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ABSTRACT
The design of high-throughput large-state Viterbi decoders relies
on the use of multiple arithmetic units. The global communication
channels among these parallel processors often consist of long in-
terconnect wires, resulting in large area and high power consump-
tion. In this paper, we propose a data-transfer oriented design
methodology to implement a low-power 256-state rate-1/3 IS95
Viterbi decoder. Our architectural level scheme uses operation par-
titioning, packing, and scheduling to analyze and optimize inter-
connect effects in early design stages. In comparison with other
published Viterbi decoders, our approach reduces the global data
transfers by up to 75% and decreases the amount of global buses
by up to 48%, while enabling the use of deeply pipelined datapaths
with no data forwarding. In the RTL implementation of the in-
dividual processors, we apply precomputation in conjunction with
saturation arithmetic to further reduce power dissipation with prov-
ably no coding performance degradation. Designed using a 0.25
µm standard cell library, our decoder achieves a throughput of 20
Mbps in simulation and dissipates only 450 mW.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—Algorithms
implemented in hardware

General Terms
Design, Performance

Keywords
Communications, Pipelining, Bus reduction

1. INTRODUCTION
Viterbi decoders (VDs) are widely used in digital wireless com-

munication systems due to their powerful error correction capabil-
ities. The quality of a VD design is mainly measured by 3 crite-
ria: coding gain, throughput, and power dissipation. High coding
gain results in low data transfer error probability. High throughput
is necessary for high-speed applications such as 802.11a wireless
LAN. The design of VDs with high coding gain and throughput is
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made challenging by the need for low power, since VDs are often
placed in communication systems running on batteries.

The design of single-chip VDs has been a very active research
area for the past 15 years. Figure 1 shows the throughput, power
dissipation, and number of states for a large collection of VD de-
signs [1, 3, 8, 27]. In general, these VDs fall within the region
between the two dashed lines. While small-state VDs can have
throughput over 1 Gbps, throughput decreases with the increase in
the number of states. Consequently, the design of high-throughput
large-state VDs, though crucial for applications such as satellite
communications [2], has remained largely unexplored.
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Figure 1: Performance of various VDs.

The main challenge in implementing high-throughput large-state
VDs with low power dissipation is the rapid growth in the compu-
tational complexity of a VD with the increase in its state count.
Although parallel arithmetic processors can be introduced to speed
up the computation, they often generate extremely complex inter-
connect routing problems, degrading both system throughput and
power dissipation. Therefore, achieving high speeds using a large-
state VD with low power dissipation requires careful consideration
of global data transfer and interconnect issues.

In this paper, we present a low-power design methodology for
building high-throughput large-state VDs. We also discuss the ap-
plication of our methodology to the design of a 256-state rate-1/3
IS95 VD. Our VD chip achieves high power efficiency due to our
comprehensive design approach that focuses on the reduction of
global data transfers, the minimization of global buses, and the
maximization of datapath pipeline depths with no data forward-
ing requirements. The proposed data-transfer oriented optimization
consists of 3 steps. Iterative bi-partitioning is first performed on the
data flow graph of the VD to cluster all operations with minimal
global data exchanges. This step is highly effective and reduces the
number of data transfers by up to 75% compared with previously
published partitioning approaches. In the second step, operations
are packed into slices across different partitions to minimize the
volume of global buses. Without stalling any of the processors, this
optimization decreases global buses by up to 48% compared with
the introduction of buses between every pair of processors. Finally,



the execution order of the operation slices is scheduled so that the
datapaths of the computation processors are deeply pipelined with-
out requiring any data forwarding circuitry. This scheduling step
provides high computation capacity and avoids power dissipation
due to data hazard detection and data transfer.

In addition to our inter-processor level optimizations, we de-
scribe a novel application of precomputation for reducing power
dissipation at the processor level. Specifically, we combine pre-
computation with saturation arithmetic computation to reduce the
power dissipation of datapaths by shutting down datapath circuits
that do not contribute to the decoding results. Our approach is prov-
ably effective in reducing power dissipation without degrading de-
coding quality.

Our high-level optimization results in a low-power VD archi-
tecture consisting of 8 parallel processors connected by 4 global
buses. Our VD was synthesized using a 0.25 µm standard cell li-
brary. The processors were placed in an array structure manually
and then routed automatically. In simulations using layout, our de-
coder achieves a throughput of 20 Mbps while dissipating only 450
mW. To our knowledge, this dissipation is the lowest among pub-
lished VDs with the same number of states and throughput.

The remainder of the paper has 7 sections. In Section 2, we
give background on the Viterbi algorithm, previous VD designs,
and several techniques for low-power parallel DSPs. Section 3 de-
scribes our partitioning approach. Our packing method is presented
in Section 4. Our scheduling scheme is presented in Section 5. Sec-
tion 6 describes the architecture and implementation of our VD.
Chip performance is summarized in Section 7. Section 8 concludes
our paper.

2. BACKGROUND

2.1 Viterbi decoding
Figure 2 demonstrates Viterbi decoding using a simple example.

Figure 2(a) shows a Viterbi encoder with 3 registers and, therefore,
8 possible states. In each clock cycle, one bit I is shifted into the
encoder, and 2 bits

�
O1 � O0 � are generated. Figure 2(b) gives the

trellis representation of the state diagram in the decoder. The ob-
jective is to compute the state sequence in the encoder using the
received code

�
C1 � C0 � . Each row of vertices represents a single

state labeled on the left. Each column represents the states at dif-
ferent times. The edges describe the possible state transitions and
are labeled by the corresponding encoder outputs. For example, the
edge u � t represents the transition from state 0 to state 0. It is la-
belled with

�
00 � , the encoder output of this transition. Similarly,

the edge v � t is labeled
�
11 � . Both fanout and fanin of every ver-

tex are 2, and the trellis topology is identical regardless of the code�
C1 � C0 � .
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Figure 2: Viterbi decoding example.

Viterbi decoding proceeds in 3 steps. In the first step, each edge
e is assigned a weight We, which is the difference between the edge
label and the code

�
C1 � C0 � . For example, We � v � t ��� 2, because

the Hamming distance between
�
11 � and

�
00 � is 2. Similarly,

We � u � t ��� 0.
In the second step, the weight L of each vertex at column n � 1

is computed recursively by:

L � min
�
L1 � W1 � L2 � W2 �	� (1)

where L1 and L2 are vertex weights of the two predecessors in col-
umn n, and W1 and W2 are the weights of the corresponding edges.
This computation is called add-compare-select (ACS) recursion.
Figure 2(b) shows all vertex weights, with arrows representing the
selection results. (Vertex weights in the first column are initialized
to zero, assuming no prior information indicating the initial state of
the VD.)

The final step is called survivor path tracing. Intuitively, the
minimum-weight path through the trellis represents the most likely
state transitions. Starting from the minimum-weight vertex in the
last trellis column, a path is traced backward based on the decisions
in the ACS update steps. The result is marked by the grey vertices
in Figure 2(b).

VD architectures can be classified into three groups: serial, par-
allel, and intermediate. Serial approaches use only one ACS pro-
cessor to compute all the vertex weights sequentially. They are
only applicable to low-throughput large-state VDs due to their lack
of processing capacity.

Parallel architectures consist of the same number of ACS pro-
cessors as that of states. The main challenge in these designs is to
route the connections, called shuffle exchange networks, among all
processors. Various graph representations such as de Bruijn graphs
[15], hypercubic networks, cube-connected cycles [4], and ring
structures [21] achieve only limited interconnect reduction and are
not effective for VDs with hundreds of states. Locally connected
array architectures avoid global interconnects but suffer from low
computation efficiency, because processors are used to transfer data
as well as compute path weights [9]. Bit-serial computation ap-
proaches reduce interconnect routing by transferring data one bit
at a time, but their throughput is severely limited. Due to the data
dependency of adjacent trellis columns, pipelining cannot be used
in parallel architectures. Interleaving requires changes in commu-
nication protocols and is inconvenient to apply [14].

Intermediate solutions, where each ACS processor is shared by
more than one trellis state, are promising for large-state VDs [2,
20]. Many such architectures have been proposed, including sys-
tolic arrays [5] and 4-level cluster networks [11]. These approaches
tend to focus on scalability, overlooking power and performance
optimization of the decoder. No operation scheduling has been
used to reduce global buses. In [12], operation scheduling was dis-
cussed but only in the restricted context of in-place memory update
[18]. Pipelining of operations was explored in [6]. However, that
work did not present any hardware implementation.

2.2 Low-power parallel DSP system design
In addition to VDs, parallel architectures have been applied to

numerous computation-intensive DSP problems [7, 10, 19, 24]. In
such systems, multiple computation and memory units operate in
parallel to achieve high throughput and low power [13]. The liter-
ature on this topic is very extensive, and this section gives a very
brief and certainly non-exhaustive discussion of related work.

Parallel hardware synthesis research addresses operation parti-
tioning, scheduling, and binding problems, which are known to be
NP-complete and are solved using various heuristics [23]. Design



automation research in parallel synthesis is increasingly focusing
on data transfer and scheduling over global buses [22], because
power dissipation is dominated by data storage and transfer through
global interconnect. Such data-transfer oriented scheduling is data-
dependent, and problem-specific solutions are often applied [26].
The application of scheduling and binding to reduce interconnect
power was investigated in [16]. That work relies on the simulated
annealing algorithm and was applied only on small designs such as
2-step FIR filters.

3. REDUCING GLOBAL DATA TRANSFERS
We chose to implement our VD using an intermediate architec-

ture due to its potential for achieving low power. As is the case with
all systems consisting of multiple processors, global data transfers
among various parallel datapath units could contribute significantly
to power dissipation due to long interconnects. This section de-
scribes our operation partitioning approach that assigns operations
to different processors so that the total communication volume is
minimized. As the first step of our optimization methodology, this
partitioning lays the ground for the subsequent operation packing
for minimal global buses, described in Section 4.

Our analysis focuses on the operations that compute the vertex
weights of a single trellis column, since there are no data depen-
dencies among them. In our scheme, the weight of each state is
stored in the processor that computes it. Consequently, we build a
directed data flow graph (DFG) representing the data transfer pat-
tern of the Viterbi algorithm as follows. For each state in the trellis,
a vertex is introduced in the DFG. A directed edge u � v is intro-
duced if and only if the weight update of v depends on the weight
of u in the previous column. Figure 3 illustrates DFG construction
using the simple 8-state VD example from Section 2. Figure 3(a)
shows adjacent trellis columns and their connections. The DFG in
Figure 3(b) is generated by merging the two vertices of the same
state together.
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Figure 3: Operation partitioning.

The problem of partitioning all operations to minimize data trans-
fer volume can be cast as a multi-way partitioning problem with
minimal cut-size and can be solved using iterative bi-partitioning.
Figure 3(c) gives the solution for optimally partitioning the DFG
of the 8-state VD into 2 parts. Its global transfer volume is 4, a
50% reduction compared with the simple partitioning approach in
Figure 3(b).

Figure 4 shows the effectiveness of our operation partitioning
on the IS95 VD. It gives the ratio of global, i.e. inter-partition,
data transfers to all data transfers versus the number of partitions.
For comparison, we show the results of [25], the only approach
we found in previous VD designs that uses partitioning specifically
for interconnect reduction. Our partitioning approach reduces the
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Figure 4: Reduction of global data transfers.

global transfer volume by up to 75%. The largest absolute reduc-
tion is achieved in the range of 4 to 32 partitions. Global data trans-
fers increase monotonically with the number of partitions. For 64
or more partitions, more than half of the total data transfers are
global, suggesting increased power dissipation in systems with high
computation parallelism. In these cases, introducing more parallel
processors to increase throughput is inefficient in terms of power
dissipation. Pipelining individual processors is a promising alter-
native for high-throughput and low-power VD implementations.
However, pipelining may cause data hazards and often requires
power-consuming data forwarding. To that end, Section 5 describes
our operation scheduling scheme for non-forwarding pipelining.

4. MINIMIZING GLOBAL BUSES
This section describes our operation packing scheme for global

bus minimization. To perform global data transfers, we use a hier-
archical bus structure that is derived directly from our partitioning
procedure. Each bi-partitioning step generates a unique type of
buses. Figure 5(a) shows the bus structure resulting from 8-way
partitioning. Blocks Pi � i � 0 ������� � 7, represent the operation clusters.
The dotted lines illustrate the partitioning cuts. The triple-line ar-
row in the middle gives the highest level cut and points to the corre-
sponding bus. Similarly, the double-line and single-line arrows rep-
resent the cuts in the following iterative bi-partitioning procedure
and indicate their associated buses. Consequently, bus types can be
represented using a full binary tree with all operation partitions as
the leaves shown in Figure 5(b). A bus configuration can be de-
scribed by a non-negative integer assignment to all non-leaf nodes
in the binary tree. For instance, the assignment in Figure 5(b) rep-
resents two buses connecting all processors and one bus connecting
p4 and p5. These buses form a partial order, and a bus u can cover
another bus v if and only if v is at the same position as u or in the
subtree rooted at u.
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Figure 5: Bus structure example.
A data transfer between two processors can be performed through

all buses whose subtrees contain both processors. Based on our
partial order definition, the transfer requirement is the least upper
bound of the two processor leaves in the data transfer. For example,
in Figure 5(b), the transfer requirement of a read access between p4
and p5 is a t-type bus. The weight update operation of a trellis ver-
tex k will require two data transfers if both fanin vertices of k are not
in the same partition as k. The operation requirement of updating



the weight of k is computed by adding the transfer requirements
of all data transfers involved. Effectively, this definition ensures
that all transfers of an operation can be performed in the same cy-
cle. For example, if an operation requires p4 to read p3 and p5, its
operation requirement is one u-type bus and one t-type bus.

In our parallel VD system, operations are executed in slices si-
multaneously by different processors. Each slice contains exactly
one operation from each partition. The slice requirement is the sum
of operation requirements of the operations within. A bus config-
uration can satisfy a slice if and only if each transfer requirement
in the slice is covered by a unique bus within the configuration.
Operation packing is the procedure of forming all slices given a
partitioning. A bus configuration is valid for a packing solution S,
if it satisfies all the slices in S.

Bus resources are quantified by assigning a weight to each bus.
The weight of a bus B is proportional to the number of processors
connected to B and is normalized by the total number of processors
used. The cost of a bus configuration is the sum of weights of all
buses within. The problem of operation packing for minimal buses
is to find a packing solution which has a minimum-cost valid bus
configuration.
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Figure 6: Packing for minimal bus weight.

Figure 6 uses the 8-state VD example to explain the procedure
of operation packing for minimal buses. Figure 6(a) shows the VD
structure consisting of two processors represented by blocks and
connected by buses. Based on the partitioning result from Fig-
ure 3(c), operations executed by these two processors are listed
within the blocks. Since only one bus type exists, the transfer re-
quirement is a scalar number. Figure 6(b) shows part of the trellis,
in which the operation requirement for the weight update of each
state is listed on the right. Figure 6(c) gives a packing result in
which each pair of operations on the same row form a slice. Since
the slice requirement of

�
1,5 � is 2, at least 2 buses have to be used.

If the packing is changed to the one in Figure 6(d), only one bus
can handle all the data transfers, resulting in a 50% reduction of
bus resources.

We designed a heuristic to solve the problem of operation pack-
ing for minimal buses. Intuitively, since a valid bus configuration
must satisfy all slice requirements, the optimal packing solution
should distribute the transfer requirements evenly among all slices.
Our heuristic procedure, called HS, first packs the operations so
that the transfer requirements for the highest level buses of each
slice vary by at most 1. Subsequently, it sets the highest level bus
number in the bus configuration accordingly. HS then iteratively
proceeds to the next lower level and balances the bus requirement
by swapping operations between pairs of slices. At each level, the
swapping is done in such a way that the current bus configuration
is kept valid. The packing procedure terminates when bus numbers
at the lowest level of the bus configuration are computed.

Table 1: Bus reduction through operation packing.
Partitions 2 4 8 16 32 64 128

BCHS 2 2 4 8 16 42 111
BCsimple 2 3 7 15 31 63 127

Reduction(%) 0 33 43 47 48 33 13

Table 1 shows the results of applying our packing heuristic on the
IS95 VD. The numbers of partitions are listed in Row 1. Given any
partition number, we applied iterative bi-partitioning followed by
our heuristic HS. Row 2 lists the minimal total bus cost BCHS. For
comparison, the results BCsimple of a simple bus structure where
one bus is introduced between any two partitions is given in Row 3.
This simple approach still has to introduce stalls, when an operation
currently reads two data from another partition, due to lack of bus
resources. Procedure HS not only guarantees no-stall execution but
also reduces the global buses by 31% on the average. Our approach
is most effective in the range of 8 to 32 partitions.

5. NON-FORWARDING SCHEDULING
Data forwarding is often used to resolve data hazards in pipelined

datapaths. However, in parallel systems, data hazards occur not
only within but also among processors. Data dependencies check-
ing and global data transfers can cause excessive interconnect rout-
ing overhead and power dissipation. In this section, we present
our operation scheduling scheme for maximizing the depth of non-
forwarding pipelines.

In Viterbi decoding, data dependencies only happen between ad-
jacent trellis columns. These limited and fixed data dependencies
allow us to use operation scheduling to avoid data hazards without
using data forwarding or stalling. In the remainder of this section,
we refer to the number of pipeline stages between data fetching and
writing as the datapath pipeline depth, because pipelining beyond
this range does not cause data hazards.

Since parallel processors execute operations concurrently, we
must consider data dependencies between operation slices. The
problem of non-forwarding scheduling is to find a slice execution
order such that the slices in the pipeline never depend on each
other’s result. The problem can be formulated as an ordering prob-
lem on a dependency graph, which is constructed as follows. For
each operation slice, a vertex is introduced in the graph. If the
weight update of any state in a slice u requires data from a state in
another slice v, an edge u � v is introduced. The computation is
N-stage pipelineable if and only if there exists an order of all the
vertices such that, for every k, 0 � k � N, the kth vertex has no
outgoing edges connected to the last N � k vertices.
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Figure 7: Scheduling for non-forwarding pipelining.

We demonstrate the effectiveness of non-forwarding scheduling
using the previous 8-state VD example. Figure 7(a) gives the de-
pendency graph. The vertices are derived based on the partitioning
and packing results from Figures 3(c) and 6(d), respectively. The
directed edges are added according to the trellis data transfer in



Table 2: Maximum non-forwarding pipeline depth.
Partitions 2 4 8 16 32 64 128

Pdepth 63 28 9 2 0 0 0

Figure 7(b). Figure 7(c) shows the execution of slices using the or-
der in Figure 6(d). The weight computation of column n is shaded.
Since there is data dependency between slices

�
1,3 � and

�
2,7 � ,

pipelining is not possible without data forwarding or stalling. How-
ever, pipelining can be applied without data forwarding or stalling
if the slices are scheduled as in Figure 7(d).

We implemented a heuristic scheduler to maximize pipeline depth
without data forwarding. Intuitively, since the data dependencies
occur only between the first and last several slices in the execution
order, our scheduler places the slices with fewer dependencies ear-
lier. It first picks the slice with the least dependencies and then iter-
atively picks the next slice such that the upper bound of the pipeline
depth derived by the chosen slices is maximized.

Table 2 shows the results from the application of our scheduler to
the IS95 VD. The non-forwarding pipeline depth is drastically re-
duced as the number of partitions increases, reflecting the reduction
in the number of operations in each partition and the simultaneous
execution of increasingly many operations. From this table, it is
evident that architectures with 16 or more parallel processors allow
very limited or zero non-forwarding pipeline depth.

6. SYSTEM ARCHITECTURE
Using our analysis in Sections 3, 4, and 5, we have designed

a system with 8 processors (subcores) that has low global com-
munication volume, a small number of global buses, and a large
non-forwarding pipeline depth. The block diagram of our design
is shown in Figure 8. The 8 subcores are connected by 4 global
address/data (A/D) buses. Each subcore is a 16-bit pipelined mi-
croprocessor, whose internal structure is detailed on the right-hand
side of Figure 8.
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Figure 8: Viterbi decoder architecture.

The instruction ROM is derived from our high-level data trans-
fer oriented optimization. The 16-bit instruction format is given in
Figure 9. The Ex bits indicate the sources of two operands (local
register file or global buses). The Addr/port fields give the local
register file addresses or global port numbers. The ICodes and D
are the label and decoding data of the state transition edge asso-
ciated with the first operand. The label and decoding data of the
state transition edge for the second operand can be derived using
bit-inversion of ICodes and D, respectively.

The data fetch unit gets the operands based on the instructions.
For each global bus, we use a centralized control. Synchronized
with the subcores, global buses deliver the right data at the right
time. The data fetch unit just latches the data in and no bus conflict
detections are needed, resulting in low power dissipation.

The branch metric unit computes the difference between the re-
ceived codes xi and the label yi of each trellis edge D . We used soft-

Ex1 Addr/Port1 ICodes DEx2 Addr/Port2

03-18-4914-1015

Figure 9: Instruction format.

decision Viterbi decoding with 8-level quantization, thus avoid-
ing the loss of coding gain associated with hard-decision decoding
[17]. Since there are 3 codes for each state transition, D is calcu-
lated as follows:

D � ∑
i � 0 � 1 � 2

� xi � yi � 2 � (2)

Our ACS unit is a 16-bit datapath pipelined into 3 stages. A
novel power saving technique applied to the design of our ACS
unit is the combination of precomputation and saturation computa-
tion that allows overflow. Specifically, once one or two operands
are detected as overflows, part of the ACS is shut off to save power.
In previous VD designs, datapaths were adjusted to hold the maxi-
mal path weight, and no overflow was allowed. Therefore, the trel-
lis had to be frequently backtraced when the maximal path weight
exceeded the data limit of the registers. This approach may result
in unnecessary power consumption. Since in the Viterbi algorithm,
the result is the path with minimum weight, the computation is valid
as long as the minimum path weight does not exceed the data limit
of the register.

In our VD design, we use saturation computation, in which weights
exceeding the maximal data value M � 216 � 1 are represented as
overflows. All path weights are monitored as they are written into
the register files. When the minimum path weight is greater than or
equal to M

�
2, all finite path weights are decreased by M

�
2. Over-

flows remain as overflows, however. Our approach degrades the
VD quality only when the weight of the correct path overflows.
This condition requires the weight of the correct path to exceed
that of an incorrect one by M

�
2. The probability of such an event

is less than 2 � 500 in our design. (Proof omitted due to page limits.)
The register file contains 64 registers. Two 16-bit registers are

used for each of the 32 states in the corresponding partition to de-
couple the write and read accesses. The register file has 1 write port
and 4 read ports, 3 of which are global read ports. The global read
accesses are pipelined into 3 stages to handle delays due to the long
interconnects.

With the data overflow detection, we perform backtracing at the
frequency determined by the decoding latency requirement. Our
backtrace memory consists of two independent parts, each han-
dling 4 subcores. We use a ping-pong architecture to handle syn-
chronized reads and writes with a single port. Because the write
addresses follow a round-robin pattern, we divide the backtrace
memory into two banks for odd and even addresses so that every
two consecutive writes use either bank exactly once. Therefore, we
are able to read the memory at a speed twice as slow as the write
accesses. This speed is fast enough, because read accesses are per-
formed in the backtracing procedure, which is much slower than
the write accesses during the path weight computation.

7. CHIP SUMMARY
Our VD was implemented using Verilog and synthesized using

Design Analyzer from Synopsys and a 0.25 µm standard-cell li-
brary. The layout was generated using Silicon Ensemble from Ca-
dence in a hierarchical fashion. Each sub-module was laid out as a
standard cell array. Manual floorplanning was performed to mini-
mize the length of global buses. Figure 10 shows the floorplan and
layout of our VD. The subcores are rotated so that the register files
(RF) and the fetch units (FU) can access the global channels easily.
The backtrace control (BTC) and memory (BTM) are placed in the
middle as well as the output buffer (SB).



Figure 10: Viterbi decoder layout.

Table 3: Chip Summary.
technology 0.25 µm metal layers 5
chip size 2.4 � 2.4mm2 transistor count 325K

core frequency 640MHz supply voltage 2.5V
throughput 20 Mpbs power 450 mW

After layout, the capacitance of all interconnects was extracted,
and the timing of each gate was adjusted according to the output
load. Our design was then resimulated using Verilog with the back-
annotated timing and capacitance. The power dissipation was esti-
mated using PrimePower from Synopsys. Table 3 summarizes our
chip performance. Our decoder has a maximal throughput of 20
Mbps while dissipating only 450 mW.

8. CONCLUSION
In this paper, we present a comprehensive methodology for the

design of a high-throughput and low-power 256-state rate-1/3 IS95
Viterbi decoder. Our high-level design optimization focuses on the
power reduction of global data communications. We perform a 3-
phase partitioning, packing, and scheduling optimization to reduce
global data transfer volume, minimize global buses, and implement
deep pipelining without data forwarding. Furthermore, we apply
precomputation in conjunction with saturation computation to re-
duce power dissipation within each datapath.

The resulting VD is a parallel system with 8 pipelined processors
connected through 4 global buses. Generated using commercial
ASIC tools in a 0.25 µm standard cell library, our decoder has a
throughput of 20 Mbps and a power dissipation of 450 mW, the
lowest among published VDs with 256 states and same throughput.

9. ACKNOWLEDGMENTS
This research was supported in part by NSF under Grant No.

CCR-0082876 and by ARO under Grant No. DAAD-19-99-1-0304.

10. REFERENCES
[1] P. J. Black and T. H. Meng. A 1-Gb/s four-state sliding block Viterbi

decoder. IEEE J. of Solid-State Circuits, 32(6):797–805, June 1997.
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