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ABSTRACT 
At-speed testing of high-speed circuits is becoming 

increasingly difficult with external testers due to the growing gap 
between design and tester performance, growing cost of high-
performance testers and increasing yield loss caused by inherent 
tester inaccuracy. Therefore, empowering the chip to test itself 
seems like a natural solution. Hardware-based self-testing 
techniques have limitations due to performance and area overhead 
and problems caused by the application of non-functional patterns. 

 Embedded software-based self-testing has recently become 
focus of intense research. In this methodology, the programmable 
cores are used for on-chip test generation, measurement, response 
analysis and even diagnosis. After the programmable core on a 
System-on–Chip (SoC) has been self-tested, it can be reused for 
testing on-chip buses, interfaces and other non-programmable 
cores. The advantages of this methodology include at-speed 
testing, low design-for-testability overhead and application of 
functional patterns in the functional environment. In this paper, we 
give a survey and outline the roadmap and challenges of this 
emerging embedded software-based self-testing paradigm.  

Categories and Subject Descriptors 
B.8.1 [Integrated Circuits]: Performance and Reliability – 
reliability, testing and fault-tolerance.  

General Terms 
Algorithms, Performance, Reliability. 

Keywords 
VLSI test, SoC test, functional test, microprocessor test. 

1. INTRODUCTION 
System-on-chip (SoC) has become a widely accepted 

architecture for highly complex systems on a single chip. An SoC 
contains a large number of complex, heterogeneous components 
that can include digital, analog, mixed-signal, radio frequency 
(RF), micromehanical and other systems on a single piece of 
silicon. The increasing heterogeneity and programmability 
associated with the system-on-chip architecture together with the 
rapidly increasing operating frequencies and technology changes 

are demanding fundamental changes in VLSI testing.   
The test application using testers poses challenges because 

the testers performance is increasing at a slower rate than the 
device speed. This translates into an increasing yield loss due to 
external testing since guardbanding to cover tester errors results in 
a loss of more and more good chips. In addition, high-speed testers 
are very costly. Also, for mixed-signal testing, analog 
instrumentation needed for precise analog testing is not present on  
the digital logic tester. Having to test mixed-signal chips would 
require a mixed-signal tester that is even more expensive and 
implies a two-pass testing strategy. However, there are also cases 
(such as those where vast amount of digital data has to be pumped 
through an analog interface e.g., 3GIO, Infiniband, SATA to test 
the digital core) where neither of the two platforms would work.  

Built-in self-test (BIST) solutions eliminate the need for high 
speed testers and offer the ability to apply and analyze at-speed 
test signals on chip with greater accuracy than that of the tester. 
Existing BIST techniques belong to the class of structural BIST. 
Structural BIST, such as scan-based BIST techniques [1][2][3], 
offer good test quality but require addition of dedicated test 
circuitry. Therefore, they incur non-trivial area, performance and 
design time overhead. Moreover, structural BIST applies non-
functional, high-switching random patterns and thus, causes much 
higher power consumption than normal system operations. Also, to 
apply at-speed tests to detect timing related faults, existing 
structural BIST needs to resolve various complex timing issues 
related to multiple clock domains, multiple frequencies and test 
clock skews that are unique in the test mode.  

A new embedded software-based self-testing paradigm 
[4][5][6] has a potential to alleviate the problems due to the use of 
external testers as well as embedded hardware tester problems 
described above. In this testing strategy, it is assumed that 
programmable cores on the SoC (such as processor and DSP cores) 
are first self-tested by running an automatically synthesized test 
program which can achieve high fault coverage. This allows 
application of functional tests in the normal functional operating 
environment of the design. Thus, it eliminates problems caused by 
application of non-functional patterns as well as problems caused 
by non-functional environment during test application. Next, the 
programmable core can be used as a pattern generator and 
response analyzer to test on-chip buses, interfaces between cores 
or even other cores including digital, mixed-signal and analog 
components on an SoC. This solution is sometimes also referred to 
as functional self-testing.  
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The concept of embedded software-based self-testing is 
illustrated in Figure 1 using a bus-based SoC. The IP cores in the 
SoC are connected to a Peripheral Interconnect (PCI) [7] bus via 
the irtual component interface (VCI) [8]. The VCI acts as a 
stan
chi
inst
and
 v

dard communication interface between the IP core and the on-

p bus. First, the microprocessor tests itself by executing a set of 
ructions. Next, the processor can be used for testing the bus 
 other non-programmable IP cores in the SoC. In order to 
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support the self-testing methodology, the IP core has a test 
wrapper around it. The test wrapper contains test support logic 
needed to control shifting of the scan chain, buffers to store scan 
data and support at-speed test, etc. In this example, the on-chip bus 
is a shared bus and the arbiter controls access to the bus.   

 
Figure 1: Embedded software-based self-testing for SoC. 

 
There are several advantages of the embedded software-based 

self-test approach. First, it allows reuse of programmable resources 
on SoCs for test purposes. In other words, this strategy views 
testing as an application of the programmable components in the 
SoC and thus, minimizes the addition of dedicated test circuitry for 
design-for-testability or self-test.  

Second, in addition to eliminating the need for costly high-
speed testers, it can also reduce the yield loss due to tester 
accuracy problems. Self-testing offers the ability to apply and 
analyze at-speed test signals on chip with accuracy greater than 
that available with the tester. 

Third, while the hardware-based self-test must be applied in 
the non-functional BIST mode, software-based self-test can be 
applied in the normal operational mode of the design, i.e., the tests 
are applied by executing instruction sequences as in regular system 
operations. This eliminates the problems created by application of 
non-functional patterns that can result in excessive power 
consumption when hardware BIST is used.  

Also, functional self-test can alleviate some delay testing 
problems. Delay testing using scan techniques requires turning all 
state elements into scannable counterparts and they can be loaded 
serially through the scan port. The scan shifting is usually done at 
a lower frequency to make for easier Design-for-Testability (DfT) 
implementation. After the proper states are all scanned-in, the 
system clock is initiated for 2 or more cycles. The first clock is the 
launch clock that launches the output of the state elements into the 
combinational blocks. The subsequent clock (capture clock) 
captures the responses back into the scan chain for verification. 
During the brief launch/capture system clock, large current surges 
will happen affecting the circuit delays. Increasing the clock 
period would allow for defect based testing, but this would not 
guarantee that the circuit would meet the rated speed. Another 
possible solution would be to launch multiple system clocks after 
the scan shift so that the power grid has a chance to stabilize.  This 
requires hundreds of cycles and presents a big problem for ATPG.  

Functional testing can also relieve problems due to 
application of non-functional patterns during structural delay 
testing through AC-scan or BIST that can result in  over-testing 
and yield loss. Experiments have shown that many structurally 
testable delay faults in the microprocessors can never be sensitized 
in the functional mode of the circuit [5]. This is because no 
functionally applicable vector sequence can excite these delay 
faults and propagate the fault effects into destination outputs/flip-

flops at-speed.  Defects on these faults will not affect the circuit 
performance and their testing is not necessary.  

Testing of analog circuits has been a costly process because 
of the limited access to the analog parts and testers needed for 
functional testing. The situation has become worse due to 
integrating various digital and analog cores onto the SoC, in which 
testing the analog parts becomes the bottleneck of production 
testing. Self-testing of on-chip ADC/DAC and analog components 
using DSP-based approaches can alleviate these problems.     B u s

A rb ite r

D S P

B u s In te r fa c e  
M a s te r  W ra p p e r

C P U

E x te rn a l
T e s te r

M a in  M e m o ry

T e s t  
p r o g r a m

C P U R e s p o n s e sC P UC P U

V C I S ig n a tu re sV C I

S y s te m
M e m o ry

IP  C o re
(w ith  s c a n )

V C IV C I

O n -c h ip  B u s

V C I :  V ir tu a l C o m p o n e n t In te r fa c e

T e s t 
S u p p o r t

B u s In tf /  V C I 
g lu e  lo g ic

s c a n  
In te r fa c e

d a ta  
b u ffe r

W ra p p e r

IP  c o re

B u s In te r fa c e  
M a s te r  W ra p p e r

B u s In te r fa c e  
T a rg e t W ra p p e r

B u s In te r fa c e  
T a rg e t  W ra p p e r

B u s
A rb ite r

D S P

B u s In te r fa c e  
M a s te r  W ra p p e r

C P U

E x te rn a l
T e s te r

M a in  M e m o ry

T e s t  
p r o g r a m

T e s t  
p r o g r a m

C P UC P U R e s p o n s e sC P UC P UC P UC P U

V C I S ig n a tu re sV C I

S y s te m
M e m o ry

IP  C o re
(w ith  s c a n )

V C IV C I

O n -c h ip  B u s

V C I :  V ir tu a l C o m p o n e n t In te r fa c e

T e s t 
S u p p o r t

B u s In tf /  V C I 
g lu e  lo g ic

s c a n  
In te r fa c e

d a ta  
b u ffe r

W ra p p e r

IP  c o re

B u s In tf /  V C I 
g lu e  lo g ic

s c a n  
In te r fa c e

d a ta  
b u ffe r

W ra p p e r

IP  c o re

B u s In tf /  V C I 
g lu e  lo g ic

s c a n  
In te r fa c e

d a ta  
b u ffe r

W ra p p e r

IP  c o re

W ra p p e r

IP  c o re

B u s In te r fa c e  
M a s te r  W ra p p e r

B u s In te r fa c e  
T a rg e t W ra p p e r

B u s In te r fa c e  
T a rg e t  W ra p p e r

In this paper, we give a survey of the embedded software-
based self-testing methods. We start by discussing processor self-
test methods targeting stuck-at faults and delay faults. Next, we 
continue with self-testing of buses and global interconnects and 
well as other non-programmable IP cores on SoC. We also 
describe instruction-level DfT methods based on insertion of test 
instructions to increase the fault coverage and reduce the test 
application time and test program size.  Finally, we summarize 
DSP-based self-test for analog/mixed-signal components. 
2. EMBEDDED PROCESSOR SELF-TEST 

While logic BIST may perform well on industrial application 
specific integrated circuits (ASICs), it is less feasible on 
microprocessors. First, the design changes needed for making a 
microprocessor BIST-ready (e.g., immune to problems such as bus 
contentions even when pseudorandom test patterns are applied) 
may come with unacceptable cost, such as substantial manual 
effort and significant performance degradation. In addition, 
microprocessors are especially random pattern-resistant. Due to 
timing-critical nature of microprocessors, test points may not be 
acceptable as a solution to this problem, as they could introduce 
performance degradation on critical paths. Deterministic BIST, on 
the other hand, may lead to unacceptable area overhead, as the size 
of the on-chip hardware for encoding deterministic test patterns 
depends on the circuit testability [9]. 

A number of approaches have been proposed to generate 
functional tests for microprocessors [10][11][12][13][14]. Some 
propose to apply the tests with external testers [10], while others 
allow the processors to tests themselves with self-test programs 
[11][12][13][14]. A common characteristic of approaches in 
[11][12] is application of randomized instructions to the processor 
under test. However, although processors are more amenable to 
random-instruction tests than to random-pattern tests, it is difficult 
to target structural faults by applying random instructions at the 
processor level. Approaches in [13][14] use structural ATPG to 
generate tests for stuck-at faults in the processor. They use the 
RTL information of the processor to form a set of RTL-module 
equations that can realize the generated gate-level test. Solving the 
set of equations specifies the required instruction sequences and 
operands. All of the above approaches target only stuck-at faults 
and the methods cannot be easily generalized for delay faults.  

Unlike hardware-based self-testing, software-based testing is 
non-intrusive since it applies tests in the normal operational mode 
of the circuit. Moreover, software instructions have the ability of 
guiding the test patterns through a complex processor, avoiding the 
blockage of the test data due to non-functional control signals as in 
the case of hardware-based logic BIST. 

Embedded software-based self-test methods for processors 
have been proposed in [4][5][6]. These methods consist of two 
steps: the test preparation step and the self-testing step. The test 
preparation step involves generation of realizable tests for 
components of the processor. Realizable tests are those that can be 
delivered using instructions. Therefore, to avoid producing 



undeliverable test patterns, the tests are generated under the 
constraints imposed by the processor instruction set. The tests can 
then be either stored or generated on-chip, depending on which 
method is more efficient for a particular case. A low-speed tester 
can be used to load the self-test signatures or the predetermined 
tests to the processor memory prior to the application of tests.  

 
Figure 2: Embedded processor self-testing. 

 
The self-testing step, illustrated in Figure 2, involves the 

application of these tests using a software tester. The software 
tester can also compress the responses into self-test signatures that 
can then be stored into the memory. The signatures can later be 
unloaded and analyzed by an external tester. The assumption here 
is that the processor memory has been tested with standard 
techniques such as memory BIST before the application of the test 
and the memory is assumed to be fault-free.  

In the following, we describe the embedded software-based 
self-test method for testing stuck-at [4] and path delay faults [5][6] 
in microprocessors using their instruction set.   
 

Stuck-at Fault Testing. As the first step, the realizable structural 
tests for components of the processor are developed. Component 
tests can either be stored or generated on-chip. If tests are 
generated on-chip, the test needs of each component are 
characterized by a self-test signature, which includes the seed S 
and the configuration C of a pseudorandom number generator as 
well as the number of test patterns to be generated N.  The self-test 
signatures can be expanded on-chip into test sets using a 
pseudorandom number generation program. Multiple self-test 
signatures may be used for one component if necessary. Thus, this 
self-test methodology allows incorporation of any deterministic 
BIST techniques that encode a deterministic test set as several 
pseudorandom test sets [15][16].  

By targeting the structural test needs of less complex 
components, the proposed method has the fault coverage 
advantage of deterministic structural testing. Since component test 
application and response collection are done with instructions 
instead of with scan chains, it requires no area or performance 
overhead and the test application is performed at-speed. Most 
importantly, by shifting the role of external testers to applying test 
programs and unloading responses, it enables at-speed testing of 
gigahertz processors with low-speed testers.  

Using manually extracted constraints, the above scheme has 
been applied to a simple Parwan processor [17]. The results have 
demonstrated the feasibility and effectiveness of the software-
based self-test method by generating a high-coverage test program 
for the simple processor.  
 

Delay Testing.  To synthesize a test program for self-test of path 
delay faults in a microprocessor using its instructions, first the 
spatial and temporal constraints between and at the registers and 

control signals are extracted (given the instruction set architecture 
and the micro-architecture of the processor core). Next, a path 
classification algorithm, extended from [18][19], implicitly 
enumerates and examines all paths and path segments. If a path 
cannot be sensitized with the imposed extracted constraints, the 
path is functionally untestable and thus, eliminated from the fault 
universe. This helps reduce the computational effort of the 
subsequent test generation process. As the experimental results in  
[5] show, a high percentage of the paths in Parwan processor [17] 
and DLX processor [20] are functionally untestable.   
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Next, a subset of long paths among the functionally testable 
paths are selected as targets for test generation. A gate-level ATPG 
for path delay faults is extended to incorporate the extracted 
constraints into the test generation process and it is used to 
generate test vectors for each target path delay fault. If the test is 
successfully generated, it not only sensitizes the path but it also 
meets the extracted constraints. Therefore, it is most likely to be 
deliverable by instructions (if the complete set of constraints has 
been extracted, the delivery by instructions could be guaranteed). 
In the test program synthesis process that follows, the test vectors 
specifying the bit values at internal flip-flops are first mapped back 
to word-level values in registers and values at control signals. 
These mapped value requirements are then justified at the 
instruction level. Finally, a pre-defined propagating routine is used 
to propagate the fault effects captured in the registers/flip-flops of 
the path delay fault to the memory. This routine compresses the 
contents of some or all registers in the processor, generates a 
signature and stores it in memory. The procedure is repeated until 
all target faults have been processed. The test program is generated 
off-line and later used to test the microprocessor at-speed.  

To apply the synthesized test program, it is loaded into the 
on-chip memory by an external low speed tester. When the test 
program is being executed at-speed, a set of signatures is recorded 
in memory. At the end of the test program, a response analysis 
subroutine is called to further compress the recorded signatures in 
memory and finally, compare the compressed signature with the 
correct signature.  

This test synthesis program has been applied to Parwan [17] 
and DLX [20] processors. On the average, 5.3 and 5.9 instructions 
were needed to deliver a test vector and the achieved fault 
coverage for testable path delay faults was 99.8% and 96.3% for 
Parwan and DLX, respectively.   
3. SELF-TESTING OF BUSES AND GLOBAL 
INTERCONNECTS 

In SoC designs a large amount of core-to-core 
communications must be realized with long interconnects. As gate 
delay continues to decrease, the performance of interconnect is 
becoming increasingly important in achieving a high overall 
performance. However, due to the increase of cross-coupling 
capacitance and mutual inductance, signals on neighboring wires 
may interfere with each other, causing excessive delay or loss of 
signal integrity. While many techniques have been proposed to 
reduce crosstalk, due to the limited design margin and 
unpredictable process variations, the crosstalk must also be 
addressed in manufacturing testing.  

Due to its timing nature, testing for crosstalk effects needs to 
be conducted at the operational speed of the circuit-under-test. 
However, at-speed testing of GHz systems requires prohibitively 
costly high-speed testers. Moreover, with external testing, 
hardware access mechanisms are required for applying tests to 



interconnects deeply embedded in the system. This may lead to 
unacceptable area or performance overhead.  

A BIST technique in which an SoC tests its own 
interconnects for crosstalk defects using on-chip hardware pattern 
generators and error detectors has been proposed in [21]. Although 
the amount of area overhead may be amortized for large systems, 
for small systems, the amount of relative area overhead may beb 
unacceptable. Moreover, hardware-based self-test approaches, as 
the one in [21], may cause over-testing and yield loss, as not all 
test patterns generated in the test mode are valid in the normal 
operational mode of the system.  

The problem of testing system-level interconnects in 
embedded processor-based SoCs, which are the most dominant 
type of SoCs, has been addressed in [22][23]. In such SoCs, most 
of the system-level interconnects, such as the on-chip buses, are 
accessible to the embedded processor core(s). The proposed 
methodology is software-based and enables an embedded 
processor core in SoC to test for crosstalk effects in these 
interconnects by executing a software program. The strategy is to 
let the processor execute a self-test program with which the test 
vector pairs can be applied to the appropriate bus in the normal 
functional mode of the system. In the presence of crosstalk-
induced glitch or delay effects, the second vector in the vector pair 
becomes distorted at the receiver end of the bus. The processor, 
can then store this error effect to the memory as a test response, 
which can be later unloaded by an external tester for off-chip 
analysis.   

 
  Figure 3: Maximal aggressor tests for victim Yi. 
 
Maximum Aggressor (MA) fault model proposed in [24] is 

suitable for modeling crosstalk defects on interconnects. It 
abstracts the crosstalk defects on global interconnects by a linear 
number of faults. It defines faults based on the resulting crosstalk 
error effects, including positive glitch (gp), negative glitch (gn), 
rising delay (gr) and falling delay (gf). For a set of N interconnects, 
the MA fault model considers the collective aggressor effects on a 
given victim line Yi, while all other N-1 wires act as aggressors. 
The required transitions on the aggressor/victim lines to excite the 
four error types are shown in Figure 3. For a set of N 
interconnects, there are 4N MA faults, requiring 4N MA tests. It 
has been shown in [24] that these 4N faults cover all crosstalk 
defects on any of the N interconnects.  

Chen et al. [22] concentrate on testing data and address bus in 
a processor-based SoC. The crosstalk effects on the interconnects 
are modeled using the MA fault model.  
 

Testing Data Bus. For a bi-directional bus such as data bus, 
crosstalk effects vary as the bus is driven from different directions. 
Thus crosstalk tests need to be conducted in both directions [21].  

To apply a test vector pair (v1, v2) for the data bus from an 
SoC core to the CPU, the CPU first exchanges data v1 with the 
core. The direction of data exchange is irrelevant. For example, if 
the core is the memory, the CPU may either read v1 from the 
memory or write v1 to the memory. The CPU then requests data v2 

from the core (a memory-read if the core is memory). Upon the 
arrival of v2, the CPU writes v2 to memory for later analysis.  

To apply a test vector pair (v1, v2) to the data bus from the 
CPU to an SoC core, the CPU first exchanges data v1 with the 
core. Then, the CPU sends data v2 to the core (a memory-write if 
the core is memory). If the core is memory, v2 can be directly 
stored to an appropriate address for later analysis. Otherwise, the 
CPU must execute additional instructions to retrieve v2 from the 
core and store it to memory.  

 

Testing Address Bus. To apply a test vector pair (v1, v2) to the 
address bus, which is a unidirectional bus from the CPU to an SoC 
core, the CPU first requests data from two addresses (v1 and v2) in 
consecutive cycles. In the case of a non-memory core, since the 
CPU addresses the core via memory-mapped I/O, v2 must be the 
address corresponding to the core. If v2 is distorted by crosstalk, 
the CPU would be receiving data from a wrong address, v2’, which 
may be a physical memory address or an address corresponding to 
a different core. By keeping different data at v2 and v2’ (i.e., 
mem[v2] ≠ mem[v2']), the CPU is able to observe the error and 
store it to memory for analysis.    

The feasibility of this method has been demonstrated by 
applying it to test the interconnects of a processor-memory system. 
The defect coverage was evaluated using a system-level crosstalk 
defect simulation method.  

 

Functionally Maximal Aggressor Tests. Even though the MA 
tests have been proven to cover all physical defects related to 
crosstalk between interconnects, Lai et al. [23] observe that many 
of them can never occur during normal system operation due to 
constraints imposed by the system. Therefore, testing buses using 
MA tests might screen out chips that are functionally correct under 
any pattern produced under normal system operation. Instead, 
Functionally Maximal Aggressor (FMA) tests meeting the system 
constraints and being possible to be delivered under the functional 
mode are proposed [23]. The tests can be synthesized by a 
software routine. The synthesized test program is highly 
modularized and very small. Experimental results have shown that 
a test program as small as 3K bytes can detect all crosstalk defects 
on the bus from the processor core to the target core. 

Test for gp Test for gn
Test for df Test for drTest for gp Test for gn
Test for df Test for dr

The synthesized test program is applied to the bus from the 
processor core and the input buffers of the destination core capture 
the responses at the other end of the bus. Such responses need to 
be read back by the processor core to determine whether or not any 
faults on the bus occurred. However, because the input buffers of a 
non-memory core cannot be read by the processor core, a DfT 
scheme is suggested to allow direct observability of the input 
buffers by the processor core. The DfT circuitry consists of bypass 
logic added to each I/O core to improve its testability.  

With the DfT support on the target I/O core, the test 
generation procedure first synthesizes instructions to set the target 
core to the bypass mode and then it continues with synthesizing 
instructions for the FMA tests. The test generation procedure does 
not depend on the functionality of the target core.     
4. SELF-TESTING OF OTHER NON-
PROGRAMMABLE IP-CORES 

Testing non-programmable cores on an SoC is a complex 
problem with many unresolved issues [25]. Industry initiatives 
such as the IEEE P1500 Working Group [26] provide some 
solutions for IP core testing. However, they do not address the 
requirements of at-speed testing.  



A self-testing approach for non-programmable cores on an 
SoC has been proposed in [25]. In this approach, a test program 
running on the embedded processor delivers test patterns to other 
IP cores in the SoC at-speed. The test patterns can be generated on 
the processor itself or fetched from an external ATE and stored in 
on-chip memory. This alleviates the need for dedicated test 
circuitry for pattern generation and response analysis. The 
approach is scalable to large size IP cores whose structural netlists 
are available. Since the pattern delivery is done at the SoC 
operational speed, it supports delay test. A test wrapper (shown in 
Figure 1) is inserted around each core to support pattern delivery. 
It contains test support logic needed to control shifting of the scan 
chain, buffers to store scan data and support at-speed test, etc. 

 
Figure 4: The test flow. 

The test flow based on the embedded software self-testing 
methodology is illustrated in Figure 4. It offers tremendous 
flexibility in the type of tests that can be applied to the IP cores 
well as in the quality of the test pattern set without entailing 
significant hardware overhead. Again, the flow is divided into a 
pre-processing phase and a testing phase. 

In the pre-processing phase, a test wrapper is automatically 
inserted around the IP core under test. The test wrapper is 
configured to meet the specific testing needs for the IP core. The 
IP core is then fault simulated with different sets of patterns. 
Weighted random patterns generated with multiple weight sets or 
using multiple capture cycles [3] after each scan sequence are used 
in [25]. Next, a high-level test program is generated. This program 
synchronizes the software pattern generation, start of the 
application of the test and analysis of the test response. The 
program can also synchronize testing multiple cores in parallel. 
The test program is then compiled to generate a processor specific 
binary code.  

In the test phase, the test program is run on the processor core 
to test various IP cores. A test packet is sent to the IP core test 
wrapper informing it about the test application scheme (e.g., single 
or multiple capture cycle). Data packets are then sent to load the 
scan buffers and the PI/PO buffers. The test wrapper applies the 
required number of scan shifts and captures the test response for 
the programmed number of functional cycles. The results of the 
test are stored in the PI/PO buffers and the scan buffers and from 
there they are read out by the processor core.  
5. INSTRUCTION LEVEL DFT 

While self-testing manufacturing defects in an SoC by 
running test programs using a programmable core has many 
potential benefits, such a self-test strategy might require a lengthy 
test program and might not achieve a high enough fault coverage. 
These problems can be alleviated by applying a DfT methodology 
based on adding test instructions to an on-chip programmable core 
such as a microprocessor core. This methodology is called 
instruction-level DfT.  

Instruction-level DfT inserts test circuitry in the form of test 
instructions and should be a less intrusive approach as compared to 
the gate-level DfT techniques which attempt to create a separate 
test mode somewhat orthogonal to the functional mode. If the test 
instructions are carefully designed such that their micro-
instructions reuse the datapath for the functional instructions and 
do not require any new datapath, the overhead, which only occurs 
in the controller, should be relatively low. 

Instruction-level DfT methods have been proposed in [11] 
[27]. The approach in [11] adds instructions to control the 
exceptions, e.g., microprocessor interrupts and reset. With the new 
instructions, the test program can achieve fault coverage between 
87% and 90% for stuck-at faults. However, this approach cannot 
achieve a higher coverage because the test program is synthesized 
based on a random approach and it is not able to effectively 
control or observe some internal registers that have low testability.   

P re p ro c e ss in g  
p h a s e

T e s t 
p h a s e

F in d in g  w e ig h ts
fo r P Is  an d  P S Is

T e s t C o d e
G en era to r

F a u lt
S im u la tio n

E m b ed d e d  
P ro c es so r

E m b e d d ed  
P ro c es so r IP  C o reIP  C o reB U SB U S

B in a ry  T e s t
P ro g ra m R e sp o n se

P ro c es so r
S p e c ific

P a ram e ters

T es t S p e c ific
P a ram e ters

T es t
W ra p p er

G en era to r

IP /C U T

P re p ro c e ss in g  
p h a s e

T e s t 
p h a s e

F in d in g  w e ig h ts
fo r P Is  an d  P S Is

T e s t C o d e
G en era to r

F a u lt
S im u la tio n

E m b ed d e d  
P ro c es so r

E m b e d d ed  
P ro c es so r IP  C o reIP  C o reB U SB U S

B in a ry  T e s t
P ro g ra m R e sp o n se

P ro c es so r
S p e c ific

P a ram e ters

T es t S p e c ific
P a ram e ters

T es t
W ra p p er

G en era to r

IP /C U T

The DfT methodology proposed in [27] systematically adds 
test instructions to an on-chip processor core to improve the self-
testability of a processor core, reduce the size of the self-test 
program as well as reduce its run time (i.e., reduce the test 
application time). To decide which instructions to add, the 
testability of the processor is analyzed first. If a register in the 
processor is identified as hard-to-access, a test instruction allowing 
direct accessing of the register is added. In addition to these test 
instructions, test instruction can be also added to optimize the test 
program size and run time.   

Adding test instructions to the programmable core does not 
improve the testability of other non-programmable cores on the 
SoC. Therefore, instruction-level DfT cannot increase the fault 
coverage of the non-programmable cores. However, the test 
programs for testing the non-programmable cores can be optimized 
by adding new instructions. In other words, the same set of test 
instructions added for self-testing the programmable cores can be 
used to reduce the size and run time of the test programs for testing 
other non-programmable cores.  

The experimental results on two processors (Parwan [17] and 
DLX [20]) show that test instructions can reduce the program size 
and program run time by 20% at the cost of 1.6% area overhead.  
6. ON-CHIP ADC/DAC AND ANALOG 
COMPONENTS 

For mixed-signal systems integrating both analog and digital 
functional blocks onto the same chip, testing of analog/mixed-
signal parts has become the bottleneck during production testing. 
Because most analog/mixed-signal circuits are functionally tested, 
analog/mixed-signal testing needs expensive automatic test 
equipment (ATE) for analog stimulus generation and response 
acquisition. One promising solution to this problem is BIST that 
utilizes on-chip resources (either shared with functional blocks or 
dedicated BIST circuitry) to perform on-chip stimulus generation 
and response acquisition. Under the BIST approach, the 
requirement on the external test equipment is less stringent. 
Furthermore, stimulus generation and response acquisition is more 
immune to environmental noise during the test process.   

With the advent of the CMOS technology, DSP-based BIST 
becomes a viable solution for analog/mixed-signal systems as the 
required signal processing to make the pass/fail decision can be 
realized in the digital domain with digital resources.  

An efficient BIST architecture for testing on-chip analog and 
mixed-signal components has been proposed in [28]. It employs 
the delta-sigma modulation technique for both stimulus generation 



[29] and response analysis. Figure 5 illustrates this delta-sigma 
modulation-based BIST architecture.  

 
Figure 5: DSP-based self-test for analog/mixed-signal parts. 

A software delta-sigma modulator converts the desired signal 
to one-bit digital steam. The digital 1’s and 0’s are then transferred 
to two discrete analog levels by one-bit DAC followed by a low-
pass filter that removes the out-of-band high-frequency modulation 
noise, and thus restores the original waveform. In practice, one 
extracts a segment from the delta-sigma output bit stream that 
contains an integer number of signal periods. The extracted pattern 
is stored in on-chip memory, and periodically applied to the low-
resolution DAC and low-pass filter to generate the desired 
stimulus. Similarly, for response analysis, a 1-bit Σ−∆ modulator 
can be inserted to convert the analog DUT output response into a 
1-bit stream which is then analyzed by digital signal processing 
(DSP) operations performed by on-chip DSP/microprocessor 
cores. Among the 1-bit Σ−∆ modulation architectures, the 1st-order 
configuration is the most stable and has the maximal input 
dynamic range. However, it is not practical for high-resolution 
applications (as rather high over sampling rate will be needed), and 
suffers inter-modulation distortion. Compared to the 1st-order 
configuration, the 2nd-order configuration has a smaller dynamic 
range but is more applicable for high-resolution applications.  

Note that the software part of this technique, i.e., the software 
Σ−∆  modulator and the response analyzer, can be performed by on-
chip DSP/microprocessor cores, if abundant on-chip digital 
programmable resources are available (as indicated in Figure 5), or 
by external digital test equipment. 

7. CONCLUSIONS 

Embedded software-based self-testing has a potential to 
alleviate many of the current external tester-based and hardware 
BIST testing techniques for SoCs. In this paper, we give a 
summary of the recently proposed techniques for self-testing for 
system-on-chips. One of the main tasks in applying these 
techniques is extracting the functional constraints in the process of 
test program synthesis, i.e., deriving tests that can be delivered by 
processor instructions. Future research in this area must address 
the problem of automating the constraint extraction process in 
order to make the proposed solutions feasible for general 
processors. The software-based self-testing paradigm can be 
further generalized for analog/mixed-signal components through 
the integration of DSP-based testing techniques, Σ−∆ modulation 
principles and some low-cost analog/mixed-signal DfT. 
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