
A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation

Achim Nohl, Gunnar Braun,
Oliver Schliebusch, Rainer Leupers,

Heinrich Meyr
Integrated Signal Processing Systems

Templergraben 55, 52056 Aachen, Germany

nohl@iss.rwth-aachen.de

Andreas Hoffmann
LISATek Inc.

190 Sand Hill Circle
Menlo Park, CA 94025

andreas.hoffmann@lisatek.com

ABSTRACT
In the last decade, instruction-set simulators have become
an essential development tool for the design of new pro-
grammable architectures. Consequently, the simulator per-
formance is a key factor for the overall design efficiency.
Based on the extremely poor performance of commonly used
interpretive simulators, research work on fast compiled in-
struction-set simulation was started ten years ago. How-
ever, due to the restrictiveness of the compiled technique,
it has not been able to push through in commercial prod-
ucts. This paper presents a new retargetable simulation
technique which combines the performance of traditional
compiled simulators with the flexibility of interpretive sim-
ulation. This technique is not limited to any class of ar-
chitectures or applications and can be utilized from archi-
tecture exploration up to end-user software development.
The work-flow and the applicability of the so-called just-in-
time cache compiled simulation (JIT-CCS) technique will be
demonstrated by means of state of the art real world archi-
tectures.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Simulation Support
Systems; I.6.3 [Simulation and Modeling]: Model Val-
idation and Analysis; D.3.2 [Programming Languages]:
Design Languages—LISA; C.0 [General]: Modeling of Com-
puter Architecture

General Terms
Design, Languages, Performance

Keywords
Retargetable simulation, compiled simulation, instruction
set architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002, June 10-14, 2002, New Orleans,Louisiana, USA.
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

1. INTRODUCTION
Instruction-set simulators are an integral part of a today’s

processor and software design process. Their important role
within the architecture exploration, early system verification
and pre-silicon software development phase is undisputable.
However, the growing complexity of new programmable ar-
chitectures has a negative impact on the simulation per-
formance. Taking into account Moore’s law, research work
on a high performance simulation technique for instruction-
set simulators was started in 1991 [10]. The so-called com-
piled simulation technique is rooted in the domain of RTL
level hardware simulation and was applied successfully to
instruction-set simulators. Nevertheless, the fast compiled
simulation technique has not been able to succeed in com-
mercial tools. This is due to the fact that the speed-up
is expensively paid with restrictions and assumptions con-
tradicting with the requirement of today’s applications and
architectures.
The major restriction for the utilization of compiled simula-
tors is the requirement for static program code. This limits
the compiled technique to a small class of digital signal pro-
cessors (DSP). In contrast to typical DSP applications which
are signal processing algorithms, micro-controller (µC) ar-
chitectures usually run an operating system (OS). The sig-
nificant characteristic of operating systems, run-time dy-
namic program code, conflicts with the limitation of com-
piled simulators. However, even for DSP architectures real-
time operating systems are increasingly gaining importance.
This paper presents a simulation technique which meets the
requirements for both, high simulation speed and maximum
flexibility. The so-called just-in-time cache compiled simu-
lation (JIT-CCS) technique can be utilized within the archi-
tecture design as well as for end-user software development.
The presented technique is integrated in the retargetable
LISA processor design platform [2]. A generator back-end
for the LISA 2.0 processor compiler has been developed,
which automatically constructs a JIT-CCS simulator from
a LISA machine description.
The rest of this paper is organized as follows: Section 2
presents related work concerning compiled simulation and
result caching techniques. The restrictions of existing sim-
ulation techniques and their consequences on the applica-
bility are worked out in section 3. Subsequently, section 4
describes the work-flow of the just-in-time cache compiled
simulation technique. Finally, benchmark results for various
state of the art architectures are presented in section 5.

2. RELATED WORK
Research work on instruction-set architecture simulation

has been an active research topic since the early days of
programmable architecture design. Within the scope of the
EMBRA project [5] a high performance simulator for the
MIPS R3000/R4000 processor has been developed. The ob-
jective is similar to the one presented in this paper – provid-
ing highest flexibility with maximum performance. Similar
to FastSim [3] based simulators, the performance gain is
achieved by dynamic binary translation and result caching.
However, EMBRA is a non-retargetable simulator and re-
stricted to the simulation of the MIPS R3000/R4000 archi-
tecture.

Work on retargetable fast simulators using a machine de-
scription language was published within the scope of the
FACILE project [4]. The simulator generated from a FACILE
description utilizes the Fast Forwarding technique to achieve
reasonably high performance. Fast forwarding is similar to
compiled simulation and uses result caching of processor ac-
tions, indexed by a processor configuration code. Previ-
ously cached actions can be replayed directly in a repeated
occurrence of a configuration. Due to the assumption that
program-code is run-time static, dynamic program-code can-
not be simulated. Furthermore, no results on the applica-
bility of FACILE for VLIW or irregular DSP architectures
have been published.

A retargetable tool suite which allows cycle- and bit-true
modelling of pipelined processors is based on the EXPRES-
SION [1] language. Previous publications have shown its
suitability for modelling real-world architectures like the
Motorla DSP 56k or Texas Instruments TMS320C6000, how-
ever, no results are available on the performance of the gen-
erated simulators.

Retargetable compiled simulators based on an architec-
ture description languages have been developed within the
Sim-nML (FSim) [9], ISDL (XSSIM) [8] and MIMOLA [11]
projects. Due to the simplicity of the underlying instruction
sequencer, it is not possible to realize processor models with
more complex pipeline control mechanisms like Texas In-
struments TMS3206000 at a cycle accurate level. A further
retargetable approach, which is based on machine descrip-
tions in ANSI C, has been published by Engel and Fettweis
[6]. However, only results for a single proprietary DSP ar-
chitecture are available so far. Moreover, all of the presented
compiled simulation approaches are qualified by the limita-
tions that result from the compiled principle.

In summary, none of the above approaches combines retar-
getability, flexibility, and high simulation performance at the
same time. The LISA language has proven to be capable of
retargeting fast compiled instruction-set simulators for var-
ious real-world DSP architectures [2]. To finally overcome
the flexibility restrictions of compiled simulators a novel sim-
ulation technique is presented in the following sections.

3. PROCESSOR SIMULATION
The broad spectrum of today’s instruction-set simulation

techniques starts with the most flexible1 but slowest inter-
pretive technique. Compared to the interpretive technique,
much higher simulation speed is achieved by compiled sim-
ulation, however, the gain is expensively paid with a loss
of flexibility. This section critically compares the existing

1Here flexibility refers to the ability to address all kinds of
architectures and applications.

Program

Memory

Fetch Execute

Run-Time

Instruction Word Decode

Program

Memory

Fetch Execute

Run-Time

Instruction Word Decode

Figure 1: Interpretive Simulation Workflow

Program

File

Simulation

Compiler Compiled

Simulation

Instruction Behavior

Execute

Run-TimeCompile-Time

Program

File

Simulation

Compiler Compiled

Simulation

Instruction Behavior

Execute

Run-TimeCompile-Time

Figure 2: Compiled Simulation Workflow

simulation techniques. Especially,the impact of the trade-
off between flexibility and performance on the suitability for
different application domains is discussed.

3.1 Interpretive Simulation
An interpretive simulator is basically a virtual machine

implemented in software, which interprets the loaded object
code to perform appropriate actions on the host as shown
in figure 1. Similar to the operation of the hardware, an
instruction word is fetched, decoded, and executed at run-
time (simulation loop), which enables the highest degree of
simulation accuracy and flexibility. However, the straight-
forward mapping of the hardware behavior to a software
simulator has major disadvantages. Unlike in real hard-
ware, instruction decoding is a very time consuming process
in a software simulator. Compared to the operation of the
functional units, which can be easily transformed into equiv-
alent instructions on the host, the decoder is characterized
by control flow. Especially for today’s VLIW architectures
the decoding overhead dominates.

3.2 Compiled Simulation
The objective of compiled simulation is to improve the

simulation performance. Considering instruction-set simu-
lation, efficient run-time reduction can be achieved by shift-
ing time-consuming operations from the simulator run-time
into an additional step before the simulation (compile-time).
This step is performed by a tool called simulation compiler
(see figure 2). Depending on architectural and application
characteristics, the degree of compilation varies. All com-
piled simulators have in common that a given application is
decoded at compile-time. Based on the results of the decod-
ing phase the simulation compiler subsequently selects and
sequences the appropriate host operations that are required
to simulate the application. Since the time-consuming in-
struction scheduling is still performed at run-time (dynam-
ically scheduled), statically scheduled [7] compiled simula-
tors also move the instruction scheduling into the compi-
lation phase. However, all compiled simulators rely on the
assumption that the complete program code is known before
the simulation starts and is furthermore run-time static.

3.3 Importance of Flexibility
Many application domains are excluded from the utiliza-

tion of compiled simulators. An overview of these domains
is given in figure 3 and the details are discussed in the next
paragraphs.

The integration of compiled simulators into embedded sys-
tem environments is not possible, since the prime require-
ment, predictable program code, is not fulfilled when using
external program memories.
Furthermore, applications with run-time dynamic program
code, as provided by operating systems (OS), cannot be ad-
dressed by compiled simulators. Run-time changes of pro-
gram code cannot be considered by a simulation compiler.
Today’s embedded systems consists of multiple processor
cores and peripherals which make an underlying OS indis-
pensable. However, compiled simulators only allow the iso-
lated simulation of applications which is not sufficient for
the verification of a complete HW/SW system. Considering

Run-Time switch between different instruction

sets cannot be considered before simulation.

- Multiple Instruction Sets

Compiled simulation is qualified by an

enormous memory usage.

- Large Applications

Dynamic program code is not allowed- Operating Systems

- Boot Loading

Program code is not predictable before runtime.- System Integration

- External Memories

Compiled Simulation RestrictionApplication Domain

Run-Time switch between different instruction

sets cannot be considered before simulation.

- Multiple Instruction Sets

Compiled simulation is qualified by an

enormous memory usage.

- Large Applications

Dynamic program code is not allowed- Operating Systems

- Boot Loading

Program code is not predictable before runtime.- System Integration

- External Memories

Compiled Simulation RestrictionApplication Domain

Figure 3: Compiled Simulation Restrictions

novel architectural features, especially in the domain of low
power architectures, multiple instruction-sets are widely used
to reduce power and memory consumption. These archi-
tectures can switch to a compressed instruction-set at run-
time. For instance the ARM core family provides a so-
called ”Thumb” instruction-set. This dynamic instruction-
set switching cannot be considered by a simulation compiler,
since the selection depends on run-time values and is not
predictable.
Compiled simulation of large applications requires an enor-
mous amount of memory (approx. 1000x, depending on the
architecture) compared to interpretive techniques. As long
as the host memory is big enough, the high memory con-
sumption does not noteworthy decrease the performance.
This is due to the fact that program execution concentrates
on small local parts of the code, and thus cache effects are
not noticeable. Of course for multi-processor simulation
of embedded systems or processor arrays, the memory ef-
ficiency of the simulator becomes increasingly important.

Summarizing the above arguments the enormous perfor-
mance gain of compiled simulators succumbs to their restric-
tiveness. This implies that the presented application areas
are still dominated by the slow interpretive technique. But
driven by the ever increasing complexity of applications, ar-
chitectures, and systems the urgent requirement for a high
performance simulation technique arises. This technique has
to provide the maximum degree of flexibility together with
a high performance.

4. JIT CACHE COMPILED SIMULATION
The Just-In-Time Cache Compiled Simulation (JIT-CCS)

technique presented in this paper has been developed with
the intention to combine the full flexibility of interpretive
simulators with the speed of the compiled principle. The
basic idea is to integrate the simulation compiler into the
simulator. The compilation2 of an instruction takes place

2In this context compilation does not refer to invoking a C
compiler at run-time. The compilation process is discussed
in section 4.2.

at simulator run-time, just-in-time before the instruction is
going to be executed. Subsequently, the extracted informa-
tion is stored in a simulation cache for the direct reuse in
a repeated execution of the program address. The simula-
tor recognizes if the program code of a previously executed
address has changed and initiates a re-compilation. First
of all, this method offers the full flexibility, as the inter-
pretive technique does. However, it has to be investigated
whether the performance of the compiled simulation can be
achieved. The next paragraph discusses the theoretically
achievable performance and gives a comparison to the com-
piled technique.

4.1 Performance
The total compiled simulation time tapp,cs is equivilant

to the total instruction execution time tex,total, which is
the product of the instruction execution count nexec and
the average execution time per instruction t̃ex,insn. For the
just-in-time compiled simulation the total simulation time
tapp,js is additionally made up by the total compilation time
tcomp,total. Under the assumption that the program code is
constant the total compilation time only depends on the
instruction count of the application ninsn and the average
time for compiling a single instruction t̃comp,insn.

tapp,cs = tex,total (1)

tapp,js = tex,total + tcomp,total (2)

tex,total = t̃ex,insn ∗ nexec

tcomp,total = t̃comp,insn ∗ ninsn

Based on the equations (1) and (2) the instruction through-
put pcs (3) and pjs (4) of the two simulation techniques can
be deduced.

pcs =
1

t̃ex,insn

(3)

pjs =
1

t̃ex,insn + t̃comp,insn ∗ ninsn
nexec

(4)

In (5) it is shown that for a growing number of instruction
executions the performance of the just-in-time compiled sim-
ulator converges to the performance of a compiled simulator.

lim
nexec→∞

pjs = pcs (5)

The number of repeatedly executed instructions needed for
a good convergence of the compiled simulation speed very
well corresponds to the conditions provided by real-world
applications. This is due to the fact that most programs
behave according to the 90/10 rule: 90% of execution time
is spent in 10% of the code. For instance the proportion
nexec/ninsn = 256 corresponds to a loop that is iterated 256
times. Together with the valid assumption that t̃comp,insn =
4 ∗ t̃exec,insn, 98.5% of the compiled simulation performance
is achieved. The validity of the assumptions made here is
proved in section 5.

4.2 Just-in-Time Simulation Compiler
The complete design of the JIT-CCS is based on the in-

tegration of the simulation compiler into the simulator. In
fact, the run-time compilation of instructions requires a new
concept for the simulation compiler. Based on the separa-
tion of the simulation compiler and the simulator the follow-
ing conditions are fulfilled for traditional compiled simula-
tors: the instruction decode time is not critical since it does

not influence the simulation performance. Furthermore, the
simulation compiler is allowed to generate C-code which is
subsequently compiled by a C-compiler to build a compiled
simulator. Obviously, this is not true for an integrated simu-
lation compiler. Especially, the run-time call of a C-compiler
is not practical.

In order to explain the work-flow of the just-in-time simu-
lation compiler, some important characteristics of a LISA
processor model have to be introduced. A LISA model
is a mixed structural/behavioral description of a proces-
sor. The structural part keeps the definition of processor
resources like registers, memories and pipelines. The proces-
sor’s instruction-set including instruction-coding, assembly
syntax, functional behavior, and timing is contained in so-
called LISA operations. A single processor instruction can
be composed by multiple LISA operations. The following
example shows an excerpt of a LISA processor description
for a simple ADD instruction. Beside the definition of the pro-
gram memory and the register resources, two examples for
LISA operations are given. The operation ADD implements
the binary coding, assembly syntax, and the functional be-
havior of the processor instruction ADD. The instruction-set
information of the operand registers src1, src2, and dst are
referenced from the inferior LISA operation Register. The
operation Register describes the binary coding, assembly
syntax of a single register within the processor’s register
file. A reference to the respective resource is returned for
the use in the functional behavior of operation ADD.

RESOURCE {

PROGRAM_MEMORY byte8 prog_mem[0x0..0x1000];

REGISTER word32 R[1..15];

}

OPERATION ADD {

DECLARE { GROUP dst,src1,src2 = {Register}}

CODING { 0b01011 0b0000 src1 src2 dst}

SYNTAX { "ADD" dst "," src1 "," src2 }

BEHAVIOR{ dst = src1 + src2}

}

OPERATION Register {

DECLARE { LABEL index; }

CODING { index=0bx[4]}

SYNTAX { "R" index }

EXPRESSION { R[index]}}

The presented structure of LISA processor models enables
the following procedure. The behavioral C code of all LISA
operations is pre-compiled into C-functions which are part
of the simulator. The JIT simulation compiler selects the
appropriate operations, which are required to simulate an
instruction, on the basis of the coding information. Refer-
ences to the selected C-functions are subsequently stored in
the simulation cache. These references are utilized by the
simulator to execute the instructions’ behavior.

4.3 Simulation Cache
The just-in-time simulation compiler stores the compiled

data within a so-called simulation cache. The simulation
cache is indexed by the non-ambiguous instruction address.
For simplification purpose the cache size is considered to
be unlimited first. Every time an instruction is going to
be executed, the just-in-time simulation compiler looks up
the cache entry that corresponds to the current program
address. Before the previously cached data is used to ac-
celerate the simulation, the validity is verified. Therefore,

JIT - Compilation UnitJIT - Compilation Unit

JIT

Simulation

Compiler

Simulator (at address 4)

&cmp,&r,10

&add,&r,&r,1

data

ea10

1a01

key

24

10

indexaddr

&cmp,&r,10

&add,&r,&r,1

data

ea10

1a01

key

24

10

indexaddr

Instruction Register

JIT Interface

ea10

4 Program Counter

1. request @4 4. return entry 2

2. lookup @43. compile @4

dataaddr

d000

ea10

1a01

JNE 08

CMP R,104

ADD R,R,10

dataaddr

d000

ea10

1a01

JNE 08

CMP R,104

ADD R,R,10

Program Memory

Simulation Cache

startstart

Figure 4: JIT-CCS Workflow

each cache entry contains a key, the instruction word, which
is compared to the simulator’s instruction register contents.
If an instruction word change is detected, re-compilation is
initiated at run-time. Often, processors with multi-word in-
structions, or parallel instructions within a VLIW bundle,
require that the key is made up by more than one instruc-
tion register. Figure 4 illustrates the workflow of the JIT-
CCS. The simulator is going to execute the instruction at
address 4. Therefore the compiled data for the instruction
at address 4 (1) is requested. The simulation cache manage-
ment looks up the address in the simulation cache (2) and
indicates that this address has not been compiled before.
Therefore the JIT compiler is invoked (3) which stores the
data together with the instruction word ea10 in the cache.
Eventually a reference to the table entry is returned to the
simulator (4).

The presented workflow of the JIT compiled simulator
shows that the major disadvantage of the compiled simu-
lation technique, the requirement for fixed and predictable
program code, does not apply for the JIT compiled sim-
ulator. However, another important parameter has to be
considered – the application size. The size of the program
code must be assumed to be run-time dynamic. Since the
cache has a run-time static size, which is usually smaller
than the application size, a replacement strategy is needed.
Furthermore, a unique but not biunique mapping function
has to be defined which describes the assignment of program
memory addresses to cache addresses (hash-function). The
cache key which has been initially used to identify changed
program code, is now additionally employed to detect cache
collisions. These collisions result from the fact that multiple
program memory addresses share a single entry in the cache.

An important concern is the minimization of the cache
administration overhead. Since the instruction compile time
t̃comp,insn defines the penalty for a cache miss, the overhead
for the cache administration has to be significantly smaller.
To fulfill this constraint, a simple one-level cache with a
direct address mapping was chosen (see figure 5). Each pro-
gram memory address corresponds to exactly one entry in
the cache. When a cache collision occurs the respective en-
try is directly overwritten by the new instruction. The direct
address mapping assures a minimum cache miss rate εmiss

for spatially coherent code. Loops, the time critical parts
of a program, directly benefit from this characteristic if the
loop kernel fits into the cache.

The convergence of the JIT-CCS (just-in-time cache com-
piled simulator) instruction throughput to the performance

IndexIndex

Program Memory Address Simulation Cache

0

n

: n=2m

Figure 5: Direct Mapping

of the compiled simulator is now significantly characterized
by the simulation cache miss rate εmiss as shown in equa-
tion (6) (disregarding the cache administration). The results
presented in section 5 will demonstrate that already small
caches, which are sufficient to store the most time-critical
loop of an application, achieve a very good performance ap-
proximation of the traditional compiled technique.

pjsccs ≈ 1

t̃ex,insn + t̃comp,insn ∗ εmiss

(6)

εmiss = f(cachesize) (7)

4.4 Pipelined Processor Models
Previous explanations of the JIT-CCS have assumed that

each cache address can be overwritten directly in a fol-
lowing simulator control step. While this is perfectly true
for instruction accurate simulators where a complete in-
struction is processed within each control step, this assump-
tion is not maintainable in case of cycle bases simulation of
pipelined architectures. The lifetime of an instruction within
the pipeline is no longer predictable. Therefore cache en-
tries of instructions currently processed in the pipeline have
to be protected against being overwritten. This is achieved
by maintaining a look-up table that keeps the instruction
addresses which are currently in use. Since the number of
(VLIW) instructions present in the pipeline at the same time
cannot exceed the number of pipeline stages, the size of the
look-up table is defined by the number of stages. Concerning
the cache access, three cases have to be considered :

1. cache hit,

2. cache miss, cache address not in use, and

3. cache miss, cache address in use.

In case of a cache hit an instruction can be taken directly
from the compiled simulation cache. In the second case the
instruction is not present in the cache, but the corresponding
cache entry may be overwritten with the recently compiled
data. Furthermore, the instruction address is registered in
the look-up table. Table entries are written in a circular
manner to displace instructions which have already left the
pipeline. In the third case, a cache miss occurs and it is
determined that the cached instruction which is to be re-
placed still remains in the pipeline. One solution would be
a set-associative cache, however, due to the very unlikely oc-
currence of this case the simulator switches to interpretive
mode for the particular instruction.
Figure 6 illustrates this procedure. The instruction MOV Y,1
at address 8000 is going to be decoded. Therefore the cache
address is generated (1) and the corresponding entry is looked
up in the cache (2). A cache collision is detected because the
cache entry keeps the instruction JMP 8000 from address 0.
Before the entry can be overwritten the pipeline-protection
table has to be checked (3) whether the JMP instruction is
still in use or not. Since this is the case, the instruction
MOV Y,1 is not cache compiled but interpreted instead, with-
out updating the cache.

[8001] ADD Y,1

Fetch

[00]

[8000] MOV Y,1

Decode

[0000] JMP 8000

Execute

[00]

empty

[8000]

[00]

Cache Addr. GenerationCache Addr. Generation

[0000] JMP 8000

empty

Protection Table

Simulation Cache

Lookup

Collision/Miss

Entry protected ?Entry protected ?

Cache address [00] is currently

protected by "JMP 8000" and

cannot be displaced.

Interprete "MOV Y,1"

1

2

3

startstart

Figure 6: Cache Collision Scenario

5. RESULTS
The applicability and the efficiency of the retargetable

just-in-time cache compiled simulation technique has been
evaluated on the basis of various LISA processor models.
The simulation results of the Advanced Risc Machines ARM7
and ST Microelectronics ST200 LISA models are presented
in this section. The processor models have been developed
within previous work and the generated tools were verified
accurately against the vendor tools. Within this section the
instruction throughput of the JIT-CCS will be compared
to the performance of the interpretive and traditional com-
piled technique (both generated from LISA 2.0 descriptions).
Therefore, the applications that have been selected for the
benchmark fulfill the requirements of the traditional com-
piled simulation technique: constant program code. Fur-
thermore, it is investigated how the performance of the JIT
simulator is influenced by the cache size.
Performance results of the different generated simulators
were obtained using an 1200 MHz Athlon PC, 768 MB RAM
running the Microsoft Windows 2000 operating system. The
generated simulator code has been compiled using the Mi-
crosoft Visual C++ 6.0 compiler with optimizations turned
on (/O2).

Figure 7 shows the benchmark results of instruction ac-
curate simulators for the ARM7 running a jpeg2000 codec.
The dark-grey bars visualize the simulation performance for
different simulators in MIPS (million instructions per sec-
ond). The two leftmost bars show the performance of the
compiled and interpretive simulation techniques. The re-
maining dark-grey bars correspond to the JIT-CCS perfor-
mance for different cache sizes. The light-grey bars visualize
the relative cache-miss rate for the examined cache configu-
rations.

It is clearly recognizable that the JIT-CCS simulation per-
formance is improving with a growing cache size. This effect
becomes clear when looking at the continuously decreasing
cache-miss rate. Examining the results it can be seen that
more than 95% of the compiled simulation performance is
achieved with a 4096 entries size cache. This cache allo-
cates less than 2MB of host memory. Compared to the com-
piled simulator which requires approx. 23MB for all 47354
instructions of the application3 the JIT-CCS is very mem-
ory efficient. Considering big applications such as operating
systems it is obvious that also the memory consumption of
compiled simulators can become a serious problem. In con-
trast to compiled simulators the JIT-CCS is characterized
by a user defined performance vs. memory trade-off. Due
to the execution locality of programs the JIT-CCS perfor-

3The memory consumption of the compiled simulation is
proportional to the application size.

ARM7 - instruction accurate JIT-CCS

jpeg 2000 codec

0,0 0,0

99,9 98,3
95,3

84,4

74,7

58,5

33,1

19,1

8,8

2,9 2,0 1,0 0,4 0,1 0,0

0

1

2

3

4

5

6

7

8

C
om

pi
le
d

In
te

rp
re

tiv
e 2 4 8 16 32 64 12

8
25

6
51

2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

Cache Size [Records]

P
e

rf
o

rm
a

n
c

e
[M

IP
S

]

0

10

20

30

40

50

60

70

80

90

100

C
a
c
h

e
M

is
s

R
a
te

Figure 7: Simulator Performance ARM7 – jpg2000

mance saturation is achieved rapidly, resulting in manage-
able small simulation caches. Unlike the voluminous jpeg

ARM7 - instruction accurate JIT-CCS

adpcm codec

0,0 0,0

98,9 98,0 98,6 99,3

89,3

39,4

0,2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0

1

2

3

4

5

6

7

8

9

C
om

pi
le
d

In
te

rp
re

tiv
e 2 4 8 16 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

Cache Size [Records]

P
e

rf
o

rm
a

n
c

e
[M

IP
S

]

0

10

20

30

40

50

60

70

80

90

100

C
a

c
h

e
M

is
s

R
a

te

Figure 8: Simulator Performance ARM7 – adpcm

2000 codec with large (>1024 instructions) loop kernels, typ-
ical DSP applications like the adpcm codec require much
smaller caches. The biggest loop of the adpcm codec com-
piled for the ARM7 spans 122 instructions. The benchmark
results for the adpcm codec presented in figure 8 reflect this
characteristic. Here a cache size of 128 entries is sufficient to
achieve 95% of the compiled simulation performance. The
investigation of further applications has shown, that a rea-
sonable big cache size (approx. 4096-16384) is absolutely
sufficient for a >95% approximation of the compiled perfor-
mance. Almost the same applies to the instruction accurate
JIT-CCS of the ST200 architecture. Figure 9 shows the
simulation results of an adpcm codec on this machine.

Compared to the ARM7 benchmark results, the extremely
poor performance of the interpretive simulator is conspicu-
ous. This is due to the complex instruction decoder which
consequentially also influences the performance of the JIT-
CCS for small caches. The ST200 processor is a VLIW ar-
chitecture with many possible parallel instruction combina-
tions. The 128bit instruction word (VLIW) allows multiple
combinations of parallel instructions with and without ex-
tensions for immediate values. Together with distributed

ST200 - instruction accurate JIT-CCS

adpcm codec

0,0

100,0 97,9 96,9

82,3

50,1

2,2 0,1 0,0 0,0 0,0 0,0 0,0 0,0

0

1

2

3

4

5

6

7

8

9

C
om

pi
le
d

In
te

rp
re

tiv
e 8 16 32 64 12

8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

Cache Size [Records]

P
e

rf
o

rm
a

n
c

e
[M

IP
S

]

0

10

20

30

40

50

60

70

80

90

100

C
a

c
h

e
M

is
s

R
a

te

Figure 9: Simulator Performance ST200 – adpcm

op-codes the instruction decoding process of the software
simulator dominates the actual behavioral execution. Here,
a cache size of at least four entries is required to store the
parallel instructions of the VLIW instruction word.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel instruction-set simula-

tion technique, addressing retargetability, flexibility, and fi-
nally high performance at the same time. Results for various
real world architectures have proven the applicability and
the high simulation speed of this technique. Future work
will concentrate on modelling further real world architec-
tures and verifying the presented simulation methodology.
Beyond simulation, current research aims at the retargeting
of HLL compilers and the generation of synthesizeable HDL
descriptions from a LISA 2.0 processor model.

7. REFERENCES
[1] A. Halambi and P. Grun and V. Ganesh and A. Khare and N.

Dutt and A. Nicolau. EXPRESSION: A Language for
Architecture Exploration through Compiler/Simulator
Retargetability. In Proc. of the Conference on Design,
Automation & Test in Europe, 1999.

[2] A. Hoffmann and T. Kogel and A. Nohl and G. Braun and O.
Schliebusch and A. Wieferink and H. Meyr. A Novel
Methodology for the Design of Application Specific
Instruction Set Processors (ASIP) Using a Machine
Description Language. IEEE Transactions on
Computer-Aided Design, 20(11):1338–1354, 2001.

[3] E. Schnarr and J.R. Larus. Fast Out-Of-Order Processor
Simulation Using Memoization. In Proc. 8th Int. Conf. on
Architectural Support for Programming Languages and
Operating Systems,1998.

[4] E. Schnarr and M.D. Hill and J.R. Larus. Facile: A Language
and Compiler For High-Performance Processor Simulators. In
Proc. of the Int. Conf. on Programming Language
Design and Implementation, 1998.

[5] E. Witchel and M. Rosenblum. Embra: Fast and Flexible
Machine Simulation. In Proc. of the Conf. on
Measurement and Modeling of Computer Systems, 1996.

[6] F. Engel and J. Nuhrenberg and G.P. Fettweis. A Generic Tool
Set for Application Specific Processor Architectures. In Proc.
of the Int. Workshop on HW/SW Codesign, 1999.

[7] G. Braun and A. Hoffmann and A. Nohl and H. Meyr. Using
Static Scheduling Techniques for the Retargeting of High
Speed, Compiled Simulators for Embedded Processors from
an Abstract Machine Description. In Proc. of the Int.
Symposium on System Synthesis, 2001.

[8] G. Hadjiyiannis and S. Hanono and S. Devadas. ISDL: An
Instruction Set Description Language for Retargetability. In
Proc. of the Design Automation Conference, 1997.

[9] M. Hartoog J.A. Rowson and P.D. Reddy and S. Desai and
D.D. Dunlop and E.A. Harcourt and N. Khullar. Generation of
Software Tools from Processor Descriptions for
Hardware/Software Codesign. In Proc. of the Design
Automation Conference, 1997.

[10] C. Mills, S. Ahalt, and J. Fowler. Compiled instruction set
simulation. Software - Practice and Experience,
21(8):877–889, 1991.

[11] R. Leupers, J. Elste, and B. Landwehr. Generation of
interpretive and compiled instruction set simulators. In Proc.
of the Asia South Pacific Design Automation
Conference , 1999.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

