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ABSTRACT
This paper presents an new direct–fitting method to generate posy-
nomial response surface models with arbitrary constant exponents
for linear and nonlinear performance parameters of analog inte-
grated circuits. Posynomial models enable the use of efficient ge-
ometric programming techniques for circuit sizing and optimiza-
tion. The automatic generation avoids the time–consuming nature
and inaccuracies of handcrafted analytic model generation. The
technique is based on the fitting of posynomial model templates
to numerical data from SPICE simulations. Attention is paid to
estimating the relative ‘goodness–of–fit’ of the generated models.
Experimental results illustrate the significantly better accuracy of
the new approach.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits ]: Design Aids; B.8.2 [Performance
and Reliability ]: Performance Analysis and Design Aids; I.6.5
[Simulation and Modeling]: Model Development

General Terms
Performance, Design, Algorithms

Keywords
Performance Modeling for Analog Circuits, Posynomial Response
Surface Modeling, Geometric Programming

1. INTRODUCTION
The sizing of transistor–level analog integrated circuits is a time–

consuming and thus expensive step in the design of analog and
mixed–signal circuits. Automation of this process is currently an
important research target in the electronic design automation com-
munity.
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Figure 1: Comparison of the existing approach from [5] and
the novel proposed direct–fitting approach

In the course of that research, it was demonstrated that the sizing
of analog integrated circuits, like amplifiers, switched–capacitor fil-
ters, LC oscillators, etc., can be formulated as a geometric program
[1, 2]. In that approach, the performance characteristics of the cir-
cuits are represented as symbolic equations written in posynomial
format.

The advantages of a geometric program are multiple [3]:
1. The problem is convex and has only one global optimum.

2. The optimization is not dependent on the starting point.

3. Infeasible sets of constraints can be identified.

4. The geometric program’s optimum can be found extremely
efficiently, using interior point methods [4], even for rel-
atively large problems.

The problem with the approaches in [1] and [2], however, is that
the symbolic equations have to be derived manually, and that non-
posynomial expressions have to be approximated manually into
posynomial format. Both steps are time–consuming and can re-
sult in large inaccuracies, since e.g. also the device models have to
be cast in posynomial format [1].



Recently, a method to automatically generate posynomial mod-
els for linear and nonlinear performance characteristics has been
presented in [5]. The outline of the method has been sketched
on the left–hand side of Fig.1. The method first calculates the
performance of a circuit for a set of samples that is composed us-
ing techniques fromdesign of experiments. The data points can be
generated using full–accuracy SPICE simulations. Then, a second–
order polynomial template is fit to the sampled performance data.
Finally, this model is approximated to render it posynomial. In this
way it is possible to generate posynomial models of the form

p(X) =
∑

k=−1,0,1

∑
l=−1,0,1

¬((k=−1)∧(l=−1))


 n∑

i=1

n∑
j=1

(
ci,k, j,l xk

i xl
j

)
 (1)

with n the number of design parameters and allci,k, j,l positive
constants.

However the method presented in [5] exhibits some limitations
and problems:

1. Only models of the type of (1) can be generated, i.e. the
exponents are restricted to integers between -2 and 2.

2. The fit quality for larger fitting hypercube sizes is poor.

3. Problems concerning numerical stability occur.
This paper describes an alternative direct–fitting approach that

overcomes these problems. The idea behind the proposed method
can be seen on the right–hand side of Fig.1. Again, the perfor-
mance of the circuit is sampled using numerical simulations. But
instead of first fitting a polynomial model and then approximat-
ing it, we immediately fit the wanted posynomial model using an
optimization–based fitting technique. The strong points of the pro-
posed method are:

1. its generality: any posynomial model with arbitrary con-
stant exponents for any linear and nonlinear circuit char-
acteristic can be fitted;

2. its superior fit quality;

3. its capability of generating sparse (i.e. compact) models.
The paper is organized as follows. Section2 will provide some
theoretical background concerningposynomial performance mod-
eling. In section3, we will concisely indicate the principles of the
indirect–fitting approach of [5], followed by a detailed description
of our novel direct–fitting approach. To show the greatly improved
performance, the experimental results obtained with our method
will be compared in section4 to the ones obtained in [5]. Finally,
section5 draws some conclusions and provides some ideas for fu-
ture research.

2. POSYNOMIAL PERFORMANCE MOD-
ELING

2.1 Performance modeling
Consider a systemS transforming an input signalE into an out-

put signalY (Fig. 2). The systemS is governed by a set of design
parametersX that influence its behavior.

Y = S(E, X) (2)

The mathematical modeling of this input–output relationship is called
behavioral modeling. In this paper, we are not directly interested in
this relationship as such. However, the combination(Y, E) allows
us to determine a particular performancepi of the system, subject
to excitationY . Gathering a set of particular performancespi into
a vector gives us an idea of the total performance of the system.

S

X

E Y

P

Performance model

Behavioral model

Figure 2: Electronic systemS parametrized by X with excita-
tion E and responseY leading to a performanceP

Therefore, seen from a designer’s point of view, the key relation-
ship is:

P = F(X) (3)

The mathematical modeling of this relationship is calledperfor-
mance modeling.

2.2 Posynomials & Geometric Programming
Let X = (x1, x2, x3, . . . , xn)

T be a vector of real, positive vari-
ables. An expressionf is calledsignomialif it has the form

f (X) =
m∑

i=1


ci

n∏
j=1

(
x
αi j
j

)
 (4)

with ci ∈ R andαi j ∈ R. If we restrict allci to be positive (ci ∈
R+), then the expressionf is calledposynomial. A posynomial
consisting of a single term is called amonomial. The signomial
fitting problem now can be defined as:

Signomial fitting problem:

Given a set of performance data samples
{(

X1, pi,1
)
,
(
X2, pi,2

)
, . . . ,

(
Xa , pi,a

)}
and a model template of type (4) with given exponentsαi j ∈
R,
determine the coefficientsci , with ci ∈ R, such that
∥∥∥[

f (X1), f (X2), . . . , f (Xa)
]T − [

pi,1, pi,2, . . . , pi,a
]T

∥∥∥
2

(5)
is minimal.

We use an Euclidean norm in (5) for three reasons:
1. it renders (5) smooth;

2. it causes a good centered spread of the sampling data
around the model; and

3. it allows to solve the signomial modeling problem as the
least–squares solution of an overdetermined system, which
in turn reduces to solving a set of linear equations.

The posynomial fitting problem then reduces to:

Posynomial fitting problem:

Solve the signomial fitting problem with the extra constraint

ci ≥ 0, ∀i ∈ [1 : m] (6)

Whereas the signomial form has better fitting properties, the posy-
nomial form allows to formulate analog circuit sizing as a geomet-
ric program [1, 2].



A (primal) geometric program is the constrained optimization
problem:

minimize f0(X)

with the constraints:fi (X) ≤ 1, i = 1, . . . , p (7)

g j (X) = 1, j = 1, . . . , q

xk ≥ 0, k = 1, . . . , n

with all fi (X) posynomial and allg j (X) monomial. By substitut-
ing all variablesxi by zk = log (xk) and taking the logarithm of the
objective functionf0 and every constraintfi , g j , it can readily be
seen that the transformed problem is a convex optimization prob-
lem. Because of this, it has only one global optimum. In addition,
this optimum can be found very efficiently even for large problems,
using interior point methods [4].

In view of the canonical geometric programming formulation,
all performance constraints must be modeled in the normal form of
(7). Therefore, we will scale the performance variablespi in one
of the two following ways:

• Linear scaling:

pi,scaled= 1 ± 1

W

(
pi − pi,spec

)
(8)

with W an arbitrary weight factor.

• Logarithmic scaling:

pi,scaled= 1 ± 1

W
log10

(
pi

pi,spec

)
(9)

with W an arbitrary weight factor.
The scaling formulae (8) and (9) suggest a dependence of the mod-
els on the design specifications. This is only partly true. Indeed,
the direction of the inequality may force us to fit−pi instead of the
original performance parameterpi .

1 The reason for this is obvi-
ous: changing the sign of a posynomial function does not preserve
its posynomiality. However, the exact value of the specification
(e.g. GBW≥ 1GHz) is not an intrinsic part of the fitted model as
the normalization does not harm the posynomiality of the models.

3. POSYNOMIAL MODEL GENERATION
In this section we will describe two techniques to fit posynomial

modelspi = f (X) (see (4)) with given constant exponentsαi j to
a set of sample data(Xk , pi,k ):

1. theindirect–fitting method, as it is presented in [5], and

2. adirect–fitting method, the subject of this paper.
Both methods try to generate a posynomial response surface model

[6] based on the generated performance samples. In section4, the
two methods will be compared using experimental results.

As the performance generation part of the two techniques is identi-
cal (see Fig.1), we will briefly treat it in advance.

Fig. 3 illustrates how the set of performance samples is com-
posed. The input samplesXk are generated using techniques from
Design of Experimentsin order to optimize the effectiveness of the
sample set in the fitting process [7]. This input vector controls the
values of (operating point) device currents and voltages. TheOp-
erating Point Driven Solvertransforms these values into the corre-
sponding transistor geometries and bias currents and voltages. To-
gether with the analysis cards needed for the performance extrac-
tion, this results in a fully specified SPICE netlist. The consecutive

1This explains the± sign in (8) and (9)

OUTPUT
SPICE

P

PkXkExperiments
Design of OPD

Solver
SPICE

NETLIST SPICE EXTRACTOR

Figure 3: Performance generation outline

SPICE simulation results in an output file containing the simula-
tion data. Afterwards, an automatically generated extractor script
can distill the performance data. This concludes the part common
to both methods. Note also that all these required simulations can
be executed in parallel on a network of computers.

3.1 Indirect–fitting method
The indirect–fitting method is based on the fact that the signo-

mial fitting problem reduces to solving an overdetermined set of
linear equations in the least–squares sense when using an Euclidean
norm in (5). The outline of the indirect fitting method is depicted
in Fig. 4.
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Figure 4: Outline of the indirect fitting method

The data set
{(

X1, pi,1
)
,
(
X2, pi,2

)
, . . . ,

(
Xa, pi,a

)}
is first trans-

formed into a data set that is located symmetrically around the ori-
gin of theU plane. Afterwards a second–order polynomial is fit
to these data, such as to minimize the least squares error in the
sampling points. Finally, the second–order polynomial is approxi-
mated by a posynomial form, i.e. the resulting model. The nature
of the posynomial approximation step is to minimize the (nominal
and first derivative) error in the center of the fitting hypercube. The
details of this approximation can be found in [5].

Notice that the axis transformation was introduced to avoid the
unstable solution of the least–squares fitting method that occurs in
the case of asymmetrical data. Because of the axis translation, the
indirect–fitting method can only generate models with integer ex-
ponents.

3.2 Direct–fitting method
The direct–fitting method solves theposynomial fitting problem

directly. For this purpose, we developed a constrained minimiza-



tion algorithm. The poysnomial fitting problem can be rewritten as
a single–objective convex optimization problem:

minimizeψ(C) =
a∑

t=1


 m∑

i=1


ci

n∏
j=1

(
x
αi j
j,t

)
 − pi,t




2

(10)

subject toci ≥ 0, ∀i ∈ [1 : m] (11)

with x j,t and pi,t respectively the value ofx j and the value ofpi

at thet th experiment. The goal function (10) is a positive semi–
definite second–order polynomial restricted to a convex constraint
set. Therefore, the optimization problem is convex.

The entire fitting algorithm can be found in Fig.5. This algo-
rithm makes use of a boolean variable,isposy, a counter,relcntr,
and a real variable,ψprev. It also assumes thatc1 is the coefficient
of the model’s constant term.

1. composeψ(C)
2. setψprev = +∞
3. do

3.1. do
3.1.1. minimizeψ(C) using a conjugate–gradient de-

scent untilC contains a negative component or
until a local stop criterion has been fulfilled

3.1.2. setisposy= true
3.1.3. for j = [2 : m], do

3.1.3.1. if (c j < 0), then
3.1.3.1.1. c j = 0
3.1.3.1.2. setisposy= false

3.1.4. setrelcntr = 0
3.1.5. for j = [2 : m], do

3.1.5.1. if ((c j == 0) ∧ (∇C, j (9) < 0)),
then
3.1.5.1.1. releasec j
3.1.5.1.2. relcntr = relcntr + 1

3.1.5.2. else
3.1.5.2.1. fixc j

until isposy
3.2. if (relcntr == 0), then

3.2.1. stop
3.3. if ((ψ(C)− ψprev) < ε), then

3.3.1. stop
3.4. else

3.4.1. setψprev = ψ(C)
3.4.2. releasec j that offers the largest axis–wise de-

scent
forever

Figure 5: The direct–fitting algorithm

This algorithm has proven to be better than any other algorithm
(interior–point algorithms with both external and internal barrier
functions) we tested.

Besides the improved fitting capabilities (that will be demon-
strated in section4), this algorithm exhibits two clear advantages
over the indirect approach:

• it is capable of fitting model coefficients of posynomial
models witharbitrary real exponents, not only integers.

• the models it generates are sparse, i.e. a lot of the co-
efficients of the composing monomials are zero. This is
advantageous for the needed CPU time when using these
models in sizing applications afterwards.

3.3 Model quality assessment
In order to assess the fit–quality of the generated models, we

use the quality–of–fit parameterq, defined in [5]. This allows a

fair comparison between the indirect–fitting method and the direct–
fitting method.
The starting point for this parameter is the root mean square of the
deviation in thea sampling points. This parameter is then normal-
ized by division with the performance range of the sampling points:

q =
√∑a

k=1 ( f (Xk)− pk)

a
[
c + (

maxak=1 pk − mina
k=1 pk

)] . (12)

In (12), c is a constant parameter to avoid error overestimation
when the performance range approaches zero. If we reuse the sam-
pling points used during the fitting process, then this figure is:

• computationally cheap (no extra simulations are needed),
and

• easy to assess: a quality larger than 1 suggests a bad fit.
However, using verification points located within the fitting hyper-
cube (not coinciding with the sampling points) yields a more reli-
able verification yardstick. In addition, the use of orthogonal arrays
[8] (the sampling scheme that is used in [5]) locates the samples at
the fitting hypercube’s boundaries. This inherently disfavors the
indirect–fitting approach.

We will therefore use the same three relative quality figures as
proposed in [5]:

• qoc: the relative model deviation in the center point,

• qtc: the quality figure of (12) evaluated in sampling points
located in the interior of the fitting hypercube, and

• qwc: the quality figure of (12) evaluated in the original
sampling points used for the model generation

The obvious drawback of usingqtc is the need for extra analyses
(i.e. circuit simulations). Notice that for the generated posynomial
modelsqwc can be considered as the worst–case value (therefore
the subscriptwc), qtc as the typical–case value and (especially for
the indirect–fitting approach)qoc as the optimal–case value.

4. EXPERIMENTAL RESULTS
As test case we use the same test circuit as used in [5], a high–

speed CMOS OTA in a 0.7µm CMOS technology (see Fig.6).
The supply voltage is 5V. The nominal threshold voltages of this
technology are 0.76V for NMOS–devices and−0.75V for PMOS–
devices. The circuit has to drive a load capacitance of 10pF.

Thirteen independent design variables can be chosen for the high–
speed OTA of Fig.6. The chosen design variables are gathered in
Table1. Note that currents and transistor drive voltages are cho-
sen as variables, rather than transistor widths, since we use an
operating–point driven formulation for analog circuit sizing [9].
The bounded range of variablesvi ∈ [

lbi , ub
]

is logarithmically
scaled ontoxi ∈ [0, 1] using

xi = log
(vi

lb

)/
log

(
ub

lb

)
(13)

As a consequence all scaled variables are positive (as required for
the posynomial formulation). The bounds have also been indicated
in Table1.

Our goal is to derive expressions for the low–frequency gain
(Av,LF), the unity–gain frequency (fu), the phase margin (PM),
the input–referred offset voltage (voffset) and the positive and neg-
ative slew rate (SRp, SRn). In order to comply with the geometric
programming formulation (which in its direct form only supports
minimization and≤ constraints), we will fit the inverse of the char-
acteristics that need to be maximized or have a≥ constraint (i.e.
−Av,LF , − fu , −PM and−SRp). All characteristics are scaled lin-
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Figure 6: Schematic of a high–speed CMOS OTA

i vi lb ub i vi lb ub
1 vGS,M1 -0.75V -4V 2 vGS,M2 0.75V 4V
3 vDS,M2 0.1V 4V 4 vGS,M3 -0.75V -4V
5 vGS,M4 -0.75V -4V 6 vGS,M5 -0.75V -4V
7 vDS,M5 -0.1V -4V 8 vDS,M6 -0.1V -4V
9 iD,M1 -10uA -10mA 10 iD,M2 10uA 10mA

11 iB1 1uA 100uA 12 iB2 1uA 100uA
13 iB3 1uA 100uA

Table 1: Design variables chosen as model inputs

early according to (8), except forfu which is scaled logarithmically
according to (9).

For each of the characteristics to model, we will derive posy-
nomial expressions using two different sampling hypercube widths
(dx = 0.1, dx = 0.01).

The direct–fitting algorithm has been implemented in our posy-
nomial model generation prototype called PRÎSM. Its TCP–based
client-server simulation system schedules simulation and extrac-
tion jobs on remote workstations over the intra–net or the Internet
(resource parallelization) and then fits the posynomial models on a
single workstation. The core modules have been coded using C++,
while the TCP–based client–server system has been coded in Perl.
The total amounts to about 40 000 lines of code.

PR̂ISM was run on an Intel Celeron 466MHz running GNU/Linux.
The analysis servers ran on 16 UNIX workstations (attached to a

generation time [s]no. of coefficients sparseness
model dx dx dx

0.1 0.01 0.1 0.01 0.1 0.01
Av,LF 61 115 14 12 95.0% 95.8%

fu 63 85 14 9 95.0% 96.9%
PM 125 130 22 20 92.3% 93.0%
voffset 230 149 31 20 89.2% 93.0%
SRp 116 116 32 12 88.9% 95.8%
SRn 54 131 12 13 95.8% 95.5%

Table 2: Properties of the models generated using the direct–
fitting technique

Worst–case model quality figures ( qwc)

Indirect Fitting

q

566%

7.2%

9324%

6.8%

6351% 6131%

38%

9.5%

1630% 474% 516% 211%

Direct Fitting

q
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4.2% 0.9%

fu

3.6% 0.7%

PM

5.1% 0.9%

voffset

0.4% 0.8%

SRp
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SRn

8.1% 0.4%

dx = 0.1

dx = 0.01

(a)

Typical–case model quality figures ( qtc)

Indirect Fitting

q

52%

0.8%

890%

0.8%

617% 559%

4.4% 1.9%

139%

46% 48%
24%

Direct Fitting

q
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(b)

Optimal–case model quality figures ( qoc)

Indirect Fitting

q

−1.1% −0.4% 1.4% 0.1% 1.1%

32%

−0.98% −0.8%
−15%−2.862% 0.3% −0.1%

Direct Fitting

q
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−2.346%

SRn

−8.2% −3.7%

dx = 0.1

dx = 0.01

(c)

Figure 7: Model quality figures of the posynomial models: (a)
worst case, (b) typical case, (c) optimal case

standard 100Mbit/s TCP–IP network and under normal load cir-
cumstances), ranging from a SUN Ultra Sparc I (with a SPECfp95
of 9) to an HP B–1000 (with a SPECfp95 of 42) using their native
OS. The simulations needed to obtain a full orthogonal hypercube
of sampling points took approximately 3 minutes. Using these data
the whole set of performance characteristics (-Av,LF, - fu , -PM,
voffset, -SRp , SRn) can be fitted. The time needed to fit each of the
models using the algorithm of Fig.5 is indicated in Table2.

Table2 demonstrates also clearly the sparseness (number of co-
efficients that are zero divided by the total number of template
coefficients) of the models that are generated. Compare this to
an average number of nonzero coefficients of 105 (corresponding
to a model sparseness of 63.7%) for the models generated with
the indirect–fitting technique. It can be concluded that concern-
ing sparseness the indirect–fitting technique is outperformed by the
new direct approach.

The quality of the generated models can be inspected in Fig.7.
The three subfigures, corresponding to the different quality mea-
suresqwc, qtc and qoc, each contain two rows of data: the front
row for the results of the direct–fitting technique and the back row
for the results of the indirect–fitting technique. The improvement
of the model qualities introduced by the direct–fitting technique is
most considerable. On average an improvement with a factor of
over 100 is observed, both for large as for small hypercubes.



5. CONCLUSIONS
In this paper, we presented a new direct–fitting method to fit

posynomial model templates with arbitrary real exponents to nu-
merical simulation data. The fit qualities obtained are very good,
both for large as well as for small hypercube widths. In addition,
the resulting models are very sparse. This method therefore ef-
fectively reduces the time and effort needed to setup and solve an
analog circuit sizing problem in the form of a geometric program.
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