a small region of C, and their run-times are

reasonably small. A limit on the allowed computation time is

established based on factors such as the cost of a SoC, the

production volume, the current yield, etc. When computing a

FABCO exceeds the time limit, we will let TREC test other

chips, and either discard the defective SoC, or transfer the

computation job to a different, and possibly more powerful,

processor.

Sometimes the reconfiguration of C does affect its critical

paths, and then the resulting SoC is functional, but it must

operate at a lower clock frequency. If the SoC manufacturer

provides several speed versions of the device, selling a

repaired SoC as a slower device is much better than discard-

ing it as defective.

In the process of bypassing faults in a defective FPGA

core, we have created new FPGA configuration files for the

system bus

eFPGA

Scan chain

CUT

ET-Core

PIs POs

TPG ORA

Figure 15. BIST for an ET-core

RI RO



defective SoC; these files should be used only with the defec-

tive chip they were generated for. A good method to maintain

the association between a faulty SoC and its configuration

files is to create a unique faulty chip serial number, and to

label both the defective SoC and its configuration files using

this identifier. The serial number for all the fault-free chips

will be zero. The serial number will be recorded in a small

non-volatile memory within the SoC, and it will be readable

using a USERCODE boundary-scan instruction [22]. The

serial number should also appear in the header of every con-

figuration file for this SoC, and the configuration process will

be allowed to proceed only if there is a match between the

serial number in the SoC and the one in the configuration file.

If fault f does not affect C, then no reconfiguration for tol-
erating f is required. This is clearly the case when f affects

FPGA cells or interconnect resources not used by C. In addi-

tion, we have developed techniques for using defective
resources whenever possible. This increases the effective

yield without having to change C, and in most cases without

impact on performance. Since using defective resources

avoids using spare resources for fault tolerance, we will be

able to tolerate more faults in the same area. Using defective

resources is a major departure from most previous work in

fault tolerance, whose goal is to bypass every located fault.

7.1  Compatibility
If the function of a circuit C implemented in the FPGA is

not changed by fault f, C and f are said to be compatible. A

compatible fault does not require C to be reconfigured. Note

that this definition allows f to change the timing of C. We will

define compatibility separately for logic faults and intercon-

nect faults.

7.1.1  Compatibility for Logic Faults
We say that a logic fault f in a logic cell is compatible with

the function F to be implemented in that cell, iff F does not

change in the presence of f. For example, if F is a combina-

tional function using only the LUTs, any fault in flip-flops is

compatible with F. Similarly, a fault affecting only the mul-

tiplication operation is compatible with any F not using

multiplication. In general, any fault that affects only modules

or modes of operation of the cell that are not used by F is

compatible with F [3][12]. Then any such F can be imple-

mented in the faulty cell, and the configuration file of the

fault-free FPGA core is also applicable to this faulty SoC.

Higher diagnostic resolution can allow additional compat-

ibility relations. For example, suppose that testing the RAM

module of the cell has identified f as a single bit in the RAM

being stuck-at-0(1). Consider any function F using the RAM

module only as a LUT. If the value needed for the faulty bit

is 0(1), f is compatible with F.
7.1.2  Compatibility for Interconnect Faults

We define a layout of a programmable interconnect net-

work as the set of positions (open or closed) for all its CIPs,

needed for a specific routing of the netlist. Similar to [21], we

say that an interconnect fault f is compatible with a layout L
iff f does not change the connections implemented by L. If f

and L are compatible, then L can tolerate f and we don't have

to reconfigure to bypass f.

For example, in Figure 16, assume a layout L where break-

point CIPs B1 and B2 are open, crosspoint CIPs X1 and X2 are

closed, and segment Z is not used. Then an open on B1X1 is

compatible with L, while an open in X1X2 is not. More inter-

estingly, the short between B1B2 and Z is also compatible

with L, since Z does not carry any signal. Thus the routed sig-

nal net can use the shorted segment B1B2. Table 1 gives

detailed conditions that need to be met for single-fault

compatibility.

Note that the compatibility relation between a fault f and a

layout L may be affected by the presence of another fault g.

This happens because g changes the structure of the program-

mable network on which L is implemented. This interaction

between faults is not considered in [21]. For example, in

Figure 17, assume a layout L where crosspoint CIPs X1 and

X2 and are closed, and breakpoint CIPs B1 and B2 are open.

Segment A is used by signal S1 via crosspoint X1, segment C
is used by signal S2 via crosspoint X2, and segment B is not

used. Let f be the short between segments A and B, and let g
be the breakpoint B2 stuck-closed. The single fault f is com-

patible with L, as is the single fault g. However, the multiple

fault {f, g} shorts the signals S1 and S2, so it is not compatible

with L.

Our procedures rely on a network model coupled with a

layout data base. The network model is a graph that repre-

sents the topological relations between the components of the

programmable interconnect network - wire segments, cell

pins, FPGA pins, and CIPs. The layout data base defines the

CIP settings required to route all the signal nets in the circuit.

Table 1. Single-fault compatibility conditions

f Condition for f~L
segment open or
CIP stuck-open or
segment stuck-at

L does not transmit values

through the faulty resource

CIP stuck-closed

L uses the CIP or
L drives values only on at most

one of the shorted segments

short between

segments

L drives values only on at most

one of the shorted segments or
L uses the shorted segments for

the same signal

X1)(
B1 X2 B2)( )(

Figure 16.  Illustration for fault compatibility
Z routed signal

Figure 17.  Multiple fault interaction

BA C S2

f g
S1

X1 X2B1 B2



From the layout data base we can retrieve all the segments

and CIPs used by a given signal, and determine which signal

is routed through a given segment or CIP. In a fault-free net-

work, a segment may be driven by only one signal.

To record faults in the network model, every CIP and seg-

ment has an additional field that indicates its fault status: a

CIP can be fault-free, stuck-on, or stuck-off, and a segment

can be fault-free, open, stuck, or shorted. For a shorted seg-

ment we also record the identity of its partner - the other

segment involved in the short.

We determine the faulty resources that may be reused (and

the ones that need to by bypassed) indirectly, by finding the
signal nets that have to be rerouted. We say that a signal net
S is compatible with fault f iff S can connect its source to all

of its sinks in the presence of f, and no other signal drives any

segment of S. (Note that f may be a multiple fault.)

The procedure to find the incompatible nets works as fol-

lows. We first insert all the located faults in the network

model. Next, we process the faults to find all the signal nets

affected by faults. Then we trace every affected signal S from

its source to all its sinks, keeping track of the segments used.

Tracing stops at open segments, at stuck-open CIPs, and at

stuck segments, but it does go through stuck-on CIPs, and it

jumps from a shorted segment to its partner. If faults prevent

S from reaching at least one of its destinations, then S is

incompatible with the faults. We record all the segments

reached by every traced net. After all signals are traced, we

can identify the segments driven by more than one signal; the

signals that drive these segments are shorted, and only one of

them may be allowed to continue to drive the shorted seg-

ments, while the other ones will be marked as incompatible.

To determine which signal to leave in place, first we exclude

the ones already found incompatible because the trace has not

reached some of their destinations. To select among the

remaining signals, we analyze the timing margins (slacks) of

their paths, and chose the one with the least slack. In this way,

we minimize the impact of rerouting on the system timing,

since the signals to be rerouted have more slack. We break

ties by selecting the longest net as the one left in place, since

shorter nets are likely to be easier to reroute.

For example, in Figure 17, tracing S1 will go through A, B,

C, and continue along S2, while tracing S2 will go through C,

B, A, and continue along S1. Since the traced segments are

recorded as being driven by both S1 and S2, these signals are

shorted. Assuming that neither S1 nor S2 have other faults, we

select one of them to be left unchanged (based on the analysis

described above), while the other will be allowed to continue

to drive the shorted segments. This is possible since after

rerouting, the multiple fault will become compatible with the

new layout.

In Figure 18, assume that

the source of S1 is on the

left. Then tracing S1 stops at

the open segment X, and

tracing S2 reaches B via the

short between B and C.

Because of the open, B is

driven by only one signal (S2), so that there is no other signal

shorted to S2, which is hence compatible with the multiple

fault, and does not have to be rerouted. However, S1 needs to

be rerouted.

7.2  Reconfiguration
A tool like JBITS [29] would be ideal to generate FABCOs

by directly modifying configuration files without involving

any CAD tools. Since no such tools are commercially avail-

able, we rely on commercially available place-and-route

tools used incrementally. The concept of a fault, however, is

alien to these tools, and we need modeling workarounds to

make them avoid incompatible faulty resources. To avoid a

defective logic cell, we program it to implement a dummy

logic function whose inputs and outputs are unconnected. To

avoid a defective CIP or wire segment, we program a dummy

signal net with no source or sink to occupy the faulty resource

and its immediate neighbors.

When we consider reusing a wire segment S which is

shorted to an unused segment, the delay of S increases

because of the additional capacitance provided by its partner.

However, a conventional path tracing tool that reports the

delay along the traced path, will not see the additional delay

caused by the short. Our solution is to add the delay of the

unused shorted segment to the delay of S, and if the new delay

causes any path going through S to become too slow to oper-

ate at the specified clock speed, we give up on reusing S and

mark the short as incompatible. Although this solution may

be conservative in overestimating the delay of S, it guaran-

teed that the short will not affect the critical paths in the

circuit.

7.2.1  Reconfiguration for Logic Cells
Many times the function of a logic cell does not utilize all

its internal resources. In such cases, when a cell fault f is

incompatible with the cell function F, it is often possible to

avoid f by small changes in the way F is implemented. For

example, if one of the LUTs in the cell is faulty, but F is not

using all the LUTs, we remap F to use only fault-free LUTs,

which makes f compatible and the cell reusable. Of course,

we need to incrementally reroute the signals that connected to

the inputs and output of the faulty LUT, to bring them to the

replacement LUT.

Another example is a 3-input combinational logic function

mapped to a 4-input LUT. This is implemented by setting

identical values to every pair of RAM bits whose addresses

differ only in the value of the “don’t care” address bit, so that

the RAM has two identical halves. In this case we can tolerate

any combination of faults that affect only one of the two

halves, by simply setting the previously unused bit to the

value that selects the fault-free half. This also requires an

incremental reconfiguration.

If a defective cell has a logic fault incompatible with the

function assigned to this cell, we relocate the function to a

compatible unused cell, preferably one adjacent to the defec-

tive cell (see Figure 19). If we cannot move the function to a

compatible cell adjacent to the defective one, we set up a
Figure 18.

B
)(

A X

S1 S2

C



chain of cell replacements [11], as illustrated in Figure 20.

This approach averages the overall change in signal distur-

bance, but increases the number of signals that must be

rerouted. Note that in our approach, no replacement cell

(including the unused one) is required to be fault-free, but

only compatible with the desired function. After cell func-

tions are relocated, we use an incremental router to reroute

the signal nets connected to the moved cells. Also we need to

analyze the changes in the timing of the rerouted signals, to

determine whether the chip should operate at the original

clock frequency or a reduced one.

As a preprocessing step, we prepare a FABCO for each one

of the used cells in the target circuit. This not a computation-

ally expensive job, since all the circuit transformations are

only incremental. These precomputed configurations are

stored on the TREC disk, and are applied by TREC based on

the diagnosis results. Note that the same unused cell can be

designated as replacement for several working cells. After

applying one FABCO, several other precomputed configura-

tions may no longer be valid, since the circuit for which they

were derived has been changed. It is another TREC task to

keep track of the validity of precomputed FABCOs. If the

FABCO for a defective cell has been invalidated, TREC

computes a new one, by incrementally rerouting the signal

nets connected to the moved function.

Another major advantage of our technique over conven-

tional techniques is that we handle groups of faults in a tight

area. Other techniques limit the number of faults they can

handle by providing a limited number of spare logic

resources in a region of the FPGA. When these local spares

are exhausted, their fault tolerant techniques fail. We provide

a global reconfiguration approach that uses minimax match-
ing [19] to match defective cells to compatible cells, so that

the maximum distance between any defective cell and its

replacement cell is minimized.

7.2.2  Reconfiguration for Interconnect
Our experimental results show that in most practical cir-

cuits implemented in FPGAs, a large number of interconnect

faults are compatible with the circuit [13]; this happens

because many interconnect resources are unused, even in cir-

cuits where more than 70% of the cells are used. Every such

fault can be tolerated without reconfiguration.

Next we describe our multi-step approach for avoiding

incompatible interconnect faults. In the following procedure,

S is the set of nets that have to be rerouted.

Stage 1: First we process incompatible faults that do not

allow some signal nets to connect to inputs or outputs on a

cell, because such faults may need reconfiguration for both

logic and interconnect. If an input or an output of a cell is

blocked, and the cell is not fully used, then we try to move the

function of the blocked resource to an unused resource in the

same cell. Figure 21 shows an example of a stuck-open CIP

denying access to an input pin on LUT B. If LUT A is not

used, we first try to move the function from LUT B to LUT

A; keeping the LUT function within the same cell is less

likely to introduce delays. For this, we reconfigure the cell

logic and we rip-up the signal nets going to the inputs and

outputs of LUT A [17]. If such a transformation is not possi-

ble within the blocked cell, we rip-up all the signal nets

attached to the cell, and move the cell function a new compat-

ible unused location. In either case we add the ripped-up

signals to S

Stage 2: We determine all the signal nets incompatible

with the remaining faults using the procedure described in

Section 7.1. For every such net we perform a partial rip-up,

trying to maintain as much as possible from its original rout-

ing, and add the signal to S. For example, Figure 22a shows

a signal net that was originally routed through segment X1X2
that is now open. Here we rip-up only the faulty segment.

Stage 3: In this stage we attempt to incrementally reroute

each signal net in S, without changing the routing of other

non-affected signal nets. For example, in Figure 22a, if X3
and X4 are not used, the signal may be easily rerouted as

shown in Figure 22b. Every successfully rerouted net is

removed from S. If S becomes empty, we stop.

Stage 4: Here we use a more global transformation, com-

pletely ripping-up all the signal nets within a variable-sized

window in the area around the signal nets in S, adding all the

ripped-up signals to S, and rerouting all signals in S. If we are

not successful, we increment the window size and repeat the

process. If S becomes empty, we stop.

Stage 5: Here we do a new place-and-route for the entire

circuit (with the faults marked by dummy signals).

Figure 19. Cell replacement

⇓

L4L3L2L1

L4L3L2L1

Figure 20. Chain of cell replacements

Figure 21.  Reconfiguring a cell to bypass a CIP fault

LUT B

LUT A

cell

LUT B

LUT A

cell

open CIP

⇒

X4

Figure 22.  Bypassing an open segment

)(X1 X2

X3 X4

)(X1 X2

X3a) b)



Because many of interconnect faults are compatible with

the layout, the last two stages are unlikely to be used in prac-

tice. Since each stage is computationally more expensive

than its preceding one, this procedure will be subject to

run-time bounds as described at the beginning of Section 7.

8.  Conclusions
In this paper, we have shown that an embedded FPGA core

is an ideal host to implement infrastructure IP for yield

improvement in a bus-based SoC. The reconfigurable logic

allows the infrastructure IP to be created only when needed,

and enables BIST without any area overhead or performance

degradation. Our BIST techniques achieve practically com-

plete fault coverage for both logic cells and interconnect, and

our adaptive diagnosis techniques can locate almost any com-

bination of faulty cells or interconnect faults, and can also

identify faults within defective cells. Such accurate diagnosis

is a key factor in achieving effective repair for the embedded

FPGA. Instead of the conventional approach of reconfiguring

to bypass every located fault, our fault tolerance approach

reuses defective resources whenever possible. This increases

the effective yield without reconfiguration, and allows toler-

ating more faults in the same area. Reuse is based on new

techniques to determine compatibility between faults in a cell

and its function, or between a group of interconnect faults

and the layout. We may reuse fault-free parts of defective

cells and even shorted segments. For incompatible faults we

determine fault-bypassing configurations by incrementally

changing the implementation of the circuit, usually in a small

area around the faults.

An embedded FPGA core makes significant changes to the

SoCs testing paradigm. After the FPGA core is fully tested

and repaired if needed, we can use it to provide embedded

testers in turn for other cores in the SoC. This allows

non-intrusive BIST logic to be removed from cores, reducing

area overhead and delay penalties. It also enables cores

designed to be tested with external vectors to be tested with

BIST, and the entire SoC to be tested with a low-cost tester.

9.  References
[1] M. Abramovici and C. Stroud, “BIST-Based Test and Diagnosis

of FPGA Logic Blocks,” IEEE Trans. on VLSI Systems, Vol. 9,
No. 1, pp. 159-172, 2001

[2] M. Abramovici, C. Stroud, B. Skaggs, and J. Emmert, “Improv-
ing On-Line BIST-Based Diagnosis for Roving STARs”, Proc.
IEEE Intn’l. On-Line Test Workshop, pp. 31-39, 2000

[3] M. Abramovici, C. Stroud, S. Wijesuriya, C. Hamilton, and V.
Verma, “Using Roving STARs for On-Line Testing and Diagno-
sis of FPGAs in Fault-Tolerant Applications,” Proc. Intn’l. Test
Conf., pp. 973-982, 1999

[4] M. Abramovici, J. Emmert, and C. Stroud, “Roving STARs: An
Integrated Approach to On-Line Testing, Diagnosis, and Fault
Tolerance for FPGAs in Adaptive Computing Systems,” Proc.
Third NASA/DoD Workshop on Evolvable Hardware, pp. 73-92,
2001

[5] M. Abramovici, C. Stroud, and J. Nall, “BIST-Based Diagnosis
of FPGA Interconnect,” submitted to Intn’l. Test Conf., 2002

[6] P. H. Bardell, W. H. McAnney, and J.Savir, Built-In Testing for
VLSI: Pseudorandom Techniques, John Wiley and Sons, 1987

[7] N. Basturkmen, S. M. Reddy, and I. Pomeranz, “Pseudo Ran-
dom Patterns Using Markov Sources for Scan BIST,” submitted
to Intn’l. Test Conf., 2002

[8] R. Cliff et al., “Programmable logic devices with spare circuits
for replacement of defects,” U.S. Patent 5,485,102, Jan. 1996

[9] K. Chakraborty and P. Mazumder, Fault-Tolerance and Reli-
ability Techniques for High-Density Random-Access Memories,
Prentice Hall, 2002

[10] B. Culbertson et al., “Defect Tolerance on the Teramac Cus-
tom Computer,” Proc. 5th IEEE Symp. on Field-Programmable
Custom Computing Machines, pp. 140-147, 1997

[11] J. Emmert and D. Bhatia, “Partial Reconfiguration of FPGA
Mapped Designs with Applications to Fault Tolerance and Yield
Enhancement,” Proc. Intn’l Conf. on Field-Programmable Logic,
pp. 141-150, 1997

[12] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici,
“Dynamic Fault Tolerance in FPGAs via Partial Reconfigura-
tion,” Proc. IEEE Symp. on Field-Programmable Custom Com-
puting Machines, pp. 165-174, 2000

[13] J. Emmert, S. Baumgart, P. Kataria, A. Taylor, C. Stroud, M.
Abramovici, “On-line Fault Tolerance for FPGA Interconnect
with Roving STARs,” IEEE Intn’l. Symp. on Defect and Fault
Tolerance in VLSI Systems, pp. 445-454, 2001

[14] I. Harris and R. Tessier, “Interconnect Testing in Clus-
ter-Based FPGA Architectures”, Proc. AMC/IEEE Design Auto-
mation Conf., pp. 49-54, 2000

[15] I. Harris and R. Tessier, “Diagnosis of Interconnect Faults in
Cluster-Based FPGA Architectures”, Proc. IEEE Intn’l Conf. on
Computer Aided Design, pp. 472-476, 2000.

[16] IEEE P1500 Standard for Embedded Core Test, http://grou-
per.ieee.org/groups/1500/

[17] V. Lakamraju and R. Tessier, “Tolerating Operational Faults in
Cluster Based FPGAs”, Proc. ACM Intn’l. Symp. on FPGAs, pp.
197-194, Febr. 2000

[18] Lattice Semiconductor Co., http://www.latticesemi.com/prod-
ucts/fpga

[19] T. Leighton and P. Shor, “Tight Bounds for Minimax Grid
Matching with Applications to Average Case Analysis of Algo-
rithms,” Proc. Symp. on Theory of Computing, pp. 91-103, 1986

[20] E. McCluskey, “Verification Testing - A Pseudoexhaustive
Test Technique,” IEEE Trans. on Computers, Vol. C-33, No. 6,
pp. 541-546, June, 1984.

[21] K. Roy and S. Nag, “On Routability for FPGAs Under Faulty
Conditions,” IEEE Trans. on Computers, Vol. 44, pp. 1296-1305,
1995

[22] A. Russ and C. Stroud, “Non-Intrusive Built-In Self-Test for
FPGA and MCM Applications,” Proc. IEEE Automatic Test
Conf., pp. 480-485, 1995

[23] “Standard Test Access Port and Boundary-Scan Architecture,”
IEEE Standard P1149.1, 1990

[24] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-In
Self-Test for Programmable Logic Blocks in FPGAs (Finally, A
Free Lunch: BIST Without Overhead!)”, Proc. IEEE VLSI Test
Symp., pp. 387-392, 1996

[25] C. Stroud, M. Lashinsky, J. Nall, J. Emmert, and M. Abramov-
ici, “On-Line BIST and Diagnosis of FPGA Interconnect Using
Roving STARs,” Proc. IEEE Intn’l. On-Line Test Workshop, pp.
31-39, 2001

[26] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici,
“Built-In Self-Test of FPGA Interconnect,” Proc. Intn’l. Test
Conf., pp. 404-411, 1998

[27] C. Stroud, A Designer’s Guide to Built-In Self-Test, Kluwer
Academic Publishers, 2002.

[28] N.A. Touba and E.J. McCluskey, “Bit-Fixing in Pseudo-Ran-
dom Sequences for Scan BIST”, IEEE Trans. on CAD, Vol. 20,
No. 4, pp. 545-555, Apr. 2001.

[29] P. Sundararajanand and S. A. Guccione, “Run-Time Defect
Tolerance using JBits,” Proc. ACM Intn’l. Symp. on FPGAs, pp.
193-200, Febr. 2001.

[30] S. Wang, “Low Hardware Overhead Scan Based 3-Weight
Weighted Random BIST,” Proc. Intn’l. Test Conf., pp. 868-877,
2001

[31] Xilinx, Inc., http://www.xilinx.com/products


	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index




