IP Delivery for FPGAs Using Applets and JHDL

Michael J. Wirthlin and Brian McMurtrey
Brigham Young University, 459 CB
Provo, UT 84664

wirthlin@ee.byu.edu,mcmcurtre@ee.byu.edu

ABSTRACT

This paper introduces an FPGA IP evaluation and delivery
system that operates within Java applets. The use of such
applets allows designers to create, evaluate, test, and obtain
FPGA circuits directly within a web browser. Based on
the JHDL design tool, these applets allow structural view-
ing, circuit simulation, and netlist generation of application-
specific circuits. Applets can be customized to provide vary-
ing levels of IP visibility and functionality as needed by both
customer and vendor.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Simulation, Hardware
description languages

General Terms
Design

Keywords
Intellectual Property, JHDL, Applet, FPGA

1. INTRODUCTION

The rapid growth in the density of Field Programmable
Gate Arrays (FPGAs) has prompted the use of third-party
intellectual property (IP) in large FPGA designs. Many
vendors now offer a variety of design cores targeted specifi-
cally for one of many FPGA technologies. The advantages
of IP-based design are well known — using third-party IP
can reduce the design time, improve the design quality, and
facilitate the design of systems too large to design without
pre-designed cores.

While the use of third-party cores may improve design
productivity, the process of delivering the IP from a ven-
dor to a customer is not straightforward. The IP delivery
process must balance the conflicting demands of IP visibil-
ity for the customer and IP protection for the vendor. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

DAC 2002, June 10-14, 2002, New Orleans, Louisiang,USA.

Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

the customer, visibility is necessary to properly evaluate and
validate the IP. Such visibility may require simulation of the
IP, structural understanding of the IP, or some form of de-
tailed IP characterization. The more visibility available to
the customer, the more confidence he or she has that the
IP operates as specified. Further, greater visibility eases the
ability to integrate the IP within the customer’s design. For
the vendor, such customer needs conflict with the need to
protect the IP from unauthorized use or duplication. If too
much of the design is exposed to the customer, unauthorized
use or reproduction may occur and significantly reduce the
value of the IP. Successful IP delivery systems must bal-
ance the conflicting needs of user visibility and vendor IP
protection.

The approach for IP evaluation and delivery described in
this paper involves the use of Java applets executing within
a user’s web browser. A potential user may evaluate a given
FPGA circuit by accessing a web page and interacting with
the applet that executes within their local browser. IP eval-
uation applets can be written to provide various levels of
both IP visibility and protection.

1.1 IP Evaluation and Delivery Using Applets

Java applets are executable binaries that operate within
a web browser when accessed by the user. When the user
accesses a web page containing an applet, both the html
code used to render the web page and the Java binaries
are downloaded by the browser. The browser then executes
the Java binaries within a local Java Virtual Machine and
displays the applet within the browser window. Java applets
have been written for a wide variety of applications and web
interfaces.

Custom applets can be used as a convenient and powerful
way to evaluate and deliver electronic intellectual property
on-line. Based on the user’s license, a custom applet is pre-
sented that offers the appropriate IP evaluation and delivery
functionality. Such applets may provide IP characterization,
simulation, viewing, and other features as necessary.

Providing IP delivery executables in the form of applets
has several advantages over the delivery of user-installed
software. First, users do not have to install the software
used for IP delivery or evaluation. Providing the executa-
bles online simplifies the process for the user and allows
the potential customer to evaluate the IP with less effort.
Second, providing the executable on the web server insures
that the customer accesses the most recent code every time
the associated web page is accessed. The online executables
can be updated to reflect improvements and bug fixes by the
vendor. Rather than redistributing the IP executables every

time problems are resolved, vendors need only update exe-
cutables found on their online server. Third, it is relatively
easy to control the executables accessed by the user. Based
on user profiles, the web server can provide an executable
applet customized to the needs or license of the user. Such
user-specific executables will vary the level of observability
and control provided to the module generator applet.

The applet delivery mechanism described by this paper
uses the JHDL design environment — a design tool written
in Java for creating FPGA circuits[4]. This tool allows de-
signers to create, simulate, and netlist FPGA circuits by
writing Java programs that instance appropriate FPGA li-
brary cells and wires. While JHDL has been used primarily
as a stand-alone design tool, it offers a number of tools and
aids for describing, evaluating, and delivering FPGA IP over
the internet.

1.2 Reated Work

A variety of techniques for web-based IP evaluation and
delivery have been proposed and demonstrated. Similar ap-
proaches to the JHDL applet approach described by this
paper will be introduced and contrasted below.

121 Web-CAD

The Web-CAD methodology provides the infrastructure
for simulating IP over the internet using a client-server ar-
chitecture[2]. Using the internet to communicate simulation
information, this methodology allows users to evaluate IP
without actually acquiring simulation models. In this sys-
tem, protected IP is simulated at a remote server where the
details of the simulation model are hidden from the user.
Users can simulate protected IP within their simulation en-
vironment by transferring simulation information with the
remote server using a publicly available socket library.

Unlike the Web-CAD methodology, the JHDL applet ap-
proach does not transfer simulation events across the net-
work. Instead, a protected IP executable is sent over the
internet in the form of a Java applet. Simulating the IP di-
rectly on the user’s machine will result in increased simula-
tion speed by avoiding the relatively long latency associated
with a network.

1.2.2 JavaCAD

Like the Web-CAD methodology, the JavaCAD project
provides an infrastructure for simulating and evaluating cir-
cuits over the internet using remote method invocation (RMI)
[1]. This system also provides the capability of delivering
detailed area, power, and delay estimates of the IP in ques-
tion. Like the JavaCAD project, the IP presented in JHDL
Applets is described in Java and simulated using a custom
simulator. Unlike JavaCAD, the JHDL approach uses the
network to deliver IP applets rather than transfer simulation
data over the internet.

123 JBits

The JBits tool developed at Xilinx is another Java-based
tool used for delivering FPGA IP cores [5]. This tool de-
livers pre-placed IP cores by modifying the configuration
bitstream of the user. Because the IP is delivered in the
form of changes to a proprietary configuration bitstream,
the structure of the IP is hidden from the user. While this
tool currently does not use the internet to deliver IP cores,
JBits could easily be incorporated into online Java applets.

1.3 Overview

This paper will begin by providing an overview of the
JHDL design environment and discussing its ability to de-
scribe FPGA intellectual property. Next, the notion of IP
“executables” will be introduced along with an example of
such an executable using JHDL. The use of JHDL within
Java applets will be discussed and a detailed example of a
JHDL applet for IP evaluation and delivery will be provided.
Next, various scenarios for IP delivery applets will be sug-
gested and the paper will conclude with directions for future
work.

2. JHDL

JHDL is a open-source design environment developed at
BYU used for creating high-performance FPGA designs|[3,
4]. Based on the Java programming language, users cre-
ate FPGA designs by writing Java programs that instance
FPGA components and wires found within the supported
JHDL libraries. These Java files are compiled using con-
ventional Java compilation tools and simulated within the
Java Virtual Machine (JVM). The circuit is described using
conventional Java programming constructs and class objects
are “constructed” by instancing the object within a JHDL
hardware system object.

The Java code shown below demonstrates the construc-
tion of a simple full-adder within JHDL using the and2, or3,
and xor3 library elements:

public FullAdder(Node parent, Wire a, Wire b,
Wire ci, Wire s, Wire co) {

Wire t1 = new Xwire(this,1);

Wire t2 = new Xwire(this,1);

Wire t3 = new Xwire(this,1);

new and2(this,a,b,tl);

new and2(this,a,ci,t2);

new and2(this,b,ci,t3);

new or3(this,t1,t2,t3,co);/* co is carry out */
new xor3(this,a,b,ci,s); /* s is output */

}

This example begins by constructing three intermediate one-
bit wires: t1, t2, and t3. The carry out logic is created using
three and2 primitives and the or3 primitive (i.e. co=akb
| a&ci | b&ci). Finally, the sum logic is created using a
three-input exclusive or gate.

A variety of design aids are available for circuits con-
structed within JHDL. These tools can be used for manipu-
lating, viewing, and simulating JHDL circuit objects. With
an open API to the circuit structure, application-specific
tools can be created to manipulate or interact with JHDL
circuit objects.

2.1 Schematic Viewer

Within the design tool is a schematic viewer for displaying
the structure of the JHDL circuit. This viewer allows the
designer to quickly view the structure and hierarchy of a
circuit described by the Java code. In addition, the designer
can view the relative layout of FPGA circuits that include
performance enhancing placement attributes. Other tools
are available for viewing memory contents, signal waveforms,
and circuit hierarchy.

2.2 Circuit Netlister

To interface with other tools and design flows, JHDL pro-
vides an API for converting a JHDL circuit object into a
user-defined data interchange format. Through this API,
the structure, interconnect, hierarchy and properties of a
circuit described in JHDL is exposed and can be regener-
ated in one of many possible formats. JHDL currently cre-
ates EDIF and VHDL netlists and effort is being made to
support other netlist formats such as Verilog. If necessary,
user-defined textual or binary interchange formats can be
created by exploiting this APIL.

2.3 Circuit Simulator

An important component of the JHDL design suite is a
built-in circuit simulator. This simulator allows designers
to quickly test their JHDL circuit within an interactive sim-
ulation environment running in the Java Virtual Machine.
Simulation models for several FPGA technologies are sup-
ported and behavioral models of non-FPGA circuitry can
easily be created within Java class objects. This simulator
provides an open API for interacting with the simulation en-
vironment in an application-specific manner. User defined
viewers, functions, testbenchs, or third-party simulators can
be linked to the JHDL simulator through this API.

JHDL has been used by several organizations to gener-
ate large, high-performance FPGA designs. These designs
range in complexity from small, single-chip controllers to
large, multi-FPGA designs for automatic target recognition
and sonar beamforming. Most designs target FPGA co-
processor boards that provide multiple FPGAs, memory,
programmable interconnect and a high-speed host interface.
The ability to describe the structure of an FPGA circuit
in a general-purpose programming language and the set of
design aids provided by JHDL has aided the development
of many general-purpose FPGA designs and reconfigurable
computing applications.

3. JHDL FOR IP DELIVERY

Although JHDL has been used effectively as a design tool,
it is especially useful for creating parameterizable module
generators. The programming constructs and data struc-
tures within Java allow module generator executables to cre-
ate complex circuit structures based on user parameters and
application-specific optimizations. Most module generators
exploit technology-specific mapping optimizations and use
relative placement to improve timing. Many FPGA module
generators have been created in JHDL including a variety of
arithmetic, signal processing, logic, and memory modules.

An instance of a JHDL module generator can be created
by calling the Java class constructor of the module with the
appropriate parameters and options. Once the circuit has
been created within JHDL, the user may export the circuit
by generating a netlist in one of the supported interchange
formats (i.e. EDIF, VHDL, or Verilog). This netlist can
then be imported into a users conventional design environ-
ment. The following example demonstrates how an instance-
specific module is created within JHDL.

3.1 Constant Coefficient Module Gener ator

A module generator that builds optimized constant coeffi-
cient multipliers was created for the Xilinx Virtex FPGA[9].
This module generator creates optimized, preplaced con-

stant coefficient multipliers using partial-product look-up
tables. To minimize the area and latency of this circuit,
the generated circuit is customized to the specific constant,
signal widths, and parameters specified by the user.

An application-specific instance of this constant coefficient
multiplier is created by constructing the module generator
object within Java. The class constructor is called and given
all of the appropriate user-specific parameters needed to cre-
ate the optimized, user-specific instance of the IP. The con-
structor for this multiplier is shown below:

public VirtexKCMMultiplier(Node parent,
Wire multiplicand,
Wire product,
boolean signed_mode,
boolean pipelined_mode,
int constant);

To construct this multiplier, a user would first create Wire
objects for the multiplicand input and product output sig-
nals. The size of these wires is specified by the user when
the wires are created. The resulting circuit structure and
size is determine by the widths of these signal inputs. For
example, if the user specifies an 8-bit multiplicand input,
8-bit constant multiplier, and a 12-bit product, the mod-
ule generator will create an optimized 8x8 multiplier that
provides only the top 12-bits of the product.

Once the wires are created, the user creates variables to
represent the various parameters needed by the module gen-
erator. In this case, boolean variables are used to indicate
whether the multiplier is signed and pipelined and an int
variable is used to represent the actual constant used by the
constant multiplier. Once the Wire objects and parameter
variables are available, the circuit object can be created by
instancing the module generator with the Java new operator.
The following code fragment demonstrates the construction
of an 8x8 constant multiplier with 12-bit output using the
constant -56.

Wire m = new Wire(this,8); //8-bit input
Wire p = new Wire(this,12); //12-bit output
boolean signed = true;
boolean pipelined = true;
int ¢ = -56; //constant
new VirtexKCMMultiplier(this,m,p,signed,
pipelined, ¢);

After the constant coefficient multiplier has been created,
standard JHDL tools may be used to manipulate, view, sim-
ulate, or output the circuit into an interchangeable format
as needed by the designer.

3.2 Module Generator Executables

While most users of JHDL directly instance module gen-
erators within a top-level JHDL design, custom executable
programs can be written to deliver a circuit outside of the
JHDL design environment. Rather than requiring users to
write Java code, an executable can be provided that offers a
simple user interface for creating, evaluating, manipulating,
and delivering circuits to the user. Although these executa-
bles are based on the JHDL design infrastructure, the details
of Java and JHDL are hidden from the user.

For example, a simple graphical user interface for deliv-
ering the constant coefficient multiplier circuit is shown in

Figure 1. This executable program allows a user to create
an application-specific instance of the multiplier by selecting
the appropriate module parameters (i.e. bitwidths, constant
value, etc.). After selecting parameters, the user may eval-
uate the multiplier by obtaining area and timing estimates
or even simulating the design.

Constant: [-55 | Bits: [5 | I Signed

Multiplicand Bits: [3_| [v] Signed [v] Pipelined
#LUTs: 34 Cycle Time: 1 LUT Latency: 3 cycles

Figure 1: Graphical User Interface for Constant Co-
efficient Multiplier.

This executable is relatively straightforward — it contains
the JHDL code for generating a multiplier circuit, the FPGA
technology libraries, and a circuit estimator. Other more
customized executables can be provided that offer differ-
ent levels of IP visibility. If more visibility is necessary, a
structural viewer and netlist generator can be added. If less
visibility is desired, the vendor can remove the simulation
capability of the executable.

Using an executable to deliver IP allows the vendor to
control the content, functionality, and opacity of the IP on
an individual basis. A custom Java executable can be cre-
ated and delivered that is customized to the needs of both
the customer and vendor. By controlling the content and
opacity of the IP executable, vendors may determine the
features available for evaluation as well as the visibility into
the delivered IP. Specifically, the IP executable may include
any of the following JHDL tools:

Structural circuit viewer The circuit viewer allows to user
to browse the hierarchy and structure of a generated
design. A structural circuit viewer may be included
within the executable to provide the user the ability
to examine the circuit structure and interface (see Fig-
ure 3).

Executable simulation model The JHDL simulator may
be included within the executable to allow simula-
tion of the generated circuit. If necessary, the self-
contained functional simulator can be used in conjunc-
tion with a user’s own simulation tools to evaluate the
functionality of the IP within a larger design.

Programatic circuit generator interface Most reusable
circuit modules for FPGAs are parameterizable and
require user intervention to determine the bit-widths,
style, pipelining and other parameters of the circuit
in question. IP executables may provide an interface
that exposes the parameters and options available to
the user of the IP. Using this interface, customers may
experiment with various parameters to estimate the
speed, size and cost of the IP.

Layout view For many FPGA circuit modules, the rela-
tive placement or layout of the module has a signif-
icant impact on the overall timing and placement of

the final FPGA design. A view of the layout for pre-
placed FPGA macros provides the user with feedback
on the size, shape, and layout of a circuit module under
review. Users may explore various placement and lay-
out options of a macro without seeing the underlying
circuit structure or netlist.

Circuit netlisting The executable must provide a way for
delivering the IP in a form acceptable by the user’s
conventional tool chain. For licensed users, the cir-
cuit netlisting libraries can be included to generate
netlists of the IP in the appropriate netlist format.
Structural VHDL, Verilog, or EDIF may be generated
with the appropriate technology specific mapping con-
straints for the circuit module of interest.

These and other application-specific IP evaluation and de-
livery tools may be organized into a single executable on a
customer by customer basis. Two such executable config-
urations are depicted in Figure 2. For passive customers
that wish to browse a given circuit and its corresponding
characteristics, limited visibility into the IP is provided. As
suggested by the left configuration, an executable can be
created that contains an interface to the IP and a basic cir-
cuit estimator. For more active or licensed customers, an
executable can be created that provides greater visibility.
As shown by the configuration on the right, the IP deliv-
ery executable may contain circuit layout viewers, high-level
structural views, and a simulation model. A wide variety of
such IP delivery executables may be created by combining
the various JHDL design aids.

Layout
Viewer

Estimator

EDIF

Circuit Data Netlist| Circuit Data

Module)
Generator| Simulator

Figure 2: Two configurations of an IP delivery exe-
cutable.

4. |PDELIVERY APPLETS

A simple way of delivering such JHDL circuit generator
executables to a customer is through the internet in the form
of Java applets. Rather than delivering circuit generators
directly to the customer via mail or email, customers can
directly access and execute these generator applets within
their standard web browser. Delivering circuit generators
through the internet offers a number of advantages over tra-
ditional methods: users do not need to install software on
their machine, the IP delivery applets can be maintained at
a central server, and access to such applets can be controlled
through a variety of web-based security measures. By ac-
cessing applets over the internet, users are able to evaluate,
test, and obtain intellectual property from an IP provider
directly from a web browser.

There are a variety of ways in which the IP delivery con-
cepts using JHDL applets can be used. This section will

outline two specific scenarios in which the JHDL infras-
tructure has been used to test the IP-delivery capability
within our laboratory. Sample JHDL IP delivery applets
can be found and tested online at the following web URL:
http://www.jhdl.org/applets.

4.1 Constant Coefficient Multiplier Applet

Figure 3 demonstrates a simple applet used for evaluating
and delivering the constant coefficient multiplier described
earlier. This applet uses a JHDL module generator to cre-
ate an optimized constant multiplier based on the user’s
application-specific needs. Rather than exposing the soft-
ware API to the user, this applet provides a GUI interface
to the user for specifying the circuit parameters and evalu-
ating the suitability and quality of the resulting design.

constant (55 | Balt ¥ Signed

Mgt B 5 e Sigeed e Pipaind

C Buid | Delete || Cycle || Reset | Nemst |

Schermatics | Wiaves Viewer | Nethst |

rom_addd ramidsl

 VirtaKCMMNiplcr | KCMSo Addes | KCHRom_ Adderbi1

Figure 3: Sample Applet for Constant Coefficient
Multiplier.

A user evaluates a specific instance of the IP by select-
ing the desired parameters and pressing the “build” button.
When this event occurs, the applet creates the constant mul-
tiplier by calling the module generator constructor. At this
point, the circuit is created within the JHDL data struc-
tures and any of the JHDL tools can be used to manipulate,
netlist and view the circuit structure. In the applet example
of Figure 3, a schematic viewer is drawn and a user can inter-
actively explore the structure and hierarchy of the created
circuit.

If the JHDL simulator is included with an applet, the user
is able to simulate the behavior of the generated circuit di-
rectly within the web browser. Using the Cycle and Reset
buttons, a user may cycle the simulator and browse the state
of the circuit throughout the circuit hierarchy. The history
of the circuit state can be recorded and viewed using the
JHDL waveform viewer.

Once a circuit module and its application-specific param-
eters are selected by a user, the applet may provide a way of
delivering the circuit to the user in a reusable form. Since a
data structure representing the circuit is resident within the
applet, any one of the JHDL circuit netlisting tools can be

used to generate a reusable representation of the circuit. For
this specific applet, a Netlist button is given that generates
an EDIF netlist of the application-specific circuit. The gen-
erated netlist is displayed in a scrollable text window for the
user to browse or copy.

4.2 Black Box Simulation Applet

The previous applet example demonstrates a relatively
transparent IP delivery applet — the users of such applet can
browse the hierarchy of a circuit, simulate the internals of
the circuit, and generate a reusable netlist from the instance-
specific circuit. In many cases, the applet executables will
need to limit access to the internals of the generated circuits.

One approach for limiting internal access is to provide a
“black box” simulation model of the generated circuit. Like
the previous “transparent” example, a user would interact
with the applet to choose instance-specific circuit param-
eters and options to build a circuit. Unlike the previous
example, the user does not have the ability to browse the hi-
erarchy of the circuit or obtain a netlist. Instead, the applet
includes a self-contained simulation model of the intellectual
property. This simulation model may be operated interac-
tively by the user or integrated into the user’s conventional
design flow.

Figure 4 demonstrates a black box simulation model of
two IP delivery applets operating within a user’s web browser.
In this scenario, the user wishes to simulate two external
circuits with other components in a complete system sim-
ulation. To create this simulation environment, the user
visits the web page associated with each IP and constructs
the IP within the applet. Next, the user establishes a con-
nection between each applet and the system simulator using
an application-specific communication protocol such as RMI
or socket communication’. Once an appropriate communi-
cation link established between these simulators, the entire
system can be simulated together without exposing the in-
ternals of the applet-based IP.

Web Browser Web Browser

Applet 1

Applet 2

System Simulator

Figure 4: Integrating Black Box Simulation Model
Into Simulation Environment.

Several JHDL designs were tested using this black-box
simulation methodology. A simulation wrapper was created
to interface the JHDL black-box simulator with a Verilog
simulation using PLI[8]. Simulation events are exchanged
over network sockets and a custom communication proto-
col. By exposing the JHDL black-box simulator, a user can
evaluate intellectual property within their design environ-
ment without exposing any proprietary information.

!Establishing network connections between applets operat-
ing on a client browser and other client applications violates
the default applet security model and requires explicit per-
mission from the user.

This approach of black-box simulation is similar to the
client-server simulation architectures proposed by [1] and
[2]. In these architectures, IP can be simulated on a cus-
tomer client machine through a pre-arranged communica-
tion protocol with a vendor supported server. The IP is
protected by keeping the simulation models at the vendor
site and only providing the appropriate simulation state.
Unlike these methods, the IP in this approach is simulated
on the client machine. This offers the the potential for 1P
simulation with much lower network latency than possible
with off-site simulation models.

4.3 1P Applet Security

An important concern associated with IP delivery using
Java Applets is preserving the security of the intellectual
property contained within the applet. Since the IP applet
executable is accessible by the user, a sophisticated user may
attempt to uncover the IP by reverse engineering the applet.
IP applets may need to provide additional measures of se-
curity to properly protect the IP. Techniques such as Java
class file obfuscation and class encryption may be added to
increase the security of the IP. Other more standard ap-
proaches for IP protection may be used such as watermark-
ing[7] and hardware metering[6].

4.4 Applet Download Time

An important issue that faces users of Java applets is the
size of the program binary downloaded by the browser. Since
the binaries are loaded by the browser the first time the web
page is accessed, large binaries may require an unreasonable
amount of time and network bandwidth. To address this
issue, the binaries associated with the JHDL design tool
are partitioned into a number of smaller, more specific Jar
archive files?. This allows a given applet to require only
those Jar files required by the applet code and avoid wasting
network bandwidth with unused class files. As shown in
Table 1, the executables required by the applet of Figure
3 involve four such jar files for a total of 795 kB. Other
jar files may be provided for applets requiring additional
functionality or technology libraries.

[File | Size | Description |
JHDLBase.jar | 346 kB | JHDL Classes & Simulator
Virtex.jar 293 kB | Xilinx Virtex Library
Viewer.jar 140 kB | Schematic Viewers
Applet.jar 16 kB | Module Generator & Applet

[Total [795 kB | |

Table 1: JAR Files Used By Constant Multiplier
Applet

5. CONCLUSIONS

Exploiting the functionality of the JHDL design environ-
ment within Java applets provides a powerful and flexible
approach for web-based IP evaluation and delivery. By using
the JHDL infrastructure, applets can be created with a vari-
ety of IP evaluation and delivery features. Schematic view-
ers, simulators, netlist generators and other related func-

2Java Jar files are compressed archive files used to collect a
number binary class files and other program resources.

tionality can be combined into an applet that provides ap-
propriate levels of visibility along with IP protection. Since
these applets run on a browser and are accessed from the
web, IP evaluation is made available to customers with lit-
tle or no external software. Further, customers will always
access the latest revisions of the IP applet software when
the applet binaries are downloaded.

Future efforts to improve JHDL applets include creating
applets for more complicated IP, investigating more secure
delivery techniques, and developing applets that delivering
more than one IP module. As additional IP evaluation fea-
tures are developed and interfaces with more tools are pro-
vided, JHDL based applets will provide a powerful alterna-
tive for web-based delivery of FPGA IP.

6. REFERENCES

[1] M. Dalpasso, A. Bogliolo, and L. Benini. Virtual
simulation of distributed ip-based design. In
Proceedings of the 36th Design Automation Conference,
DAC 1999, pages 50-55, 1999.

[2] A. Fin and F. Fummi. A Web-CAD methodology for
IP-core anaylsis and simulation. In Proceedings of the
37th Design Automation Conference, DAC 2000, pages
597-600, 2000.

[3] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert,

B. Nelson, and M. Rytting. A CAD suite for
high-performance FPGA design. In Proceedings of the
IEEE Workshop on FPGAs for Custom Computing
Machines, pages 12—24. IEEE Computer Society, IEEE,
April 1999.

[4] B. L. Hutchings and B. E. Nelson. Using
general-purpose programming languages for FPGA
design. In 87rd Design Automation Conference (DAC),
pages 561-566, Los Angeles, CA, June 2000.

[5] P. James-Roxby and S. A. Guccione. Automated
extraction of run-time parameterisable cores from
programmable device configurations. In Proceedings of
the IEEE Symposium on FPGAs for Custom
Computing Machines, pages 153—-161, April 2000.

[6] F. Koushanfar and G. Qu. Hardware metering. In
Proceedings of the 38th Design Automation Conference,
DAC 2001, pages 490-493, 2001.

[7] J. Lach, W. H. Mangione-Smith, and M. Potkonjak.
Robust FPGA intellectual property protection through
multiple small watermarks. In Proceedings of the 36th
Design Automation Conference, DAC 1999, pages
831-836, 1999.

[8] S. Mittra. Principles of Verilog PLI. Kluwer Academic
Publishers, 1999.

[9] M. J. Wirthlin and B. McMurtrey. Efficient constant
coefficient multiplication using advanced FPGA
architectures. In Field-Programmable Logic and
Applications. Proceedings of the 11th International
Workshop, FPL 2001, pages 555564, August 2001.

	Main Page
	DAC'02
	Front Matter
	Table of Contents
	Session Index
	Author Index

