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ABSTRACT
Tools and a design methodology have been developed to
support partial run-time reconfiguration of FPGA logic on
the Field Programmable Port Extender. High-speed Inter-
net packet processing circuits on this platform are imple-
mented as Dynamic Hardware Plugin (DHP) modules that
fit within a specific region of an FPGA device. The PARBIT
tool has been developed to transform and restructure bitfiles
created by standard computer aided design tools into par-
tial bitsteams that program DHPs. The methodology allows
the platform to hot-swap application-specific DHP modules
without disturbing the operation of the rest of the system.
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1. INTRODUCTION
FPGAs are frequently used in networking applications,

where they offer both the performance of custom hardware
and the flexibility of reprogrammability [1] [2]. Systems im-
plemented with FPGAs can make use of their reprogramma-
bility in one of two ways: Compile-Time Reconfiguration
(CTR) or Run-Time Reconfiguration (RTR) [3]. CTR sys-
tems do not change the FPGA’s configuration for the life-
time of the application, e.g. SPLASH [4] and PAM [5]. RTR
systems change the FPGA configuration during the course
of operation, either by full reconfiguration [6] [7] or partial
reconfiguration [8] [9] [10].

The present research uses partial RTR in an FPGA to pro-
vide developers of hardware packet processing applications
a capability similar to the Dynamically Linked Libraries
(DLLs) which are used in software applications. Just as
a DLL is a software module that can be attached to or re-
moved from a running program as an application demands,
we define a Dynamic Hardware Plugin (DHP) [11] as a mod-
ule which can be loaded into or removed from a running
FPGA without disturbing other circuits operating in it. The
ability to change the hardware feature set in a running sys-
tem is particularly useful in packet processing applications
such as firewalls and routers, where it is not desirable to
suspend the operation of a network during reprogramming.
A practical system for implementing DHPs includes:

• A suitable FPGA test platform
• A well defined DHP interface specification
• A complete DHP design methodology
• Physical implementation tools (place & route)
• Configuration bitstream management tools

These five elements are analogous to an operating system
platform, Application Programming Interface (API), modu-
lar programming methodology, compiler, and linker needed
to implement DLLs in the software domain.

The Field Programmable Port Extender (FPX) [12] is the
FPGA-based prototyping platform used in the Washington
University Gigabit Switch (WUGS) [13]. Section 2 describes
the well-defined DHP interfaces, the design methodology,
the CAD tools which place and route DHP modules, and
the PARBIT tool that manages bitstreams. The FPX is
described in Section 3, along with an application targeted
to this platform.



2. PARTIAL RECONFIGURATION
Partial reconfiguration allows an FPGA to implement mul-

tiple functions and to change those functions while the sys-
tem is running. The target FPGA is logically partitioned
into a static infrastructure region and a number of DHP
sites. The infrastructure connects each DHP site to shared
resources and/or other DHP sites. In the present system
the FPGA Input/Output resources are owned by the infras-
tructure and all DHP sites are identical, although different
design choices might be appropriate in other applications.

The layout and interface specification for the DHPs are
influenced by both the architecture of the FPGA and its
behavior during reconfiguration. The characteristics of the
Xilinx VIRTEX-E family are described below. Following
this description, the tool used to generate the partial con-
figuration bitfile is presented, along with the requirements
for the interface between the static infrastructure and the
DHP sites, and the methodology to generate the configura-
tion bitfiles used by PARBIT.

2.1 VIRTEX-E Architecture
The application presented in this paper targets a device

from the Xilinx Virtex-E family [14]. Programmable In-
put/Output Blocks (IOBs) around the edge of the array are
used to interface to off-chip resources. The interior consists
of a matrix of Configurable Logic Blocks (CLBs) contain-
ing: lookup tables, flip-flops and programmable intercon-
nect. The lookup tables in the CLB can be used as func-
tion generators, small distributed RAMs or programmable-
length shift registers. A number of columns in the CLB
matrix are replaced with Block SelectRAMs, which are ded-
icated dual-ported memories. A column of clock drivers used
for global clock distribution run vertically though the center
of the chip.

Virtex-E configuration bits are organized in columns cor-
responding to a column of the FPGA’s logic resources [15].
The Center Column controls the global clock pins. The IOB
Columns control the configuration for the left and right side
IOBs. Each CLB Column controls one column of CLBs and
two IOBs above and bellow these CLBs. Each column has
n rows, with one CLB per row. The Block SelectRAM In-
terconnect Columns define the interconnection of each RAM
column. The Block SelectRAM Content Columns define the
contents of each RAM column.

To configure the VIRTEX-E FPGA, a series of bits, di-
vided into fields of commands and data, are loaded into the
device. Each one of the configuration columns are divided
in smaller slices, called frames. A frame is the smallest part
of the configuration memory that can be written or read.

2.2 PARBIT
In order to partially reconfigure a FPGA, it is necessary

to isolate a specific area inside the device and download
the configuration bits related to that area. A tool called
PARBIT [16] has been developed to easily transform and
restructure bitfiles to implement dynamically loadable hard-
ware modules.

To restructure the configuration bitfile, the tool utilizes
the original bitfile, a target bitfile, and parameters given by
the user. These parameters include the block coordinates of
the logic implemented on a source FPGA, the coordinates
of the area for a partially programmed target FPGA, and
the programming options. The tool reads the original con-
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Figure 1: Block of logic selected from original bitfile

figuration bitfile and copies to the partial bitfile only the
configuration bits related to the area defined by the user.

The target bitfile is used by PARBIT to copy the config-
uration bits that are inside a column specified by the user,
but outside the partial reconfigurable area. This happens
due to the fact that one frame takes all the rows of a col-
umn and the partial reconfigurable area is smaller than a
whole column.

PARBIT allows arbitrary block regions of a compiled de-
sign to be re-targeted into any similar size region of an
FPGA. It is possible to define an area inside the CLB columns
of the chip, without the top and bottom IOB configuration
bits. The tool generates the partial bitfile containing the
area selected by the user (from the original bitfile) and this
file will be used to reconfigure the FPGA.

To relocate blocks from the original bitfile, a user defines
the start and end columns and rows for the block in the
original design. Then, the user defines where to put this
block into a target bitfile of the same device type. The tool
then generates the partial bitfile containing the area selected
by the user (from the original bitfile). This data is used to
reconfigure the target device. A sample of a block within a
VirtexE FPGA is shown in Figure 1.

It is important to note that the configuration bits for the
top and bottom IOBs from the target device do not change
after the partial bitfile is loaded. The configuration bits for
the columns from the original and target bitfile are merged
according to the rows defined by the user.

2.3 Gasket Interface
DHP modules that are downloaded into the FPX need

fixed interconnection points to communicate with the in-
frastructure logic on the FPGA. These points are connected
by special wires, called antennas.

Gaskets allow DHP modules to be built with only a mi-
nor modification to the standard FPGA design flow. When
building a DHP, PAR (Place And Route) is made to limit
routing to only the included routes. It may not use the ex-
cluded routes. By placing antennas between the DHP and
the infrastructure region, the routing of signals through the
gasket is fixed. Figure 2 shows how antennas cross out of
the DHP free routing zone.
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Figure 2: Gasket Antennas

2.4 Generation of Bitfiles
In order to generate bitfiles that can be read by PARBIT

to create the partial bitfile, it is necessary to follow a few
high-level rules regarding the logical names of the entities
that make up the logic within the FPGA. These rules are
applied during the synthesis, routing, and placement of the
FPGAs that hold the infrastructure circuit and the DHP
modules.

2.4.1 Synthesis
The bitfiles that are manipulated by PARBIT are gener-

ated from VHDL files containing the infrastructure and the
user module descriptions (plugins), along with constraints
commands used to define the regions of the FPGA that will
be reconfigured.

The infrastructure bitfile contains the fixed logic area in
the FPGA, encompassing all of the I/O pads, signals and
flops that interface to the module, and logic that make up
the on-chip system. In the VHDL file, there is one entity,
called “INFRA”, that contains the infrastructure, and one
or more entities, called “GASKET”, that contains the flops
used to interface with each user module. Additional VHDL
files are used to generate the physical constraints necessary
to lock the gasket flops in fixed positions inside the FPGA.
These constraints are also used to lock the infrastructure
logic into a specific area, and to reserve space for the user
modules inside the FPGA.

The bitfile for the DHP contains the description of a mod-
ule and is generated in a similar way. The difference is that
there is one user module entity, called “DHP”, connected to
one GASKET entity, as shown in Figure 3. For the GAS-
KET entity in the design, the constraints are set so that
this GASKET is placed in the same position as the first
GASKET of the infrastructure design.

2.4.2 Placement
The placement of the infrastructure and DHPs can be ac-

FD

FD FD

GASKOUT

FD

GASKOUT

GASK_DHP

INFRA

GASKIN

GASKIN

GASKET_0

DHP_0

Figure 3: Logical Design Entities

complished with conventional FPGA placer tools, that have
the ability to constrain logic to specific regions of the ar-
ray. Infrastructure logic is kept out of the DHP sites, and
DHP logic is confined to the appropriate rectangular area.
These constraints can be expressed in the source VHDL as
attributes or kept in a separate physical constraint file read
by the placer.

2.4.3 Routing
The routing problem is more complex than placement,

and requires a greater degree of control over the use of
routing resources than is currently available in off-the-shelf
FPGA CAD tools. To guarantee that there is no interfer-
ence between DHPs and infrastructure as new DHPs are
being configured, the nets in a design are sorted into one of
three categories and then routed with special constraints as
follows:

• All nets which are internal to the DHPs are routed on
interconnect resources that do not cross the boundary
of the DHP site. The Virtex-E architecture includes
long lines which traverse the entire array, and hex lines
which can reach six CLBs in any direction. These wires
may not be used in a DHP since they could possibly
cause interference when the DHP is loaded

• All nets which are completely contained in the infras-
tructure are routed using any wiring resource that is
not used for use in routing DHPs.

• Nets which cross the the boundaries between the in-
frastructure and the DHP site are forced to follow the
same path for each DHP. These are the gasket anten-
nas which are identical for every DHP, since the DHP
interface conforms to a fixed specification. These nets
have identical configurations in every possible DHP
implementation so the act of reconfiguration is guar-
anteed to cause no interference in the configuration or
operation of the infrastructure or adjacent DHP sites

These routing constraints are satisfied using a modified
version of the router in which the use of any individual Pro-
grammable Interconnect Point (PIP) in the array can be
enabled or disabled. Individual nets can also have wire seg-
ments assigned to force the route solution to follow a pre-
dictable path as needed.
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3. THE FPX PLATFORM
The Field-programmable Port Extender enables the rapid

prototype and deployment of hardware components for mod-
ern routers and firewalls [12]. The system allows new packet
processing functions to be quickly prototyped as DHP mod-
ules in hardware, then downloaded into reconfigurable logic
over the network [17]. New features are added by loading
DHPs into well-defined DHP module interfaces.

All functions on the FPX are implemented with FPGAs.
The core functionality of the FPX is implemented on the
Networking Interface Device (NID) and on part of the Re-
programmable Application Device (RAD). The NID is a Xil-
inx XCV600E FPGA that contains the control logic to re-
configure regions of the RAD. The RAD is a Xilinx XCV-
2000E FPGA that holds the DHP modules.

In order to reprogram a RAD module, the NID imple-
ments a reliable protocol to fill the contents of the an SRAM
with configuration data that is sent over the network. A fi-
nal control cell is sent to NID to initiate the reprogramming
of RAD using the contents of the reprogram memory [18].

The NID also contains a network switch that forwards in-
dividual traffic flows between network interfaces and DHP
modules on the RAD. This combination of partial reconfig-
uration control logic and per-flow routing circuits allow the
FPX install new DHP modules without affecting the opera-
tion of the rest of the system.

3.1 Modular Logic
Dynamic Hardware Plugins (DHPs) are used to imple-

ment application-specific functionality on the FPX. Multiple
DHPs can be loaded into the RAD and run in parallel on the
single FPGA device. Data flows may pass through multiple
hardware plugins. In order to support a broad spectrum of
applications, DHPs can access off-chip memory resources.
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Figure 5: Modular Component of FPX

Hardware plugin modules on the RAD consist of a region
of FPGA gates and internal memory, bounded by a well-
defined interface to the network and external memory [19].
The modular interface of an FPX component is shown in
Figure 5. Data arrives at and departs from a module over a
32-bit wide, Utopia interface. Data passes through modules
in a cell. Large IP datagrams pass through the interface in
multiple cells.

The module provides two interfaces to off-chip memory.
The SRAM interface supports transfer of 36-bit wide data to
and from off-chip SRAM. The Synchronous Dynamic RAM
(SDRAM) interface provides a 64-bit wide interface to off-
chip memory. In the implementation of the IP lookup mod-
ule, the off-chip SRAM is used to store the data structures
of an Internet route table [12].

3.2 DHP Implementation on the FPX
Figure 6 shows the infrastructure of the RAD when viewed

by the Xilinx FPGA Editor. The logic for the CCP (Con-
trol Cell Processor), the SDRAM controller, and the SRAM
interface is placed and routed in the left and the right sides
of the chip. The center portion of the chip is reserved area
for two hardware plugins modules.

The floorplan for the FPGA circuit that implements a
DHP is shown on Figure 7. Here, the logic for the module
is confined to a region the size of a DHP. Further, the I/O
signals around the DHP include Flip/Flops that lock the
location of the signals and provide timing isolation between
DHP circuits. Inputs and outputs from the DHP are routed
to the external I/O pins of the FPGA so that standard syn-
thesis tools can be used for their implementation.

After generating these two bitfiles, PARBIT is run to gen-
erate a partial bitfile suitable for run-time reconfiguration.
The parameters passed to PARBIT include the coordinates
of the DHP module and the coordinate of the new position
of this module inside the FPGA. The partial bitfile gener-
ated for a module has a size of 187 KBytes as compared to
the complete XCV2000E configuration size of 1,270 KBytes.

Current efforts focus on the implementation of an en-
hanced on-chip gasket interfaces for additional types of sig-
nals. Some types of on-chip shared resources require tri-
state busses that span the width of the device. By enhanc-
ing the gasket interface to support the use of horizontal long
lines, it is possible to efficiently implement this type of in-
terconnect.



Figure 6: Infrastructure Floorplan of the RAD (A Xilinx Virtex 2000E FPGA). Note that Infrastructure
logic, including the pair of SRAM controllers, the pair of SDRAM controllers, and the Control Cell Processor
(CCP) are routed and placed on the left and right sides of the FPGA. Two regions have been reserved for
DHP modules and are left empty when synthesizing the infrastructure.

Figure 7: DHP Floorplan of the RAD FPGA. A single module has been routed and placed to fit within the
area of one DHP module. Using PARBIT, this DHP can be placed into either location of the Infrastructure
shown in the floorplan above. Note that input/output signals are routed to I/O pins so that standard design
flows for synthesis and simulation of the FPGA circuit can be followed.



4. CONCLUSIONS
A technique has been demonstrated for designing partial

RTR systems in a VIRTEX-E FPGA. The methodology uses
PARBIT to generate the partial bitfiles. This tool can ex-
tract and relocate regions of logic in a compiled FPGA.

The interface between the DHP plugins and the infras-
tructure, called a gasket, is able to lock fixed interconnection
points between infrastructure logic and dynamically recon-
figured regions of an FPGA.

The approach shown in this paper reduces the time needed
to download the new hardware module, due to the fact that
these modules are pre-compiled and that the reconfiguration
of DHP modules is performed in hardware (not software).
This feature enables the implementation of network mod-
ules that perform a variety of networking functions and can
be deployed at run time in a networking router, switch, or
firewall.

5. FUTURE PLANS
Going forward, we are collaborating with application de-

velopers and network equipment vendors to design reconfig-
urable hardware into several routing, switching, and firewall
platforms. As the installed base of reconfigurable platforms
grows, it becomes easier to rapidly deploy new features in
DHP modules. By following a standard and open modular
interface, DHPs modules are fully interoperable.
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