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ABSTRACT
In this paper, we evaluate an adaptive loop parallelization strategy
(i.e., a strategy that allows each loop nest to execute using differ-
ent number of processors if doing so is beneficial) and measure
the potential energy savings when unused processors during ex-
ecution of a nested loop in a multi-processor on-a-chip (MPoC)
are shut down (i.e., placed into a power-down or sleep state). Our
results show that shutting down unused processors can lead to as
much as 67% energy savings with up to 17% performance loss in
a set of array-intensive applications. We also discuss and evaluate
a processor pre-activation strategy based on compile-time analysis
of nested loops. Based on our experiments, we conclude that an
adaptive loop parallelization strategy combined with idle proces-
sor shut-down and pre-activation can be very effective in reducing
energy consumption without increasing execution time.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Opti-
mization

General Terms
Design, Experimentation, Performance

Keywords
Adaptive Parallelization, Multiprocessing, Energy Consumption

1. INTRODUCTION AND MOTIVATION
The computer industry’s remarkable success in squeezing ever-

more transistors into an ever-smaller area of silicon is tremendously
increasing the computational abilities of electronic devices. As a
result, very complex functions can be performed in a single chip.
Multi-Processor-on-a-Chip (MPoC) is a single chip architecture
that contains multiple processors with some amount of on-chip
memory (SRAM), synchronization logic, I/O, and interconnect. Un-
like a multi-PU (multi-processing unit) machine where the process-
ing units operate in synchrony, in an MPoC, each processor can
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operate independently from other processors and synchronization
is necessary only when processors share data. In fact, in execut-
ing a given application, we may want to use only a subset of the
available processors if doing so is beneficial for some purpose. The
remaining processors can stay idle or can even be used for execut-
ing some other application.

Note that while VLIW/superscalar processors may provide a cer-
tain level of parallelism, as indicated by Verbauwhede and Nicol
[13], they are not scalable to provide high levels of performance
needed by future applications, particularly those in next-generation
wireless environments. On top of this, the power consumed by
these architectures does not scale linearly as the number of exe-
cution units is increased. This is due to complexity of instruc-
tion dispatch unit, instruction issue unit, and large register files.
Recently, automatic loop parallelization technology developed for
array-intensive applications has been shown to be very effective
[15]. We believe that array-intensive embedded applications can
also take advantage of this technology and derive significant perfor-
mance benefits from the on-chip parallelism and low-latency syn-
chronization provided by an MPoC.

Energy concerns are becoming increasingly pressing in embed-
ded system design. Particularly, the proliferation of embedded de-
vices raised battery energy consumption to a first-class status in
system design [3]. Note that dynamic (switching) energy consump-
tion in an MPoC-based architecture is determined largely by the
number of executing processors, whereas the static (leakage) en-
ergy depends on the number of powered-on processors. A given
MPoC can consume a significant amount of energy and optimizing
its energy consumption will be even more important in the future.

Adaptive parallelization is a compiler-directed optimization tech-
nique that tunes the number of processors for each part of the code
according to its inherent parallelism. For example, intrinsic data
dependences in a given nested loop may prevent us from using all
processors. In such a case, trying to use more processors (than nec-
essary) can lead to an increase in execution time due to increased
inter-processor communication/synchronization costs. Similarly, a
small loop bound may also suggest the use of fewer processor (than
available) to execute a given loop. Loops in particular present an
excellent optimization scope for adaptive parallelization. Since in
general each loop might require a different number of processors to
achieve the best performance, it might be useful to change the num-
ber of processors across the loops. Previous research on large scale
parallel machines [4] reports that adaptive loop parallelization (that
is, executing each loop with the best number of processors instead
of fixing the number of active processors throughout the entire life
of application) can be effective in maximizing the utilization of pro-
cessors.

When adaptive loop parallelization is employed in a given MPoC,
the unused (idle) processors can be shut down to conserve energy.
Depending on the inherent degree of parallelism in different nests
of a given code, such a strategy can lead to significant savings in
energy. This is because shutting down a processor reduces its dy-
namic and leakage energy. However, one has to pay are-synchroniz
ation penaltywhen a processor placed into a power-down (sleep)
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Figure 1: MPoC architecture.

state is requested to participate computation (e.g., in the next nest).
The magnitude of this cost depends on the time it takes to bring the
processor back from the power-down state. As will be discussed in
this paper, in some cases, it might be useful topre-activatea pro-
cessor before it is actually needed so as to ensure that it is ready
when it is required to perform computation. Such a pre-activation
strategy can, if successful, eliminate the performance penalty due
to re-synchronization and reduce energy consumption further.

This paper makes the following contributions:
�It evaluates an adaptive parallelization strategy and measures

the potential energy savings when unused processors in the MPoC
are shut down. Our results show that shutting down unused pro-
cessors can lead to as much as 67% energy savings with up to 17%
performance loss in a set of array-intensive applications.
� It presents a processor pre-activation strategy based on compile-

time analysis of nested loops. Based on our experiments, we con-
clude that an adaptive loop parallelization strategy combined with
idle processor shut-down and pre-activation can be very effective in
reducing energy consumption without increasing execution time.
Our experiments with pre-activation indicate a 39% reduction in
energy consumption (on average) as compared to a scheme without
energy management.

Apart from academic interest ([11, 9]), chip multiprocessor ar-
chitectures are also finding their ways into commercial products.
For example, Sun’s MAJC-5200 [10] is a general-purpose multi-
processor system on a chip integrating two processors, a memory
controller, a PCI controller, two high bandwidth I/O controllers, a
data transfer engine, and a crossbar interfacing all the blocks. It
is suitable for multimedia computing and networking applications.
Sun Microsystems, IBM, and others are starting to produce sys-
tems that take advantage of chip multiprocessing [7]. In fact, early
tests are showing that two processors in a single module outperform
multiple discrete processors by 50% or more. By putting two pro-
cessors on a single piece of silicon, engineers are taking advantage
of shorter distances and faster bus speeds.

The remainder of this paper is organized as follows. The next
section discusses the MPoC architecture assumed in this paper.
Section 3 introduces our experimental platform and the array-inten-
sive codes used in this study, and presents our experimental method-
ology. Section 4 discusses an adaptive parallelization strategy and
presents the energy savings and performance penalties due to shut-
ting down unused processors. Section 5 presents a processor pre-
activation strategy and gives empirical data showing its effective-
ness in saving energy. Section 6 discusses future work, and finally,
Section 7 offers our conclusions.

2. MPOC ARCHITECTURE
We assume that a number of processors are integrated on a sin-

gle die using an on-chip cache memory architecture as shown in
Figure 1. In this work, we assume that each processor has a sim-
ple pipelined architecture that issues one instruction per cycle. As
stated in [11], using simple, identical processors allows the design
and verification costs for a single CPU core to be lower, and amor-
tizes those costs over a larger number of processor cores. We as-
sume that each processor has its own data cache and instruction
cache. While in this work we focus on a single level on-chip data

cache memory, it is straightforward to extend this architecture to
designs that contain multiple (on-chip) cache memories and to de-
signs that employ a scratch pad memory (a software-managed on-
chip SRAM) instead of conventional caches. It is important to note,
however, that if there is a shared level-two (L2) cache in the sys-
tem, we also need to take into account the energy consumption and
performance penalty of its arbitration logic. We assume the ex-
istence of a large, off-chip memory (DRAM) whose access time
and per access energy consumption are much higher than the cor-
responding values for on-chip caches. This DRAM space is shared
by all processors in the MPoC. We also assume the existence of a
simple synchronization mechanism between CPUs to ensure cor-
rect execution when they work on the same data in parallel. When
a processor is shut-down, we assume that the corresponding caches
are also shut-down.

To put a given processor-cache memory pair into the power-
down state, different methods can be used [6, 16]. A common
characteristic of these techniques is that when the processor/cache
is placed into power-down state, the energy consumption is re-
duced significantly. The magnitude of this energy reduction due
to power-down state is expressed as an energy reduction factor
(ERF) as will be detailed later in the paper. Another characteristic
is that a re-synchronization penalty (RP) is incurred when a pro-
cessor/cache pair in the power-down state is accessed (attempted to
be re-activated). Instead of experimenting with specific values of
ERFs and RPs, we chose to vary these parameters to cover a large
number of design alternatives. This allows us to evaluate our ap-
proach under a variety of scenarios. Note that although we focus
here on a single power-down state only, it is also possible to extend
our approach to cases where multiple power-down states exist with
different ERF and RP values.

This architecture has an important advantage over traditional multi-
FU machines such as VLIW/superscalar processors. Since each
processor can work independently, we can assign work to each of
them at the source code level. For example, we can utilize ex-
isting source-level loop parallelization techniques [2, 15] to dis-
tribute computation across processors. For array-intensive applica-
tions with regular (compile-time predictable) data access patterns,
exploiting parallelism opportunities at a large granularity (source
level) is expected to return larger benefits than low-level parallelism
optimization techniques. In particular, for codes that can be paral-
lelized into multiple threads, the simple MPoC processors working
together will perform better than a more complicated wide-issue
superscalar machine or a VLIW architecture.

3. PLATFORM AND METHODOLOGY
We used an in-house, cycle-accurate energy simulator [14] to

measure the energy consumed in different components of the MPoC
such as processors, caches, off-chip memory, clock circuitry, inter-
connect between processors and caches, and interconnect between
caches and off-chip memory. Our simulator takes as input a config-
uration file and an input code written in C and produces as output
the energy distribution across different hardware components and
performance data (execution cycles). Each processor is modeled as
a simple five-stage pipeline that issues a single instruction at each
cycle. Extensive clock gating [5] has been employed to reduce en-
ergy consumption.

The energy model used by our simulator for interconnect is transi-
tion-sensitive; that is, it captures the switching activity on buses.
Since simple analytical energy models for cache memories have
proved to be quite reliable, our simulator uses an analytic cache
model [12] to capture cache energy. This model takes into account
the cache topology, number of hits/misses and write policy, and re-
turns the total amount of energy expended in the cache. We also
assume the existence of an off-chip memory and assume a fix per
access energy consumption of 4.95 nJ (as in [12]). The simulator
uses predefined, transition-sensitive models for each functional unit
to estimate the energy consumption of the core. The current imple-
mentation does not model the control circuitry in the core. This is
not a major problem in this study as the energy consumed by the
datapath is much larger than the energy consumed by the control
logic due to simple control logic of each MPoC processor (single is-



sue, no speculation). All functional unit energy models are for 0.35
micron technology and have been validated to be accurate (within
10%) [14]. The clock subsystem of the target architecture is imple-
mented using a first level H-tree and a distributed driver approach
that supplies clocking to four main units: data cache, instruction
cache, register file, and datapath (pipeline registers). The simulated
architecture uses static CMOS gates and single-phase clocking for
all sequential logic while all memory structures are based on the
classic 6T cell. We also model the impact of gating at different lev-
els and for different units. The clock network model was validated
to be within 10% error from circuit simulation values. More details
can be found in [14].

We also model the energy consumption due to spawning multiple
threads to be executed on processors, synchronizing them at the end
of each parallel loop, and re-synchronization penalty (waking up
time). This is achieved by calculating the energy consumed due to
executing the code fragments that perform these spawning/synchro-
nization/re-synchronization tasks. We assume a simple bus-based
synchronization mechanism where each processor participates in
the synchronization process by setting a bit in its control register.
Future work will consider more sophisticated network architectures
and more efficient synchronization mechanisms. Unless stated oth-
erwise, all caches in the MPoC are 4KB, 2-way set-associative with
a write-back policy and a line (block) size of 32 bytes. The MPoC
in consideration has 8 identical processors. The cache access la-
tency is 2 cycles and an off-chip memory access takes 80 cycles.

Figure 2 lists the thirteen benchmark codes used in this study and
their important characteristics.3step-log , full- search ,
hier , andparallel-hier are four different motion estimation
implementations;aps , bmcm, eflux , andtsf are from Perfect
Club benchmarks; andbtrix andtomcat are from Spec bench-
marks. adi is from Livermore kernels and the remaining codes
are array-based versions of the DSPstone benchmarks. The second
column gives total input size and the third column shows the num-
ber of nests in each code. The remaining columns will be explained
in the next section.

For each benchmark code, we run three versions: (i) The original
version. In this version, we assume that only the processors (and
their caches and interconnects) that participate computation con-
sume dynamic energy; but, each processor/cache pair (whether it
participates the computation or not) consumes leakage energy. (ii)
In this version, which is detailed in Section 4, the processors that do
not participate computation are placed into power-down state. Note
that, due to the re-synchronization cost, such an approach leads to
a performance penalty. (iii) To eliminate this performance penalty,
this version (detailed in Section 5) employs a pre-activation strat-
egy using which the processors are pre-activated before they are
actually needed. All three versions use clock gating [5] where pos-
sible. All necessary code modifications have been implemented
using the SUIF compiler infrastructure [1] as a source-to-source
translator.

In the rest of this paper, unless otherwise stated, when we men-
tionenergy consumption,we mean the energies consumed in caches,
interconnects, off-chip memory, processor, and the clock circuitry.
All optimized energy consumptions are given as valuesnormalized
with respect to the energy consumed in these components by the
original version (version (i)). We do not consider the energy con-
sumed in the control circuitry and I/O modules as the energy impact
of our adaptive parallelization strategy on these units is expected to
be minimal. It is also possible to extend our power management
strategy to selectively shut down these components when the com-
piler detects that they will not be exercised by a given loop.

4. ADAPTIVE PARALLELIZATION AND IM-
PACT OF PROCESSOR SHUT-DOWN

Most published work on parallelism [2, 15] is static; that is, the
number of processors that execute the code is fixed throughout the
execution. In adaptive parallelization, on the other hand, the num-
ber of processors is tailored to the specific needs of each code sec-
tion (e.g., a nested loop in array-intensive applications). For in-
stance, an adaptive parallelization strategy can use 4, 6, 2, and 8

Benchmark N1 N2 N3 N4 N5 N6 N7 N8 N9
3step-log 1 1 5
adi 4 5
aps 1 1 1
bmcm 1 1 2 4
btrix 2 1 7 6 1 3 8
eflux 2 3
full-search 2 2 6
hier 1 1 3 3 2 1 5
lms 2 1 2 2
n-real-updates 4 4 4
parallel-hier 3 3 1 1 2
tomcat 2 1 3 1 2 4 1 8 2
tsf 1 7 2 4

Figure 3: Number of processors that generates the best execu-
tion time for each nest of each benchmark code in our experi-
mental suite.

processors to execute the first four nests in a given code. There
are two important issues that need to be addressed in designing an
effective adaptive parallelization strategy:
�Mechanism: How is the number of processors to execute each

code section determined? There are two ways of determining the
number of processors per nest: dynamic approach and static ap-
proach. The first option is adopting a fully-dynamic strategy whereby
the number of processors (for each nest) is decided in the course of
execution (at run-time). While this approach is expected to gener-
ate better results once the number of processors has been decided
(as it can take run-time code behavior and resource constraints into
account), it may also incur a significant performance overhead dur-
ing the process of determining the number of processors. This over-
head can easily offset the potential benefits of adaptive parallelism.
In the second option, the number of processors for each nest is de-
cided at compile-time. This approach has a compile-time overhead
but it does not lead to much run-time penalty. In this paper, we
adopt the static approach. It should be emphasized, however, that
although our approach determines the number of processors stati-
cally at compile-time, the activation/deactivation of processors and
their caches occurs dynamically at run-time.
�Policy: What is the criterion based on which we decide the

number of processors? In this study, we used the execution time
as the main criterion to decide the number of processors for each
nest. This is because our objective is to optimize energy consump-
tion with as little negative impact as possible on performance. In
order to determine the number of processors that results in the best
execution time for a given nest, we used profile data. That is, us-
ing our simulator, we executed the nest with different number of
processors and selected the one with the minimum execution time.
While this profile-based strategy can increase the compilation time,
in many embedded systems, large compilation times can be tol-
erated as these systems typically run a single (or a small set of)
application(s). We plan to make experiments with other criteria
(policies) in the future.

It should be mentioned that there are several circumstances that
might lead to an increase in overall execution time when the num-
ber of processors is increased. As mentioned earlier in the paper,
the intrinsic data dependences might lead to excessive synchroniza-
tion overhead if more processors (than necessary) are used. Also,
sometimes (particularly in small loops), the overhead of creating a
large number of threads to execute a loop nest in parallel and then
synchronizing them after the nest execution can offset the benefits
from adaptive parallelism.

Figure 3 shows, for each nest of each benchmark code in our ex-
perimental suite, the number of processors that generated the best
execution time. The data presented in this figure clearly shows that
in many cases, using only a small subset of processors (recall that
our MPoC has 8 processors) generates the best result. This is a
strong motivation for shutting off unused processors to save en-
ergy. The fourth column of Figure 2 gives the average number of



Benchmark Input Number of Average Number Dynamic Leakage Energy
Name Size Nests of Processors Energy L=0.1 L=0.5 L=1

3step-log 203.54KB 3 2.33 85168.83 13046.13 65230.66 130461.31
adi 60.65KB 2 4.50 1695.33 228.22 1141.08 2282.16
aps 137.23KB 3 1.00 680.27 322.63 1613.15 3226.30
bmcm 32.84KB 4 2.00 2033.76 350.46 1752.30 3504.61
btrix 5.89MB 7 4.00 54039.68 6321.93 31609.65 63219.30
eflux 86.70KB 2 2.50 7964.98 1055.58 5277.89 10555.78
full-search 203.54KB 3 3.33 485396.25 59391.22 296956.09 593912.19
hier 203.54KB 7 2.29 47842.54 8306.58 41532.89 83065.78
lms 80.00KB 4 1.75 2419.83 608.04 3040.19 6080.37
n-real-updates 20.00KB 3 4.00 1484.88 177.74 888.72 1777.44
parallel-hier 203.54KB 5 2.00 77027.02 24578.78 122893.91 245787.83
tomcat 70.40KB 9 2.66 9136.33 1306.42 6532.08 13064.17
tsf 52.02KB 4 3.50 2941.12 719.35 3596.73 7193.47

Figure 2: Important characteristics of the benchmarks codes used in our experiments. All energy values are in microJoules.
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processors per nest for each benchmark.
Having explained our mechanism and policy for determining the

number of processors for executing each nest, we next focus on our
modifications to the input code. Once the number of processors for
each nest has been determined, our strategy inserts (using SUIF)
the processor activation/deactivation calls in the code. A processor
activation call brings a processor from the power-down state to the
active state and takes a specific amount of time to complete (re-
synchronization penalty). A deactivation call, on the other hand,
places an active processor into the power-down state. We assume
that it returns immediately; i.e., it does not incur any additional
penalty. Our framework however is general enough to accommo-
date scenarios where deactivation calls can also have energy and
performance costs. Each activation/deactivation call takes the pro-
cessor id as input parameter and returns a status code indicating
whether the action has successfully been performed.

After inserting activation/deactivation calls, our approach per-
forms two optimizations. First, it ensures that in moving from one
nest to another, the current active/idle status of processors is main-
tained as much as possible. The second optimization that we per-
form targets at reducing the number of activation/deactivation calls
inserted in the code when there exists conditional flow of execution.
For example, if there is an if-then-else construct with a separate
loop in each branch, the compiler hoists the activation/deactivation
calls (to be inserted for each loop) above the said construct if both
the nests demand the same number of processors.

Note that this energy optimization scheme, while simple to im-
plement, does not pay any attention to reducing the performance
overhead due to re-synchronization penalty. Consequently, this ap-
proach can result in an increase in execution time. Whether such
an increase can be tolerated or not depends largely on the potential
energy gains. To illustrate this, let us consider the execution profile
of a single processor given in Figure 4(a). The execution profile is
broken up into two pieces, each corresponding to a separate loop
nest. The processor is idle in the first nest and active (used) in the
second. Using our energy-optimization approach gives the modi-
fied execution profile shown in Figure 4(b). It is easy to observe

from this profile that when the processor is requested to perform
computation in the second nest, it first needs to wait some amount
of time (re-synchronization penalty, RP). Letta, ti , andts denote
the active period, idle period, and re-synchronization time, respec-
tively (in cycles). Also, letea, ei , andes denote the per cycle en-
ergy consumptions for, respectively, the active period, idle period
(only when the processor is shut down), and re-synchronization pe-
riod. Note that, as a result of energy optimization, the length of
the original execution profile increases fromti + ta to ti + ts+ ta.
The energy consumption of the profile, on the other hand, changes
from (ti + ta)ea to tiei + tses+ taea. Assuming conservatively that
es= (ea+ei)=2 andei = kea wherek is a coefficient less than one
(that is, the energy reduction factor, ERF), this scheme saves energy
if and only if:

(ti + ta)ea > tiei + ts(
ea+ei

2
)+ taea

> (kti + ta+
k+1

2
ts)ea:

Consequently, energy savings are possible if:

k+1
2

ts< (1�k)ti :

We have evaluated the impact of this energy saving strategy us-
ing our benchmark codes. Figure 5 shows the normalized energy
consumptions (with respect to version (i)). To cover different sce-
narios, we performed experiments with different L = (leakage en-
ergy per cycle)/(dynamic energy per access) ratios. This ratio is
used for all hardware components of interest. Specifically, we ex-
perimented with three different values of L: 0.1, 0.5, and 1. We
believe that as leakage is becoming an important part of overall en-
ergy budget [6], the experiments with large L values will be more
indicative of future trends. In particular, the experiments with L=1
try to capture the anticipated importance of leakage energy in fu-
ture. Note that leakage is expected to become the dominant part of
energy consumption for 0.10 micron (and below) technologies for
the typical internal junction temperatures in a chip [6].

The fifth column in Figure 2 gives the overall dynamic energy
consumption for version (i). The last three columns show the leak-
age energy consumption for these three different L values for the
same version. In our experiments, we also modified the energy re-
duction factor (ERF). Specifically, we used ERF=0.1 and ERF=0.2.
Note that these values are in reasonable range for several leakage
saving techniques such as input vector control and supply gating
[6]. The results in Figure 5 include all energy overheads of re-
synchronization as well as the energy consumed during spawning
threads and synchronizing them following the loop execution. We
see that savings for configurations (L=0.1;ERF=0.1) and (L=0.1;
ERF=0.2) are 13.9% and 13.3%, respectively. When we increase
L to 0.5, the savings for the cases ERF=0.1 and ERF=0.5 move
to 43.9% and 41.8%, respectively. Finally, with (L=1.0;ERF=0.1)
and (L=1.0;ERF=0.2), the energy savings climb up to 59.7% and



Figure 5: Normalized energy consumption (version (ii)).

Figure 6: Percentage performance penalty (version (ii)).

57.1%. All these values are obtained assuming that the energy con-
sumed during re-synchronization is the average of active and idle
energies and that it takes 20 milliseconds to wake up the proces-
sor/cache. Note that this value is very large even for aggressive
resource shut-down strategies such as power supply gating [6]. So,
in practice, the energy savings that can be obtained from our strat-
egy might be even larger.

While these results indicate large energy savings, delaying wak-
ing up a processor until it is actually needed can hurt performance.
Figure 6 shows for each benchmark the increase in execution time
(over version (i)) when processor shut-down is employed. We ob-
serve that the increase in execution time ranges from 0% to 17%,
averaging on 5.3%. The reason that two benchmarks (aps and
n-real-updates ) do not experience any performance overhead
is the fact that each loop in these two codes work with the same
number of processors (see Figure 3); consequently, there is no need
for processor activation/de-activation between the nests. While this
performance penalty may be tolerable for some embedded designs,
we also noted that when the re-synchronization penalty was dou-
bled (40 msec), the performance penalties also almost doubled (the
detailed results are omitted).

5. PROCESSOR PRE-ACTIVATION
Pre-activation is a strategy that minimizes the performance im-

pact of energy optimizations. It is implemented by activating a
resource earlier than the time it will actually be required. The ob-
jective here is to eliminate the resynchronization latency that will
occur before the resource can start to function normally. Previ-
ous work focused on pre-activation of DRAM memory modules

[8] and I/O peripherals [3]. In this section, we demonstrate how
pre-activation of inactive processors can improve performance and
energy behavior of MPoC.

While our processor shut-down strategy explained above can lead
to large energy savings, it also increases execution time. For exam-
ple, employing our approach increases the length of the execution
profile shown in Figure 4(a) byts cycles (see Figure 4(b)). In this
section, we propose apre-activation strategyin which a processor
in the power-down state is activated before it is actually needed.
The objective here is to ensure that the processor will be ready (i.e.,
got synchronized) when it is required to participate computation.

The ideal use of this approach is illustrated in Figure 4(c). In
this case, the processor remains in the power-down state only for
a period ofti � ts. The lastts portion of the original idle period
is spent in re-synchronization. Consequently, when the processor
is requested, it would have just finished the re-synchronization pe-
riod. An important issue here is to determine the exact point in
the code to start re-synchronization. This may not be very trivial;
because re-synchronization penalty is given in terms of cycles and
it needs to be re-expressed in terms of loop iterations as this (i.e.,
loop iteration) is the only unit we can use (at source level) to insert
activation/deactivation calls. Essentially, in order to pre-activate a
processor in the power-down state (for a specific nest), we need
to determine an iteration (in the previous nest) before which the
processor is activated. Let us assume that each iteration of this pre-
vious nest takesC cycles and that the re-synchronization penalty is
ts cycles. Consequently, in the ideal scenario, the processor in ques-
tion should be activated (i.e., should enter to the resynchronization
period) before the lastd ts

Ce iterations of the loop. If this is done
properly, for our current example, we obtain the execution profile
shown in Figure 4(c).

Note that the length of the execution profile in Figure 4(c) is the
same as that of Figure 4(a). Its energy consumption, on the other
hand, is

E = (ti � ts)ei + tses+ taea

= (kti + ta+
1�k

2
ts)ea

assuming, as before, thates= (ea+ei)=2 andei = kea: Comparing
this expression with the original (unoptimized) energy consump-
tion, we can see that this approach is beneficial if

ts
2
< ti :

It should be noticed that this ideal pre-activation strategy is better
(easier to satisfy) than the power-down scheme discussed in the
previous section from both the energy and performance viewpoints.

Figures 4(d) and (e) illustrate, on the other hand, the scenarios
where this ideal pre-activation strategy does not happen. In Fig-
ure 4(d), the processor activation is delayed. In this case, the length
of the original profile is increased (by the amount of the delay in
processor activation). In comparison, in Figure 4(e), the processor
is activated earlier than necessary. In this case, there is no increase
in execution profile length; however, depending on how early the
processor is activated, this can cause a significant amount of en-
ergy consumption. This is because the re-synchronization period
has a fixed length, beyond which the processor is up and starts to
consume energy.

The preceding discussion indicates that processor pre-activation
can be an effective technique provided that it is done at appropriate
moment. There might be several reasons why it may not be pos-
sible to achieve ideal pre-activation. First, the point at which the
activation call is to be inserted may not be evident from the text
of the program. For example, the loop during which a processor
needs to be activated (as it is required to participate a computation
in the next loop) may haveN iterations and our pre-activation strat-
egy can determine that the processor(s) should be activated before
the lastM iterations are entered. In order to achieve this, we need
to split the iteration space of the loop (this is called loop splitting
[15]). This, in turn, can increase the code size which may not be
tolerated in some embedded environments. Second, the previous



Figure 7: Normalized energy consumption (version (iii)).

loop may not have sufficient number of iterations, in which case
we can either consider the next previous nest, or (if it is not possi-
ble to do so), we might have to activate the processor(s) later than
optimal point, thereby incurring performance penalty.

To evaluate our processor pre-activation strategy (that is, ver-
sion (iii)), we performed another set of experiments. The results
given in Figure 7 (normalized with respect to version (i)) indi-
cate that energy savings due to configurations (L=0.1; ERF=0.1),
(L=0.1; ERF=0.2), (L=0.5; ERF=0.1), (L=0.5; ERF=0.2), (L=1.0;
ERF=0.1), and (L=1.0; ERF=0.2) are 15.5%, 15.0%, 46.1%, 44.4%,
61.7%, and 59.8%, respectively. The caches (per processor) used in
these experiments are 4KB, 2-way set-associative. When we com-
pare these results with the corresponding values given in the previ-
ous section, we see that pre-activation is beneficial from an energy
perspective too. We also observed that except for one benchmark
(btrix ) the compiler was able to easily insert the pre-activation
calls. In btrix , in order to insert the pre-activation calls, the
compiler needed to split [15] two nests (using SUIF); this led to
a 3% increase in the executable size and a 2% degradation in per-
formance. To conclude, processor pre-activation is beneficial from
both energy and performance perspectives.

In order to approximate an embedded DRAM, we conducted an-
other group of experiments where the per access off-chip memory
energy is reduced to one tenth of its original value. Since this re-
duces the contribution of DRAM to the overall energy budget (and
we do not perform any energy optimization for DRAM), we ob-
served an increase in energy savings due to processor shut-down
combined with pre-activation. As an example, with this new value
of per-access memory energy, the energy savings for (L=1.0;ERF=0.1)
and (L=1.0;ERF=0.2) increased to 68.1% and 63.6%, respectively.

6. FUTURE WORK
This work is a first step in our effort for evaluating and opti-

mizing energy consumption of a complete system based on MPoC.
Consequently, it can be extended in several ways:
�We plan to model communication between processors more ac-

curately. Given current trends [6], we can expect that interconnect
energy will be more and more pressing in the future. Consequently,
to reach an accurate system level energy evaluation, it is critical that
interconnect energy should be captured accurately. This issue will
be even more important as we attempt to characterize different on-
chip interconnection networks from an energy perspective.
�Another way of utilizing multiple processors in an MPoC is

to execute (parallelize) code portionsspeculativelywhen it is not
possible to parallelize the application statically. Since speculative
parallelization may cause significant wasted energy (in cases where
speculation fails), there are important tradeoffs between energy and
performance.
�We also plan to augment our current model with energy models

of other system components such as I/O devices, software-managed

SRAMs, instruction caches, and embedded DRAMs. This will help
us to develop more global energy optimization strategies.
�Shutting down idle data caches between nests may not be a

good idea when there exists inter-nest data reuse. While this prob-
lem did not show up in our examples (as there were not much reuse
between nests), a more sophisticated scheme should consider inter-
nest reuse before shutting down a data cache. This is an issue that
we will visit in the future.

7. CONCLUSIONS
The primary attraction of an MPoC is its ability to shorten execu-

tion times for applications that can be parallelized at source level.
Due to simple processor architectures (as compared to complex
superscalar/VLIW architectures with aggressive branch prediction
and speculation) combined with a carefully-designed low-overhead
interconnect, these architectures can bring energy benefits as well.
Based on the observation that in a given array-intensive code not all
the nests require the maximum number of processors in the MPoC,
in this paper, we evaluated an adaptive loop parallelization strategy
combined with selective shut-down of unused processors. To elim-
inate potential performance penalty due to energy management, we
also proposed a processor pre-activation strategy. Our experiments
with an 8-processor MPoC and different parameters (e.g., cache
size, re-synchronization overhead, and per-access off-chip memory
energy) indicated that our approach is successful in reducing en-
ergy consumption.
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