
A Novel Synthesis Technique for Communication
Controller Hardware from declarative Data Communication

Protocol Specifications

Robert Siegmund, Dietmar Müller
Chemnitz University of Technology

Professorship Circuit and Systems Design
09107 Chemnitz, Germany

{rsie,mueller}@infotech.tu-chemnitz.de

ABSTRACT
An innovative methodology for the efficient design of communica-
tion controller hardware for popular protocols such as ATM, USB
or CAN is proposed. In our approach, controller hardware in form
of RTL models is synthesized from a formal specification of a com-
munication protocol. The difference to previously published work
related to hardware synthesis techniques from protocol specifica-
tions is that in our approach a complete communication architec-
ture consisting of both the interacting transaction producer and the
consumer controllers, as well as the interconnect between them,
are synthesized from one single protocol specification in the same
synthesis tool run, thus ensuring conformity of all producer and
consumer controllers to the protocol specification while tremen-
dously reducing the modeling effort for the controller specifica-
tions. The formalism used for protocol specification and a cor-
responding hardware synthesis algorithm from such specifications
are presented. The methodology has been applied to the design
of various communication controllers including IEC14443 Wire-
less SmartCard, ATM and CAN. The novelty and efficiency of our
methodology is demonstrated through comparison to State-of-The-
Art protocol synthesis tools such as [10].

Categories and Subject Descriptors
B.4.4 [Hardware]: Input/Output and Data Communications De-
vices—Performance Analysis and Design Aids; B.5.2 [Hardware]:
Register-Transfer-Level-Implementation—Design Aids

General Terms
Algorithms, Design, Languages

Keywords
Protocol Specification, Controller Hardware Synthesis, Interface-
based Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

1. INTRODUCTION
Today’s digital systems are communication-dominated designs.

They comprise a large number of modules of high functional com-
plexity which communicate with each other by means of high-
performance data protocols. Especially in order to minimize the
physical interconnect between system modules, bit-serial protocols
using a single wire for data transmission such as USB, CAN or
FireWire are extensively applied. However, corresponding proto-
col controllers are control-oriented designs which include complex
state machines. The manual design of such protocol controllers is
thus a tedious, error-prone and time-consuming task.

In this paper, a novel methodology for the efficient design of
communication controller hardware which is especially suited for
(but not limited to) complex, bit-serial protocols is presented. The
methodology is based on synthesis of controller hardware from a
formal high-level specification of the protocol. Compared to previ-
ous work [6],[8],[4],[5],[10], our approach is unique in two aspects:
First, the formalism that is used for protocol specification has been
realized as an extension to the system description language Sys-
temC, called SystemCSV . This ensures that protocol specifications
become an integral part of the system specification and can be sim-
ulated and verified directly in the system context. State-of-the-Art
approaches published to date require the generation of correspond-
ing behavioural models for transaction producer and consumer in
a HDL or C from the protocol specification which have then to be
inserted manually into the system model prior to simulation. The
major drawback is that errors in the protocol description are only
reflected in the simulated behaviour of these modules so that from
the erroneous behaviour the necessary corrections of the protocol
specification must be concluded.

The second aspect is related to the fact that in any kind of com-
munication between two or more system modules usually two dis-
tinct types of interacting controllers are involved: Transaction pro-
ducing controllers, which structure and encode the information to
be transmitted into a signal sequence on a physical communication
medium, and transaction consuming controllers which assemble
this signal sequence and extract the relevant information (see Fig
1). The approach presented in this paper is to the author’s knowl-
edge the first one that generates both transaction producer and con-
sumer controllers in form of RTL models from one single protocol
specification in the same run of the synthesis algorithm. Beside a
tremendous raise in design efficiency and reduced modeling effort
for the protocol specifications, this approach ensures that the be-
haviours of both transaction producer and consumer conform to the
protocol specification, a property which has to be otherwise verified

Controller + Interconnect
Synthesis

Protocol
Verification

SystemCSV

M
od

ul
e

X

ab
st

ra
ct

co
ns

um
er

pr
od

uc
er

ab
st

ra
ct

M
od

ul
e

YTransaction

P
ro

du
ce

r

co
nt

ro
lle

r
P

ro
to

co
l

C
on

tr
ol

le
r

C
on

su
m

er
P

ro
to

co
l

M
od

ul
e

X

M
od

ul
e

Y

physical interconnect

S
ys

te
m

 S
yn

th
es

is
 M

od
el

S
ys

te
m

 S
pe

ci
fic

at
io

nProtocol Specification

S
ys

te
m

C
 +

 S
ys

te
m

C
(S

ys
te

m
C

)
S

V

Figure 1: Overview over the proposed Methodology

in extensive simulations using protocol reference models. How-
ever, in case verification of the controller implementation against
the protocol specification is required, in the presented approach the
protocol specification also serves as a protocol checker during sys-
tem simulations (Fig. 1). Details on this can be found in [9].

1.1 Related Work and Motivation
High-level communication modeling concepts are an integral part

of a large number of State-of-the-Art system modeling languages:
So do SystemC [11] and SpecC [2] provide the concept of inter-
faces and channels which are an abstraction of the signal level
communication and enable the specification of hierarically struc-
tured communication protocols. These modeling concepts support
an interface-based design style [7] through separation of commu-
nication and computation. However, the communication modeling
concepts in these languages have been primarily designed for simu-
lation purposes and to date no feasible hardware synthesis method-
ologies have been presented for related interface protocol descrip-
tions.

A number of publications have addressed synthesis of commu-
nication controller hardware from protocol descriptions. In [8] the
system Clairvoyant was presented which generates controller hard-
ware from production-based protocol specifications. An extension
to this system is the Protocol Compiler [10], which uses a graphical
hierarchical regular expression based language for protocol speci-
fication. In [4],[5] regular grammars are used for protocol descrip-
tions which can be synthesized into a VHDL description of a corre-
sponding protocol controller by means of the PRO-GRAM system.

The drawback of these synthesis approaches is that the formalisms
used to capture the protocol specification are not part of a system
modeling language. Therefore, no verification support for the pro-
tocol is offered by the standard simulation tools, and the methods
are complicated to integrate into existing design flows. Another
disadvantage that is common to all formalisms for communication
protocol specification presented so far is that in order to synthe-
size a transaction producer/consumer pair, the protocol must be de-
scribed from two different views: the transaction producer view
and the transaction consumer view. Therefore, for the same proto-
col two different specifications have to be developed which results
in a decrease in design efficiency and increases verification effort.

The rest of the paper is organized as follows: In Sect. 2 the
formalism used for protocol specification is presented. Section 3

describes our approach to synthesize controller hardware from such
specifications. The synthesis results obtained for various protocols
such as IEC14443 SmartCard, ATM and CAN are given in Sect. 4.
Section 5 concludes the paper.

2. SPECIFICATION OF DATA COMMUNI-
CATION PROTOCOLS

The formalism which is used to capture specifications of data
communication protocols is an extension to SystemC and named
SystemCSV [9]. In SystemCSV , system modules (which them-
selves can be either hardware or software components) communi-
cate through transmission of communication items over abstract
channels. The information payload carried by an item is specified
by a set of item parameters. Further item attributes describe the di-
rection and duration of item transmission [9]. Items are used to de-
scribe communication at different levels of abstraction. So, taking
the USB bus as an example, a communication item may describe
a complete USB transaction, the data field within this transaction
or just a single bit of information in the serial USB bit stream.
SystemCSV provides three types of interface items which are dis-
tinguished by the level of communication abstraction: TRANS-
ACTION items are used to describe multi-directional communica-
tion such as transfers with acknowledge phase. MESSAGE items
describe unidirectional information transfers from a source to a
target. Finally, the PHYMAP item provides a means for clock-
synchronous mapping of transactions and messages and their pa-
rameters to states of physical signals which eventually represent
the interconnect between hardware modules. Sample specifications
for these items are given in Lst. 1, which is a description of the
ISO/IEC14443 serial protocol used for wireless communication be-
tween a SmartCard transponder and a terminal[1].

a) SERIAL Composition b) PARALLEL Composition

c) REPEAT Composition d) SELECT Composition

n times

p <=> p 0

1

2

p p <=> p

p <=> p

static
loop

conditioned
loop

loop
dynam.

Item AItem A

Item AItem A

Item A Item B

Item A

Item C

Item BItem C

Item A Item A Item B Item A

Item C

Item B

cond

Figure 2: Item Composition Schemes used for Protocol Specifi-
cation in SystemCSV

For transaction and message items a transmission protocol can
be defined in form of a COMPOSITION of constituting lower
level items. For that purpose SystemCSV provides four different
composition schemes (Fig. 2), which are used to describe a trans-
mission protocol of an item in terms of an execution schedule of
a set of constituting lower level items. The SERIAL and PAR-
ALLEL schemes execute a number of items sequentially or in
parallel, respectively. In addition to that there are two parameter-
controlled schemes which allow for alternative (SELECT scheme)

or repeated item execution (REPEAT). The latter two schemes en-
able the specification of protocols which involve data-dependent
branching and looping. Extensive investigations into State-of-the-
Art serial communication protocols showed that virtually any non-
pipelined, point-to-point or single-master broadcast protocol can be
modeled through combination of these four schemes.

SV_TRANSACTION(IEC14443Frame) {

/* parameters */
SV_Param<sc_uint<8> > framelen;
SV_ParamArray<sc_uint<8>, 8> data;

SV_TRANSACTION_CTOR(IEC14443Frame) {
SV_FROM << "TX"; SV_TO << "RX";
...
/* protocol declaration */
SV_COMPOSITION(

SV_SERIAL(
SoF_M(),
SV_REPEAT(z,framelen,

Data_M(framelen,data)),
EOF_M()));

} };

/* specifications of SoF,Data,EoF left out*/

SV_PHYMAP(PHYBit) {
SV_Param<bool> b;
SV_SignalRef<bool> XD;
SV_PHYMAP_CTOR(PHYBit) {
...
SV_ASSOCIATE(XD-b);

};

Listing 1: Specification of the ISO/IEC14443 Protocol

A further SystemCSV language construct used for protocol spec-
ification is the SV_SEQBEHAVIOUR statement which is used in
composition schemes to embed the execution of sequential behavi-
ours given as a C++ method in between item executions. Such
sequential behaviours must execute in zero time and are generally
used to modify local state of communication items, so that with
the aid of parameter-controlled composition schemes which evalu-
ate the item state the execution of items can be made dependent on
previous executions of this or other items. Example applications
for embedded sequential behaviours are CRC computations or au-
tomatic bit stuffing inside bit transfer messages. In fact, the class
of protocols which can be described with this approach is a a su-
perset of the class of protocols which can be specified with regular
expressions. In particular all protocols which can be expressed as
context-free grammars recognized by a stack automaton of stack
size 1 can be modeled.

It has to be pointed out that SystemCSV protocol specifications
are purely declarative specifications and, in contrast to behavioural
specifications, are not directly executable. Instead, it is the task of
a corresponding simulation or synthesis algorithm to derive in the
elaboration phase two distinct, executable behaviours from such a
protocol specification:

Definition 1. The Decompositional Behaviour defines how a
communication item is decomposed over time into a set of consti-
tuting lower level items according to its protocol. It furthermore
defines how the set of item parameters are mapped to the formal
parameters of these lower level items. For synthesis, it specifies the
behaviour of the transaction producer controller.

Definition 2. The Compositional Behaviour corresponds to the

inverse decompositional behaviour and defines how a set of consti-
tuting lower level items are assembled over time according to the
protocol in order to generate a higher level item. It furthermore de-
fines how the information payload contained in the parameters of
the assembled item is reconstructed from the parameter values of
the constituting items. For synthesis, it specifies the behaviour of
the transaction consumer controller.

Modules which communicate using items such as IEC14443 Frames
would then be specified in SystemCSV as follows:

SC_MODULE(Transponder) {
SV_InterfacePort<IEC14443> RX;
SV_InterfacePort<IEC14443> TX;

void send_thread() {
TX.sv_send(TX->IEC14443Frame(32,data));

}
void receive_thread() {

RX.sv_receive(RX->IEC14443Frame(len,data));
}

}
Listing 2: Module Specification with Item Communication

3. CONTROLLER SYNTHESIS

3.1 Overview
Fig. 3 visualizes the steps required to automatically transform

a SystemC specification containing SystemCSV protocol specifica-
tions into a model which can be further synthesized with e.g. the
Synopsys CoCentric Compiler. The input to our synthesis algo-
rithm is a complete SystemC system model, consisting of two or
more SystemC modules which communicate using one or more
SystemCSV interface items. The item transmission protocols are
specified in terms of a SystemCSV protocol description. Module
and interface descriptions are parsed and transformed into an in-
termediate representation. For the protocol description a protocol
flow analysis is then performed which results in a protocol flow
graph (PFG). In the next step both transaction producer and con-
sumer are generated from this PFG in form of extended FSM mod-
els. These models replace the abstract channel interfaces in the
communicating modules. The last step is the generation of synthe-
sizable SystemC code for the communicating modules which have
the descriptions of the protocol controllers included and which are
connected by physical wires and signal level interfaces.

3.2 Generation of Protocol Flow Graphs
In the protocol analysis step, a protocol flow graph (PFG) is con-

structed from a SystemCSV item protocol description.

Definition 3. A transaction protocol flow graph is a directed cyclic
graph defined by the tuple

PFG :=< S,T,P,C, I,F >

where S denotes the set of protocol states with I ∈ S being the initial
state and F ∈ S the final state, T ⊆ S×S the set of state transitions,
P the set of transaction parameters and C the set of signals which
constitute the physical communication channel.

PFG transitions t ∈ T are labeled with composition and decom-
position guards C/D Cond , composition and decomposition actions
C/D Action and signal associations χ, denoted by the symbol <=>.
The latter describe an unambiguous mapping of a parameter p ∈ P
or a constant value to a channel signal c ∈ C. Transition guards

SystemCSVSystemC/ Parser

Producer Controller
Synthesis

Consumer Controller
Synthesis

SystemCSVSystemC (SV) SystemC (SV)

Protocol Flow Analysis

SystemC Writer

Transaction Level
Interface
Replacement

Transaction Level
Interface
Replacement

protocol descriptionmodule description
sender transaction

module description
receiver

synthesizable SystemC system model

Intermediate
Format

Protocol Flow
Graph

Sender
Module

Transaction
Consumer
Controller

Receiver
Module

FSM modelFSM model

SystemC system model

Description Description

Transaction
Producer
Controller

Figure 3: Transformation of a SystemCSV model into a synthe-
sizable SystemC model

condition the transitions between graph states. Conditions can be
described in terms of values of parameters or state variables. Tran-
sition actions describe actions to be performed when a transition
is executed. Such actions include the modification of local state
variables or the execution of embedded sequential behaviours. If
a transition has multiple actions attached, the order of execution is
not determined. Guards and actions are classified into composition
specific, denoted by C, and decomposition specific ones, denoted
by D, which accounts for the fact that a PFG represents both com-
positional and decompositional behaviour of a transaction protocol.
For PFG generation from a SystemCSV transaction protocol spec-
ification we have chosen a template-based construction approach.
For each SystemCSV composition scheme as well as for each item
type, a corresponding PFG template is stored in a template library.
The contents of this library is shown in Fig. 4. For the SELECT
scheme two different templates exist. Which one is chosen depends
on the selection parameter being a reversible parameter (e.g. during
composition the parameter value is established depending on the
item matched by the SELECT scheme) or being a constant (during
composition a certain item is expected to be matched). PFG gener-
ation is done simply through appropriate recursive nesting of these
templates, starting with the transaction/message template. This re-
cursive nesting process completes with the insertion of PHYMAP
item templates containing the channel signal associations. Care
must be taken when transaction item protocols involve a turnaround
in the direction of information flow (e.g. handshaking protocol).
This is indicated by the fact that lower level items differ in their
FROM,TO direction attributes (see Lst. 1). In this case, for all
items which differ in their logical transmission direction from the
direction of the first item in the transaction composition, in the fur-
ther PFG construction the C and D labels in the guards and actions

I

ε

Sig3 <=> const

ε

G

Sig2 <=> param2
Sig1 <=> param1

G

ε

D T_start

C T_start C

D T_done<=1

T_done<=1
I

I F

F

FG

PHYMAP PFG Template

Transaction/Message PFG Template

(a) Transaction/Message/-
PHYMAP PFG

I

IB

C

AI

B

A

ε

ε

I

ε

ε

C CF

B

F

FA

F

(b) SERIAL/static RE-
PEAT PFG

D C>0

v>0

D

C

D

v<=0

D

D

I

v<=C

v−−

C<=v

v==0

CC

A

C==0

C<=1

D
I

C

B

v<=1

C==1

S1 S2
ε

ε

I

D

ε ε ε

v++

I

C

A

C<=0

C

ε
ε

ε

ε D C>1

F

F F

FAAAA

BB

(c) dynamic REPEAT PFG

A ε

ε ε

C

D

C==false

C==false

F

F

A AI I S1

C

D

C==true

C==true

(d) WHILE..REPEAT PFG

C P:=valueZ

C P:=value1

ε

ε

ε

ε

C

B

A

. . .D P==value2 P:=value2C

I

P==valueZ

ε

ε

I

D

D

P==value1 I

I

F

F

F

FB B

CC

AA

(e) SELECT PFG (I)

C P==value2

D

P==value2D

P==valueZ

ε

I
ε

ε

C

C

B

A

. . .

I

P==valueZ

ε

P==value1

ε

ε
C

IP==value1

I

D

F

F

F

FB

CC

AA

B

(f) SELECT PFG (II)

Figure 4: Protocol Flow Graph Templates used for PFG con-
struction

must be swapped for this item instance. Finally, when PHYMAP
items are inserted, all signal associations are labeled with C if such
swapping has been performed for the instancing higher level item.
Otherwise they are labeled with D. In order to be able to gener-
ate PFG’s also for non-deterministic protocols (specified through
dynamic REPEAT or SELECT compositions), PFG templates are
modeled using ε-transitions which corresponds to the Thompson
construction of NDFA-based pattern matchers [3]. In our case,
ε-transitions describe PFG state transitions which are executed in
zero time while non-ε transitions in the PFG take exactly one clock
cycle to execute. In Fig. 5 an example PFG is shown for IEC14443
frame protocol which was given in Lst. 1.

Ccompute_crc

framelen:=1C

v−−D

D v>0

framelen:=vC

D v==0

D

D D

D D

framelen>1D

D D

D T_start==1

C T_start==1

ε

D D

ε

C

T_done:=1D

T_done:=1

ε

Dcompute_crc

ε

D framelen==1

v++C

D C>0

v:=0C

v:=framelenD

ε

ε

ε

ε

framelen:=0C

D C==0

ε

ε

S12

IS3S2S1
XD <=> ’0’XD <=> ’1’ ...

F

XD <=> data(v)(0)XD <=> ’0’

...

S6

S21 S20 S18

S22

S S9

S19
XD <=> ’1’ XD <=> data(v)(7)

S14

XD <=> ’0’

...

XD <=> ’1’ XD <=> ’1’S32 S31 S30...

Figure 5: PFG for the IEC14443 Frame Protocol

3.3 Controller Generation from PFG
After successful generation of the PFG from a SystemCSV proto-

col description, the two distinct controllers representing transaction
producer and transaction consumer have to be synthesized from the
PFG. The first step is to generate two distinct finite automata for
producer FAD and consumer FAC. FAD is generated in the follow-
ing way: (FAC is obtained in an analog fashion with C and D labels
swapped)

• erase all PFG composition guards and actions (labeled C)
from the PFG

• transform signal associations labeled with D into a channel
signal assignment

• transform signal associations labeled with C into a transition
condition.

The resulting automaton graphs still contain ε-transitions which
must not exist in the final controller RTL description in order to
be synthesizable into hardware. Thus, in the next step a trans-

χ 2χ1

ε

Q0

Q1 s == p2s == p1

ε

Q2

Q4

ε

Q3

Q5

G1

A1

G2 A2

(a) FA graph with labeled ε edges

Q4

Q0

Q5

s == p1 s == p2

χ χ1 2

G1 G1

A1

G2 A1

A2

(b) condensed FA
graph without ε
edges

Figure 6: Transformation of FA graph with ε transitions into a
condensed FA without ε transitions

formation is applied to the two automaton graphs which gener-
ates equivalent graphs without ε-transitions. A corresponding algo-
rithm used in DFA construction for lexicographical scanners would
compute the ε-closure of a state, e.g. the set of all states reach-
able from this state by ε transitions and then simply re-target non-ε

transitions ending in this state to all states in the ε-closure. How-
ever, since in our case ε-transitions may have guards and actions
attached which need to be handled appropriately, a different ap-
proach is chosen. The idea is to traverse the FA graph from each
state having outgoing ε-transitions in order to find all paths of the

form QS
ε−→ QA

χ−→ QB
ε−→ QT . For each such path, a new tran-

sition QS
χ−→ QT is created. Furthermore all guards and actions

along the path are collected and annotated on this transition. After
all such paths have been identified, ε-transitions and consequently
isolated states are removed from the automaton graph. The result
is an equivalent condensed graph as depicted in Fig. 6. The con-

Q0

Q1 Q2

A2
A1

G1

(a) non-deterministic FA
graph

Q0 Ζ0

Q2{Q1,Q2}
Ζ1 Ζ2

G1

G1A1

A2 A2

(b) equivalent deter-
ministic FSM graph

Figure 7: Transformation of non-deterministic FA into deter-
ministic FSM

densed graphs for FAC,FAD are in most cases non-deterministic
e.g. they contain states which have outgoing transitions to different
target states with the same transition conditions. Non-determinism
results from the use of the dynamic REPEAT or SELECT com-
position in protocol descriptions. The construction of a determin-
istic FSM from the possibly non-deterministic automaton graphs
poses no problem since a deterministic FSM can be obtained using
the subset construction algorithm [3]. This algorithm computes all
clusters of target states reachable from a source state for a certain
transition condition. We extended this algorithm for our purposes
in order to correctly handle transition guards and reassign actions
to the resulting FSM graph. An example for this transformation
is shown in Fig. 7. The non-deterministic FA has two transitions
leaving State Q0, where one transition is conditioned with guard
G1 and the other is unconditioned. Furthermore are actions A1,
A2 attached to these transitions. In case the condition of guard
G1 evaluates to true, both states Q1 and Q2 are reachable from
Q0, resulting in the state subset cluster Z1 = {Q0,Q1}. When this
transition is taken, both A1 and A2 must be executed which are
consequently attached to the transition Z0 −→ Z1. If G1 evaluates
to false, the only reachable state is Q2, thus Z2 = Q2 and A2 must
be executed which is annotated to transition Z0 −→ Z2.

3.4 Controller Integration
The last step in the synthesis process is the integration of the

generated controller models into the models of the communicating
modules. In this step, also the transaction level interfaces of these
modules, represented by the sv_InterfacePort objects (see
Lst. 2), are replaced by a signal level interface with a set of phys-
ical pins which are then interconnected between the modules. (see
also Fig 1). The sv_send(),sv_receive()methods used for
communication in the SystemC system specification are replaced
by a conditional loop containing a single SystemC wait() state-

Table 1: Synthesis Results for various Protocol Specifications (Area in Virtex Slices, Clock Frequency in MHz)
COSYNE Protocol Compiler

Protocol Producer Controller Consumer Controller Producer Controller Consumer Controller
Stats Tran fmax A Stats Tran fmax A Stats Tran fmax A Stats Tran fmax A

IEC 14443 43 46 85.3 94 77 131 78.5 126 49 116 83.6 91 256 410 77.2 134
ATM 56 62 85.3 52 9 25 63.8 56 56 62 85.9 51 9 22 65.7 54
CAN 452 1022 58.2 271 421 1217 51.7 334 512 1132 50.3 258 476 1342 48.2 321

ment. This loop tests the T_done signal of the generated con-
trollers and blocks the execution of the current process until the
corresponding protocol controller which now performs the func-
tionality of the former send() or receive() statement has either sent
or received a transaction.

4. EXPERIMENTAL RESULTS
The proposed protocol synthesis algorithm has been implemented

with about 25000 lines of C++ code in a tool called COSYNE
(Controller Synthesis Environment) and has been applied to syn-
thesis of hardware controllers for transaction producer/consumer
pairs for three different protocols of sufficient complexity. The
synthesized protocol examples include the IEC14443 SmartCard
communication protocol as well as popular peripheral device inter-
connect protocols such as CAN. Furthermore was an ATM protocol
specification synthesized as an example for a byte-serial protocol.
For the ATM example, the protocol compiler models available as
demos in the Synopsys distribution were used and the correspond-
ing SystemCSV protocol description has been developed on their
basis. Finally, for the CAN example controllers were generated
from a protocol description which defines the four basic CAN mes-
sages (Data/Remote/Overload/Errorframe).

Table 1 shows the results of the controller synthesis with COSYNE
in terms of the number of controller states and transitions in order
to give an impression of the complexity of the generated RTL con-
troller models. Furthermore are area and clock frequency measures
shown which were obtained through further logic synthesis of the
controller models for a XILINX Virtex V100CS144-4 using Syn-
opsys FPGA II compiler. For that purpose, the SystemC controller
models generated by COSYNE had to be manually converted to
equivalent VHDL RTL models since SystemC synthesis tools were
not available yet to the authors. Functional equivalence of the
VHDL models resulting from COSYNE and from Protocol Com-
piler, respectively, was verified through pairwise simulation of a
COSYNE generated producer controller in combination with a Pro-
tocol Compiler generated consumer controller and vice versa. For
comparison purposes, the synthesis results obtained for the same
protocols using Synopsys Protocol Compiler are listed. In order to
get comparable results, Protocol Compiler options were set to gen-
eration of single process controller architectures with binary min-
encoded state machines. The results suggest that the controllers
synthesized with COSYNE are in terms of performance and area
consumption comparable to those generated with protocol com-
piler. In some cases (IEC14443 and CAN producers) even a smaller
number of states and transitions were obtained with COSYNE, re-
sulting in performance and area improvements of the controller im-
plementations.

5. CONCLUSIONS AND FUTURE WORK
We presented a novel design methodology for communication

controller hardware based on synthesis from declarative protocol
descriptions. A formalism for protocol specification was presented

as integral part of the system modeling language SystemC which
enabled the specification, verification and synthesis of protocols in
the context of the system description. Furthermore we presented a
synthesis algorithm which generates from a single SystemCSV pro-
tocol specification all interacting transaction producer/consumer con-
trollers. The approach could be especially interesting for the de-
sign of future Networks on Chips which are protocol-dominated
designs and integrate transaction producer and consumer of a pro-
tocol onto a single chip. The feasibility of our methodology was
shown by means of various protocol examples which were cap-
tured in SystemCSV and synthesized into RTL controller models
using the COSYNE tool. Further work will address the problem of
modeling and synthesis of pipelined protocols such as AMBA as
well as protocols which involve split transactions. Other work will
address the extension of the proposed methodology to the synthesis
of interfaces between software and HW/SW components.

6. REFERENCES
[1] Fujitsu FME GmbH, Dreicheich/Buchschlag. BabyFace2

Chip Specification, 1999.
[2] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao.

SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, Boston/Dordrecht/London, 2000.

[3] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading,
MA, 1986.

[4] J.Oberg, A. Kumar, and A. Hemani. Grammar-based
hardware synthesis of data communication protocols. In
Proceedings of the 9th International Symposium on System
Synthesis, La Jolla, CA, November 1996.

[5] J. Oberg, A. Kumar, and A. Hemani. Grammar-based
Hardware Synthesis from Port Size Independent
Specifications. In IEEE Transactions on VLSI, volume Vol.
8, pages pp. 184–194, April 2000.

[6] P. Probert and K. Salesh. Synthesis of communication
protocols: survey and assessment. In IEEE Transactions on
Computers, Special Issue on Protocol Engineering, volume
Vol. 40, pages pp. 468–476, 1991.

[7] J. Rowson and A. Sangiovanni-Vincentelli. Interface-based
design. In Proceedings of the 34th Design Automation
Conference, Anaheim, CA, 1997.

[8] A. Seawright. Grammar-based Specifications and Synthesis
for Synchronous Digital Hardware Design. PhD thesis,
University of California, Santa Barbara, June 1994.

[9] R. Siegmund and D. Mueller. SystemC-SV: Extension of
SystemC for Mixed Multi Level Communication Modeling
and Interface-based System Design. In Proceedings of the
Conference on Design, Automation and Test in Europe
(DATE 2001), Munich, Germany, 2001.

[10] SYNOPSYS Inc. Protocol Compiler User Manual, 1998.
[11] Synopsys Inc., CoWare Inc., Frontier Design, Inc.,

http://www.systemc.org. SystemC User’s Guide, 2000.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

