
Embedded Software-Based Self-Testing for SoC Design

A. Krstic¹ W.-C. Lai¹ L. Chen² K.-T. Cheng¹ S. Dey²
¹ University of California, Santa Barbara, CA 93106, {angela, wlai, timcheng}@windcave.ece.ucsb.edu

² University of California, San Diego, CA 92037, {lichen, dey}@ece.ucsd.edu

ABSTRACT
At-speed testing of high-speed circuits is becoming

increasingly difficult with external testers due to the growing gap
between design and tester performance, growing cost of high-
performance testers and increasing yield loss caused by inherent
tester inaccuracy. Therefore, empowering the chip to test itself
seems like a natural solution. Hardware-based self-testing
techniques have limitations due to performance and area overhead
and problems caused by the application of non-functional patterns.

 Embedded software-based self-testing has recently become
focus of intense research. In this methodology, the programmable
cores are used for on-chip test generation, measurement, response
analysis and even diagnosis. After the programmable core on a
System-on–Chip (SoC) has been self-tested, it can be reused for
testing on-chip buses, interfaces and other non-programmable
cores. The advantages of this methodology include at-speed
testing, low design-for-testability overhead and application of
functional patterns in the functional environment. In this paper, we
give a survey and outline the roadmap and challenges of this
emerging embedded software-based self-testing paradigm.

Categories and Subject Descriptors
B.8.1 [Integrated Circuits]: Performance and Reliability –
reliability, testing and fault-tolerance.

General Terms
Algorithms, Performance, Reliability.

Keywords
VLSI test, SoC test, functional test, microprocessor test.

1. INTRODUCTION
System-on-chip (SoC) has become a widely accepted

architecture for highly complex systems on a single chip. An SoC
contains a large number of complex, heterogeneous components
that can include digital, analog, mixed-signal, radio frequency
(RF), micromehanical and other systems on a single piece of
silicon. The increasing heterogeneity and programmability
associated with the system-on-chip architecture together with the
rapidly increasing operating frequencies and technology changes

are demanding fundamental changes in VLSI testing.
The test application using testers poses challenges because

the testers performance is increasing at a slower rate than the
device speed. This translates into an increasing yield loss due to
external testing since guardbanding to cover tester errors results in
a loss of more and more good chips. In addition, high-speed testers
are very costly. Also, for mixed-signal testing, analog
instrumentation needed for precise analog testing is not present on
the digital logic tester. Having to test mixed-signal chips would
require a mixed-signal tester that is even more expensive and
implies a two-pass testing strategy. However, there are also cases
(such as those where vast amount of digital data has to be pumped
through an analog interface e.g., 3GIO, Infiniband, SATA to test
the digital core) where neither of the two platforms would work.

Built-in self-test (BIST) solutions eliminate the need for high
speed testers and offer the ability to apply and analyze at-speed
test signals on chip with greater accuracy than that of the tester.
Existing BIST techniques belong to the class of structural BIST.
Structural BIST, such as scan-based BIST techniques [1][2][3],
offer good test quality but require addition of dedicated test
circuitry. Therefore, they incur non-trivial area, performance and
design time overhead. Moreover, structural BIST applies non-
functional, high-switching random patterns and thus, causes much
higher power consumption than normal system operations. Also, to
apply at-speed tests to detect timing related faults, existing
structural BIST needs to resolve various complex timing issues
related to multiple clock domains, multiple frequencies and test
clock skews that are unique in the test mode.

A new embedded software-based self-testing paradigm
[4][5][6] has a potential to alleviate the problems due to the use of
external testers as well as embedded hardware tester problems
described above. In this testing strategy, it is assumed that
programmable cores on the SoC (such as processor and DSP cores)
are first self-tested by running an automatically synthesized test
program which can achieve high fault coverage. This allows
application of functional tests in the normal functional operating
environment of the design. Thus, it eliminates problems caused by
application of non-functional patterns as well as problems caused
by non-functional environment during test application. Next, the
programmable core can be used as a pattern generator and
response analyzer to test on-chip buses, interfaces between cores
or even other cores including digital, mixed-signal and analog
components on an SoC. This solution is sometimes also referred to
as functional self-testing.

This work was supported in part by the MARCO/DARPA Gigascale
Silicon Research Center (http://www.gigascale.org). Their support is
gratefully acknowledged.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006…$5.00.

The concept of embedded software-based self-testing is
illustrated in Figure 1 using a bus-based SoC. The IP cores in the
SoC are connected to a Peripheral Interconnect (PCI) [7] bus via
the irtual component interface (VCI) [8]. The VCI acts as a
stan
chi
inst
and
 v

dard communication interface between the IP core and the on-

p bus. First, the microprocessor tests itself by executing a set of
ructions. Next, the processor can be used for testing the bus
 other non-programmable IP cores in the SoC. In order to

http://www.gigascale.org/

support the self-testing methodology, the IP core has a test
wrapper around it. The test wrapper contains test support logic
needed to control shifting of the scan chain, buffers to store scan
data and support at-speed test, etc. In this example, the on-chip bus
is a shared bus and the arbiter controls access to the bus.

Figure 1: Embedded software-based self-testing for SoC.

There are several advantages of the embedded software-based

self-test approach. First, it allows reuse of programmable resources
on SoCs for test purposes. In other words, this strategy views
testing as an application of the programmable components in the
SoC and thus, minimizes the addition of dedicated test circuitry for
design-for-testability or self-test.

Second, in addition to eliminating the need for costly high-
speed testers, it can also reduce the yield loss due to tester
accuracy problems. Self-testing offers the ability to apply and
analyze at-speed test signals on chip with accuracy greater than
that available with the tester.

Third, while the hardware-based self-test must be applied in
the non-functional BIST mode, software-based self-test can be
applied in the normal operational mode of the design, i.e., the tests
are applied by executing instruction sequences as in regular system
operations. This eliminates the problems created by application of
non-functional patterns that can result in excessive power
consumption when hardware BIST is used.

Also, functional self-test can alleviate some delay testing
problems. Delay testing using scan techniques requires turning all
state elements into scannable counterparts and they can be loaded
serially through the scan port. The scan shifting is usually done at
a lower frequency to make for easier Design-for-Testability (DfT)
implementation. After the proper states are all scanned-in, the
system clock is initiated for 2 or more cycles. The first clock is the
launch clock that launches the output of the state elements into the
combinational blocks. The subsequent clock (capture clock)
captures the responses back into the scan chain for verification.
During the brief launch/capture system clock, large current surges
will happen affecting the circuit delays. Increasing the clock
period would allow for defect based testing, but this would not
guarantee that the circuit would meet the rated speed. Another
possible solution would be to launch multiple system clocks after
the scan shift so that the power grid has a chance to stabilize. This
requires hundreds of cycles and presents a big problem for ATPG.

Functional testing can also relieve problems due to
application of non-functional patterns during structural delay
testing through AC-scan or BIST that can result in over-testing
and yield loss. Experiments have shown that many structurally
testable delay faults in the microprocessors can never be sensitized
in the functional mode of the circuit [5]. This is because no
functionally applicable vector sequence can excite these delay
faults and propagate the fault effects into destination outputs/flip-

flops at-speed. Defects on these faults will not affect the circuit
performance and their testing is not necessary.

Testing of analog circuits has been a costly process because
of the limited access to the analog parts and testers needed for
functional testing. The situation has become worse due to
integrating various digital and analog cores onto the SoC, in which
testing the analog parts becomes the bottleneck of production
testing. Self-testing of on-chip ADC/DAC and analog components
using DSP-based approaches can alleviate these problems. B u s

A rb ite r

D S P

B u s In te r fa c e
M a s te r W ra p p e r

C P U

E x te rn a l
T e s te r

M a in M e m o ry

T e s t
p r o g r a m

C P U R e s p o n s e sC P UC P U

V C I S ig n a tu re sV C I

S y s te m
M e m o ry

IP C o re
(w ith s c a n)

V C IV C I

O n -c h ip B u s

V C I : V ir tu a l C o m p o n e n t In te r fa c e

T e s t
S u p p o r t

B u s In tf / V C I
g lu e lo g ic

s c a n
In te r fa c e

d a ta
b u ffe r

W ra p p e r

IP c o re

B u s In te r fa c e
M a s te r W ra p p e r

B u s In te r fa c e
T a rg e t W ra p p e r

B u s In te r fa c e
T a rg e t W ra p p e r

B u s
A rb ite r

D S P

B u s In te r fa c e
M a s te r W ra p p e r

C P U

E x te rn a l
T e s te r

M a in M e m o ry

T e s t
p r o g r a m

T e s t
p r o g r a m

C P UC P U R e s p o n s e sC P UC P UC P UC P U

V C I S ig n a tu re sV C I

S y s te m
M e m o ry

IP C o re
(w ith s c a n)

V C IV C I

O n -c h ip B u s

V C I : V ir tu a l C o m p o n e n t In te r fa c e

T e s t
S u p p o r t

B u s In tf / V C I
g lu e lo g ic

s c a n
In te r fa c e

d a ta
b u ffe r

W ra p p e r

IP c o re

B u s In tf / V C I
g lu e lo g ic

s c a n
In te r fa c e

d a ta
b u ffe r

W ra p p e r

IP c o re

B u s In tf / V C I
g lu e lo g ic

s c a n
In te r fa c e

d a ta
b u ffe r

W ra p p e r

IP c o re

W ra p p e r

IP c o re

B u s In te r fa c e
M a s te r W ra p p e r

B u s In te r fa c e
T a rg e t W ra p p e r

B u s In te r fa c e
T a rg e t W ra p p e r

In this paper, we give a survey of the embedded software-
based self-testing methods. We start by discussing processor self-
test methods targeting stuck-at faults and delay faults. Next, we
continue with self-testing of buses and global interconnects and
well as other non-programmable IP cores on SoC. We also
describe instruction-level DfT methods based on insertion of test
instructions to increase the fault coverage and reduce the test
application time and test program size. Finally, we summarize
DSP-based self-test for analog/mixed-signal components.
2. EMBEDDED PROCESSOR SELF-TEST

While logic BIST may perform well on industrial application
specific integrated circuits (ASICs), it is less feasible on
microprocessors. First, the design changes needed for making a
microprocessor BIST-ready (e.g., immune to problems such as bus
contentions even when pseudorandom test patterns are applied)
may come with unacceptable cost, such as substantial manual
effort and significant performance degradation. In addition,
microprocessors are especially random pattern-resistant. Due to
timing-critical nature of microprocessors, test points may not be
acceptable as a solution to this problem, as they could introduce
performance degradation on critical paths. Deterministic BIST, on
the other hand, may lead to unacceptable area overhead, as the size
of the on-chip hardware for encoding deterministic test patterns
depends on the circuit testability [9].

A number of approaches have been proposed to generate
functional tests for microprocessors [10][11][12][13][14]. Some
propose to apply the tests with external testers [10], while others
allow the processors to tests themselves with self-test programs
[11][12][13][14]. A common characteristic of approaches in
[11][12] is application of randomized instructions to the processor
under test. However, although processors are more amenable to
random-instruction tests than to random-pattern tests, it is difficult
to target structural faults by applying random instructions at the
processor level. Approaches in [13][14] use structural ATPG to
generate tests for stuck-at faults in the processor. They use the
RTL information of the processor to form a set of RTL-module
equations that can realize the generated gate-level test. Solving the
set of equations specifies the required instruction sequences and
operands. All of the above approaches target only stuck-at faults
and the methods cannot be easily generalized for delay faults.

Unlike hardware-based self-testing, software-based testing is
non-intrusive since it applies tests in the normal operational mode
of the circuit. Moreover, software instructions have the ability of
guiding the test patterns through a complex processor, avoiding the
blockage of the test data due to non-functional control signals as in
the case of hardware-based logic BIST.

Embedded software-based self-test methods for processors
have been proposed in [4][5][6]. These methods consist of two
steps: the test preparation step and the self-testing step. The test
preparation step involves generation of realizable tests for
components of the processor. Realizable tests are those that can be
delivered using instructions. Therefore, to avoid producing

undeliverable test patterns, the tests are generated under the
constraints imposed by the processor instruction set. The tests can
then be either stored or generated on-chip, depending on which
method is more efficient for a particular case. A low-speed tester
can be used to load the self-test signatures or the predetermined
tests to the processor memory prior to the application of tests.

Figure 2: Embedded processor self-testing.

The self-testing step, illustrated in Figure 2, involves the

application of these tests using a software tester. The software
tester can also compress the responses into self-test signatures that
can then be stored into the memory. The signatures can later be
unloaded and analyzed by an external tester. The assumption here
is that the processor memory has been tested with standard
techniques such as memory BIST before the application of the test
and the memory is assumed to be fault-free.

In the following, we describe the embedded software-based
self-test method for testing stuck-at [4] and path delay faults [5][6]
in microprocessors using their instruction set.

Stuck-at Fault Testing. As the first step, the realizable structural
tests for components of the processor are developed. Component
tests can either be stored or generated on-chip. If tests are
generated on-chip, the test needs of each component are
characterized by a self-test signature, which includes the seed S
and the configuration C of a pseudorandom number generator as
well as the number of test patterns to be generated N. The self-test
signatures can be expanded on-chip into test sets using a
pseudorandom number generation program. Multiple self-test
signatures may be used for one component if necessary. Thus, this
self-test methodology allows incorporation of any deterministic
BIST techniques that encode a deterministic test set as several
pseudorandom test sets [15][16].

By targeting the structural test needs of less complex
components, the proposed method has the fault coverage
advantage of deterministic structural testing. Since component test
application and response collection are done with instructions
instead of with scan chains, it requires no area or performance
overhead and the test application is performed at-speed. Most
importantly, by shifting the role of external testers to applying test
programs and unloading responses, it enables at-speed testing of
gigahertz processors with low-speed testers.

Using manually extracted constraints, the above scheme has
been applied to a simple Parwan processor [17]. The results have
demonstrated the feasibility and effectiveness of the software-
based self-test method by generating a high-coverage test program
for the simple processor.

Delay Testing. To synthesize a test program for self-test of path
delay faults in a microprocessor using its instructions, first the
spatial and temporal constraints between and at the registers and

control signals are extracted (given the instruction set architecture
and the micro-architecture of the processor core). Next, a path
classification algorithm, extended from [18][19], implicitly
enumerates and examines all paths and path segments. If a path
cannot be sensitized with the imposed extracted constraints, the
path is functionally untestable and thus, eliminated from the fault
universe. This helps reduce the computational effort of the
subsequent test generation process. As the experimental results in
[5] show, a high percentage of the paths in Parwan processor [17]
and DLX processor [20] are functionally untestable.

C P U

E x t e r n a l
T e s t e r

In s t r . m e m o r y D a t a m e m o r y

P r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u s

T e s t r e s p o n s e

P r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u s

R e s p o n s e
s i g n a t u r e

P r o c e s s o r b u sP r o c e s s o r b u s

T e s t D a t a f o r
S t i m u l u s

A p p l i c a t io nO n - c h ip t e s t
a p p l i c a t io n

p r o g r a m

T e s t r e s p o n s e
a n a ly s is
p r o g r a m

C P U

E x t e r n a l
T e s t e r

In s t r . m e m o r y D a t a m e m o r y

P r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u s

T e s t r e s p o n s e

P r o c e s s o r b u sP r o c e s s o r b u sP r o c e s s o r b u s

R e s p o n s e
s i g n a t u r e

P r o c e s s o r b u sP r o c e s s o r b u s

T e s t D a t a f o r
S t i m u l u s

A p p l i c a t io nO n - c h ip t e s t
a p p l i c a t io n

p r o g r a m

T e s t r e s p o n s e
a n a ly s is
p r o g r a m

T e s t D a t a f o r
S t i m u l u s

A p p l i c a t io nO n - c h ip t e s t
a p p l i c a t io n

p r o g r a m

T e s t r e s p o n s e
a n a ly s is
p r o g r a m

Next, a subset of long paths among the functionally testable
paths are selected as targets for test generation. A gate-level ATPG
for path delay faults is extended to incorporate the extracted
constraints into the test generation process and it is used to
generate test vectors for each target path delay fault. If the test is
successfully generated, it not only sensitizes the path but it also
meets the extracted constraints. Therefore, it is most likely to be
deliverable by instructions (if the complete set of constraints has
been extracted, the delivery by instructions could be guaranteed).
In the test program synthesis process that follows, the test vectors
specifying the bit values at internal flip-flops are first mapped back
to word-level values in registers and values at control signals.
These mapped value requirements are then justified at the
instruction level. Finally, a pre-defined propagating routine is used
to propagate the fault effects captured in the registers/flip-flops of
the path delay fault to the memory. This routine compresses the
contents of some or all registers in the processor, generates a
signature and stores it in memory. The procedure is repeated until
all target faults have been processed. The test program is generated
off-line and later used to test the microprocessor at-speed.

To apply the synthesized test program, it is loaded into the
on-chip memory by an external low speed tester. When the test
program is being executed at-speed, a set of signatures is recorded
in memory. At the end of the test program, a response analysis
subroutine is called to further compress the recorded signatures in
memory and finally, compare the compressed signature with the
correct signature.

This test synthesis program has been applied to Parwan [17]
and DLX [20] processors. On the average, 5.3 and 5.9 instructions
were needed to deliver a test vector and the achieved fault
coverage for testable path delay faults was 99.8% and 96.3% for
Parwan and DLX, respectively.
3. SELF-TESTING OF BUSES AND GLOBAL
INTERCONNECTS

In SoC designs a large amount of core-to-core
communications must be realized with long interconnects. As gate
delay continues to decrease, the performance of interconnect is
becoming increasingly important in achieving a high overall
performance. However, due to the increase of cross-coupling
capacitance and mutual inductance, signals on neighboring wires
may interfere with each other, causing excessive delay or loss of
signal integrity. While many techniques have been proposed to
reduce crosstalk, due to the limited design margin and
unpredictable process variations, the crosstalk must also be
addressed in manufacturing testing.

Due to its timing nature, testing for crosstalk effects needs to
be conducted at the operational speed of the circuit-under-test.
However, at-speed testing of GHz systems requires prohibitively
costly high-speed testers. Moreover, with external testing,
hardware access mechanisms are required for applying tests to

interconnects deeply embedded in the system. This may lead to
unacceptable area or performance overhead.

A BIST technique in which an SoC tests its own
interconnects for crosstalk defects using on-chip hardware pattern
generators and error detectors has been proposed in [21]. Although
the amount of area overhead may be amortized for large systems,
for small systems, the amount of relative area overhead may beb
unacceptable. Moreover, hardware-based self-test approaches, as
the one in [21], may cause over-testing and yield loss, as not all
test patterns generated in the test mode are valid in the normal
operational mode of the system.

The problem of testing system-level interconnects in
embedded processor-based SoCs, which are the most dominant
type of SoCs, has been addressed in [22][23]. In such SoCs, most
of the system-level interconnects, such as the on-chip buses, are
accessible to the embedded processor core(s). The proposed
methodology is software-based and enables an embedded
processor core in SoC to test for crosstalk effects in these
interconnects by executing a software program. The strategy is to
let the processor execute a self-test program with which the test
vector pairs can be applied to the appropriate bus in the normal
functional mode of the system. In the presence of crosstalk-
induced glitch or delay effects, the second vector in the vector pair
becomes distorted at the receiver end of the bus. The processor,
can then store this error effect to the memory as a test response,
which can be later unloaded by an external tester for off-chip
analysis.

 Figure 3: Maximal aggressor tests for victim Yi.

Maximum Aggressor (MA) fault model proposed in [24] is

suitable for modeling crosstalk defects on interconnects. It
abstracts the crosstalk defects on global interconnects by a linear
number of faults. It defines faults based on the resulting crosstalk
error effects, including positive glitch (gp), negative glitch (gn),
rising delay (gr) and falling delay (gf). For a set of N interconnects,
the MA fault model considers the collective aggressor effects on a
given victim line Yi, while all other N-1 wires act as aggressors.
The required transitions on the aggressor/victim lines to excite the
four error types are shown in Figure 3. For a set of N
interconnects, there are 4N MA faults, requiring 4N MA tests. It
has been shown in [24] that these 4N faults cover all crosstalk
defects on any of the N interconnects.

Chen et al. [22] concentrate on testing data and address bus in
a processor-based SoC. The crosstalk effects on the interconnects
are modeled using the MA fault model.

Testing Data Bus. For a bi-directional bus such as data bus,
crosstalk effects vary as the bus is driven from different directions.
Thus crosstalk tests need to be conducted in both directions [21].

To apply a test vector pair (v1, v2) for the data bus from an
SoC core to the CPU, the CPU first exchanges data v1 with the
core. The direction of data exchange is irrelevant. For example, if
the core is the memory, the CPU may either read v1 from the
memory or write v1 to the memory. The CPU then requests data v2

from the core (a memory-read if the core is memory). Upon the
arrival of v2, the CPU writes v2 to memory for later analysis.

To apply a test vector pair (v1, v2) to the data bus from the
CPU to an SoC core, the CPU first exchanges data v1 with the
core. Then, the CPU sends data v2 to the core (a memory-write if
the core is memory). If the core is memory, v2 can be directly
stored to an appropriate address for later analysis. Otherwise, the
CPU must execute additional instructions to retrieve v2 from the
core and store it to memory.

Testing Address Bus. To apply a test vector pair (v1, v2) to the
address bus, which is a unidirectional bus from the CPU to an SoC
core, the CPU first requests data from two addresses (v1 and v2) in
consecutive cycles. In the case of a non-memory core, since the
CPU addresses the core via memory-mapped I/O, v2 must be the
address corresponding to the core. If v2 is distorted by crosstalk,
the CPU would be receiving data from a wrong address, v2’, which
may be a physical memory address or an address corresponding to
a different core. By keeping different data at v2 and v2’ (i.e.,
mem[v2] ≠ mem[v2']), the CPU is able to observe the error and
store it to memory for analysis.

The feasibility of this method has been demonstrated by
applying it to test the interconnects of a processor-memory system.
The defect coverage was evaluated using a system-level crosstalk
defect simulation method.

Functionally Maximal Aggressor Tests. Even though the MA
tests have been proven to cover all physical defects related to
crosstalk between interconnects, Lai et al. [23] observe that many
of them can never occur during normal system operation due to
constraints imposed by the system. Therefore, testing buses using
MA tests might screen out chips that are functionally correct under
any pattern produced under normal system operation. Instead,
Functionally Maximal Aggressor (FMA) tests meeting the system
constraints and being possible to be delivered under the functional
mode are proposed [23]. The tests can be synthesized by a
software routine. The synthesized test program is highly
modularized and very small. Experimental results have shown that
a test program as small as 3K bytes can detect all crosstalk defects
on the bus from the processor core to the target core.

Test for gp Test for gn
Test for df Test for drTest for gp Test for gn
Test for df Test for dr

The synthesized test program is applied to the bus from the
processor core and the input buffers of the destination core capture
the responses at the other end of the bus. Such responses need to
be read back by the processor core to determine whether or not any
faults on the bus occurred. However, because the input buffers of a
non-memory core cannot be read by the processor core, a DfT
scheme is suggested to allow direct observability of the input
buffers by the processor core. The DfT circuitry consists of bypass
logic added to each I/O core to improve its testability.

With the DfT support on the target I/O core, the test
generation procedure first synthesizes instructions to set the target
core to the bypass mode and then it continues with synthesizing
instructions for the FMA tests. The test generation procedure does
not depend on the functionality of the target core.
4. SELF-TESTING OF OTHER NON-
PROGRAMMABLE IP-CORES

Testing non-programmable cores on an SoC is a complex
problem with many unresolved issues [25]. Industry initiatives
such as the IEEE P1500 Working Group [26] provide some
solutions for IP core testing. However, they do not address the
requirements of at-speed testing.

A self-testing approach for non-programmable cores on an
SoC has been proposed in [25]. In this approach, a test program
running on the embedded processor delivers test patterns to other
IP cores in the SoC at-speed. The test patterns can be generated on
the processor itself or fetched from an external ATE and stored in
on-chip memory. This alleviates the need for dedicated test
circuitry for pattern generation and response analysis. The
approach is scalable to large size IP cores whose structural netlists
are available. Since the pattern delivery is done at the SoC
operational speed, it supports delay test. A test wrapper (shown in
Figure 1) is inserted around each core to support pattern delivery.
It contains test support logic needed to control shifting of the scan
chain, buffers to store scan data and support at-speed test, etc.

Figure 4: The test flow.

The test flow based on the embedded software self-testing
methodology is illustrated in Figure 4. It offers tremendous
flexibility in the type of tests that can be applied to the IP cores
well as in the quality of the test pattern set without entailing
significant hardware overhead. Again, the flow is divided into a
pre-processing phase and a testing phase.

In the pre-processing phase, a test wrapper is automatically
inserted around the IP core under test. The test wrapper is
configured to meet the specific testing needs for the IP core. The
IP core is then fault simulated with different sets of patterns.
Weighted random patterns generated with multiple weight sets or
using multiple capture cycles [3] after each scan sequence are used
in [25]. Next, a high-level test program is generated. This program
synchronizes the software pattern generation, start of the
application of the test and analysis of the test response. The
program can also synchronize testing multiple cores in parallel.
The test program is then compiled to generate a processor specific
binary code.

In the test phase, the test program is run on the processor core
to test various IP cores. A test packet is sent to the IP core test
wrapper informing it about the test application scheme (e.g., single
or multiple capture cycle). Data packets are then sent to load the
scan buffers and the PI/PO buffers. The test wrapper applies the
required number of scan shifts and captures the test response for
the programmed number of functional cycles. The results of the
test are stored in the PI/PO buffers and the scan buffers and from
there they are read out by the processor core.
5. INSTRUCTION LEVEL DFT

While self-testing manufacturing defects in an SoC by
running test programs using a programmable core has many
potential benefits, such a self-test strategy might require a lengthy
test program and might not achieve a high enough fault coverage.
These problems can be alleviated by applying a DfT methodology
based on adding test instructions to an on-chip programmable core
such as a microprocessor core. This methodology is called
instruction-level DfT.

Instruction-level DfT inserts test circuitry in the form of test
instructions and should be a less intrusive approach as compared to
the gate-level DfT techniques which attempt to create a separate
test mode somewhat orthogonal to the functional mode. If the test
instructions are carefully designed such that their micro-
instructions reuse the datapath for the functional instructions and
do not require any new datapath, the overhead, which only occurs
in the controller, should be relatively low.

Instruction-level DfT methods have been proposed in [11]
[27]. The approach in [11] adds instructions to control the
exceptions, e.g., microprocessor interrupts and reset. With the new
instructions, the test program can achieve fault coverage between
87% and 90% for stuck-at faults. However, this approach cannot
achieve a higher coverage because the test program is synthesized
based on a random approach and it is not able to effectively
control or observe some internal registers that have low testability.

P re p ro c e ss in g
p h a s e

T e s t
p h a s e

F in d in g w e ig h ts
fo r P Is an d P S Is

T e s t C o d e
G en era to r

F a u lt
S im u la tio n

E m b ed d e d
P ro c es so r

E m b e d d ed
P ro c es so r IP C o reIP C o reB U SB U S

B in a ry T e s t
P ro g ra m R e sp o n se

P ro c es so r
S p e c ific

P a ram e ters

T es t S p e c ific
P a ram e ters

T es t
W ra p p er

G en era to r

IP /C U T

P re p ro c e ss in g
p h a s e

T e s t
p h a s e

F in d in g w e ig h ts
fo r P Is an d P S Is

T e s t C o d e
G en era to r

F a u lt
S im u la tio n

E m b ed d e d
P ro c es so r

E m b e d d ed
P ro c es so r IP C o reIP C o reB U SB U S

B in a ry T e s t
P ro g ra m R e sp o n se

P ro c es so r
S p e c ific

P a ram e ters

T es t S p e c ific
P a ram e ters

T es t
W ra p p er

G en era to r

IP /C U T

The DfT methodology proposed in [27] systematically adds
test instructions to an on-chip processor core to improve the self-
testability of a processor core, reduce the size of the self-test
program as well as reduce its run time (i.e., reduce the test
application time). To decide which instructions to add, the
testability of the processor is analyzed first. If a register in the
processor is identified as hard-to-access, a test instruction allowing
direct accessing of the register is added. In addition to these test
instructions, test instruction can be also added to optimize the test
program size and run time.

Adding test instructions to the programmable core does not
improve the testability of other non-programmable cores on the
SoC. Therefore, instruction-level DfT cannot increase the fault
coverage of the non-programmable cores. However, the test
programs for testing the non-programmable cores can be optimized
by adding new instructions. In other words, the same set of test
instructions added for self-testing the programmable cores can be
used to reduce the size and run time of the test programs for testing
other non-programmable cores.

The experimental results on two processors (Parwan [17] and
DLX [20]) show that test instructions can reduce the program size
and program run time by 20% at the cost of 1.6% area overhead.
6. ON-CHIP ADC/DAC AND ANALOG
COMPONENTS

For mixed-signal systems integrating both analog and digital
functional blocks onto the same chip, testing of analog/mixed-
signal parts has become the bottleneck during production testing.
Because most analog/mixed-signal circuits are functionally tested,
analog/mixed-signal testing needs expensive automatic test
equipment (ATE) for analog stimulus generation and response
acquisition. One promising solution to this problem is BIST that
utilizes on-chip resources (either shared with functional blocks or
dedicated BIST circuitry) to perform on-chip stimulus generation
and response acquisition. Under the BIST approach, the
requirement on the external test equipment is less stringent.
Furthermore, stimulus generation and response acquisition is more
immune to environmental noise during the test process.

With the advent of the CMOS technology, DSP-based BIST
becomes a viable solution for analog/mixed-signal systems as the
required signal processing to make the pass/fail decision can be
realized in the digital domain with digital resources.

An efficient BIST architecture for testing on-chip analog and
mixed-signal components has been proposed in [28]. It employs
the delta-sigma modulation technique for both stimulus generation

[29] and response analysis. Figure 5 illustrates this delta-sigma
modulation-based BIST architecture.

Figure 5: DSP-based self-test for analog/mixed-signal parts.

A software delta-sigma modulator converts the desired signal
to one-bit digital steam. The digital 1’s and 0’s are then transferred
to two discrete analog levels by one-bit DAC followed by a low-
pass filter that removes the out-of-band high-frequency modulation
noise, and thus restores the original waveform. In practice, one
extracts a segment from the delta-sigma output bit stream that
contains an integer number of signal periods. The extracted pattern
is stored in on-chip memory, and periodically applied to the low-
resolution DAC and low-pass filter to generate the desired
stimulus. Similarly, for response analysis, a 1-bit Σ−∆ modulator
can be inserted to convert the analog DUT output response into a
1-bit stream which is then analyzed by digital signal processing
(DSP) operations performed by on-chip DSP/microprocessor
cores. Among the 1-bit Σ−∆ modulation architectures, the 1st-order
configuration is the most stable and has the maximal input
dynamic range. However, it is not practical for high-resolution
applications (as rather high over sampling rate will be needed), and
suffers inter-modulation distortion. Compared to the 1st-order
configuration, the 2nd-order configuration has a smaller dynamic
range but is more applicable for high-resolution applications.

Note that the software part of this technique, i.e., the software
Σ−∆ modulator and the response analyzer, can be performed by on-
chip DSP/microprocessor cores, if abundant on-chip digital
programmable resources are available (as indicated in Figure 5), or
by external digital test equipment.

7. CONCLUSIONS

Embedded software-based self-testing has a potential to
alleviate many of the current external tester-based and hardware
BIST testing techniques for SoCs. In this paper, we give a
summary of the recently proposed techniques for self-testing for
system-on-chips. One of the main tasks in applying these
techniques is extracting the functional constraints in the process of
test program synthesis, i.e., deriving tests that can be delivered by
processor instructions. Future research in this area must address
the problem of automating the constraint extraction process in
order to make the proposed solutions feasible for general
processors. The software-based self-testing paradigm can be
further generalized for analog/mixed-signal components through
the integration of DSP-based testing techniques, Σ−∆ modulation
principles and some low-cost analog/mixed-signal DfT.
ACKNOWLEDGMENTS

We would like to thank Dr. T. M. Mak, Intel on many
stimulating discussions and useful insights on the topics in this
paper.

References
[1] C.-J. Lin, Y. Zorian, and S. Bhawmik. Integration of Partial Scan and

Built-in Self-Test. JETTA, Aug. 1995. A T E S O C

1 -b it ∆ Σ
m o du la to r
1 -b it ∆ Σ

m o d u la to r

A n a lo g
C U T

A n a lo g
C U T

L o w -re s . D A C
& L P F

L o w -re s . D A C
& LP F

R espo n se
a na lys is

P rog ra m m ab le
co re + m e m o ry

T e s t s tim u li
& sp ec .

P ass /fa il ?

S o ftw a re ∆ Σ
m o du la to r

A T E S O CA T E S O C

1 -b it ∆ Σ
m o du la to r
1 -b it ∆ Σ

m o d u la to r

A n a lo g
C U T

A n a lo g
C U T

L o w -re s . D A C
& L P F

L o w -re s . D A C
& LP F

R espo n se
a na lys is

P rog ra m m ab le
co re + m e m o ry

T e s t s tim u li
& sp ec .

P ass /fa il ?

S o ftw a re ∆ Σ
m o du la to r

[2] K.-T. Cheng and C.-J. Lin. Timing-Driven Test Point Insertion for
Full-Scan and Partial-Scan BIST. ITC, 1995.

[3] H.-C. Tsai, S. Bhawmik, and K.-T. Cheng. An Almost Full-Scan
BIST Solution – Higher Fault Coverage and Shorter Test Application
Time. ITC, 1998.

[4] L. Chen and S. Dey. Software-Based Self-Testing Methodology for
Processor Cores. TCAD, Mar. 2001.

[5] W.-C. Lai, A. Krstic, and K.-T. Cheng. On Testing The Path Delay
Faults of a Microprocessor Using its Instruction Set. VTS, 2000.

[6] W.-C. Lai, A. Krstic, and K.-T. Cheng. Test Program Synthesis for
Path Delay Faults in Microprocessor Cores. ITC, 2000.

[7] PCI Special Interest Group, Hillsboro, Oregon, USA. PCI Local Bus
Specification, Revision 2.0, Apr. 1994.

[8] On-Chip Bus Development Working Group. Virtual Component
Interface Standard (OCB 2 1.0), Mar. 2000.

[9] G. Kiefer, H. Vranken, E. J. Marinissen, and H.-J. Wunderlich.
Application of Deterministic Logic BIST on Industrial Circuits. ITC,
2000.

[10] R. Rajsuman. Testing A System-on-Chip with Embedded
Microprocessors. ITC, 1999.

[11] J. Shen and J. A. Abraham. Native Mode Functional Test Generation
for Processors with Applications to Self Test and Design Validation.
ITC, 1998.

[12] K. Batcher and C. Papachristou. Instruction Randomization Self Test
for Processor Cores. VTS, 1999.

[13] J. Lee and J. H. Patel. Architectural Level Test Generation for
Microporcessors. TCAD, 1994.

[14] J. Lee and J. H. Patel. Hierarchical Test Generation Under
Architectural Level Functional Constraints. TCAD, Sep. 1996.

[15] S. Hellebrand and H.-J. Wunderlich. Mixed-Mode BIST Using
Embedded Processors. ITC, 1996.

[16] R. Dorsch and H.-J. Wunderlich. Accumulator Based Deterministic
BIST. ITC, 1998.

[17] Z. Navabi. VHDL: Analysis and Modeling of Digital Systems.
McGraw-Hill, New York, 1997.

[18] K.-T. Cheng and H.-C. Chen. Classification and Identification of
Nonrobustly Untestable Path Delay Faults. TCAD, Aug. 1996.

[19] A. Krstic, S. T. Chakradhar, and K.-T. Cheng. Testable Path Delay
Fault Cover for Sequential Circuits. EDAC, 1996.

[20] M. Gumm. VHDL – Modeling and Synthesis of the DLXS RISC
Processor. VLSI Design Course Notes, Univ. of Stuttgart, Germany,
Dec. 1995.

[21] X. Bai, S. Dey, and J. Rajski. Self-Test Methodology for At-Speed
Test of Crosstalk in Chip Interconnects. DAC, 2000.

[22] L. Chen, X. Bai, and S. Dey. Testing for Interconnect Crosstalk
Defects Using On-Chip Embedded Processor Cores. DAC, 2001.

[23] W.-C. Lai, J.-R. Huang, and K.-T. Cheng. Embedded-Software-Based
Approach to Testing Crosstalk-Induced Faults at On-Chip Buses.
VTS, 2001.

[24] M. Cuviello, S. Dey, X. Bai, and Y. Zhao. Fault Modeling and
Simulation for Crosstalk in System-on-Chip Interconnects. ICCAD,
1999.

[25] J.-R. Huang, M. K. Iyer and K.-T. Cheng. A Self-Test Methodology
for IP Cores in Bus-Based Programmable SoCs. VTS, 2001.

[26] IEEE P1500 Web Site, http://grouper.ieee.org/groups/1500/.
[27] W.-C. Lai and K.-T. Cheng. Instruction-Level DFT for Testing

Processor and IP Cores in System-on-a-Chip. DAC, 2001.
[28] J.L. Huang and K.T. Cheng. A Sigma-Delta Modulation Based BIST

Scheme for Mixed-Signal Circuits. ASPDAC, 2000.
[29] B. Dufort and G. W. Roberts. Signal Generation Using Periodic

Single and Multi-Bit Sigma-Delta Modulated Streams. ITC, 1997.

http://grouper.ieee.org/groups/1500/

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

