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ABSTRACT 
Dynamic run-time scheduling in System-on-Chip platforms has 
become recently an active area of research because of the 
performance and power requirements of new applications. 
Moreover, dynamically reconfigurable logic (DRL) architectures 
are an exciting alternative for embedded systems design. 
However, all previous approaches to DRL multi -context 
scheduling and HW/SW scheduling for DRL architectures are 
based on static scheduling techniques. In this paper, we address 
this problem and present: (1) a dynamic scheduler hardware 
architecture, and (2) four dynamic run-time scheduling 
algorithms for DRL-based multi -context platforms. The 
scheduling algorithms have been integrated in our codesign 
environment, where a large number of experiments have been 
carried out. Results demonstrate the benefits of our approach. 
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1. INTRODUCTION  
Scheduling the tasks of an embedded system on a “System-On-
Chip (SoC)” platform is one of the main challenges in HW/SW 
codesign. A scheduling policy is said to be static when tasks are 
executed in a fixed order determined at compile-time, and 
dynamic when the execution order is decided at run-time. There 
is a wide range of approaches to static scheduling [2]. However, 
recently there has been a growing interest in the development of 
run-time scheduling techniques for platform-based designs 
[9][14]. This interest is due to several reasons: 
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� A growing class of embedded systems need to execute 

multiple applications concurrently [9] rather than just a single 
application. An example is a set-top box application where 
audio, video and graphics applications run simultaneously. 
Additionally, these applications may have to be dynamically 
invoked (i.e. run or stopped at user request) or may have an 
intrinsic dynamic behavior (e.g. MPEG4) [14].  

� Typical scheduling algorithms assume that the task’s execution 
time is the worst-case execution time (WCET) [2]. However, 
systems designed using WCET estimates could be highly 
under-utili zed. The execution time of a task is rarely 
deterministic. For instance, it could be “data-dependent” (e.g., 
run-length encoding of video frames depends on the 
information within frames). Moreover, the execution time 
could depend on the available resources, especially when 
multiple applications share a system.  

� Achieving energy-eff icient computation is a major challenge 
in embedded systems design. Dynamic power management [3] 
is a design methodology that dynamically adapts an embedded 
system to provide the requested services and performance 
levels with a minimum number of active components. This 
methodology is based on the idea that not all system 
components are always required to be in the active state, and 
peak performance is only required during some time intervals. 

Additionally, the importance of having on-chip programmable 
logic regions in System-on-Chip platforms is becoming 
increasingly evident. Partitioning an application among software 
and programmable logic hardware can substantially improve 
performance, but such partitioning can also improve power 
consumption by performing computations more effectively and 
by allowing for longer microprocessor shutdown periods.  
In this area of Reconfigurable Computing (RC), Dynamic 
Reconfiguration has emerged as a particularly attractive 
technique to increase the effective use of programmable logic 
blocks. Dynamically Reconfigurable Logic (DRL) devices allow 
the change of the device configuration on the fly during system 
operation. A clear example is the CS2112 chip from Chameleon 
Systems, Inc [1]. This device integrates a RISC core, embedded 
memory, and four run-time reconfigurable logic blocks. 
However, this attractive idea of time-multiplexing the needed 
device configuration does not come for free. The reconfiguration 
latency has to be minimized to improve performance. There are 
two main approaches to address this challenge. 

 



 

One of these approaches is known as temporal partitioning, in 
which the system specification must be partitioned into temporal 
exclusive segments (called reconfiguration contexts) [13]. A 
different approach is to find an execution order for a set of tasks 
that meets system design objectives (e.g. minimize the execution 
time), which is usually known as DRL multi-context scheduling 
[10][13]. 

1.1. Contributions of the paper 
All existing approaches to DRL multi-context scheduling are 
based on static (compile time) scheduling techniques, which 
assume that tasks have a fixed (deterministic) execution time.  
To the best of our knowledge, no previous work has been carried 
out in order to define a dynamic run-time HW/SW scheduling 
approach for DRL-based multi-context platforms.  
In this paper, we address this open problem and present four 
dynamic run-time scheduling algorithms for dynamically 
reconfigurable architectures. Moreover, we present a hardware 
architecture for the implementation of the dynamic run-time 
scheduler. This hardware implementation is thought to minimize 
run-time scheduling overheads.  
The paper is organized as follows: Section 2 is an overview of 
previous work. Section 3 introduces our HW/SW codesign 
methodology, which is based on a dynamic run-time scheduling 
strategy. In section 4, we explain the basic architecture of the 
dynamic run-time scheduler. Section 5 presents four dynamic 
run-time scheduling algorithms. In section 6, we explain the 
experiments that we have carried out, and give the obtained 
results. Finally, section 7 presents the conclusions of this work. 

2. PREVIOUS WORK 
Software scheduling for real-time embedded systems have been 
widely covered in the literature. Balarin et al. present a survey of 
these techniques in [2]. Most of the work related with dynamic 
scheduling can be classified as fixed priority or dynamic priority 
assignment policies. Rate Monotonic Analysis (RMA) is an 
example of fixed priority dynamic scheduling. Earliest Deadline 
First (EDF) is an example of dynamic priority assignment policy. 
EDF offers attractive theoretical improvements over RMA, 
however EDF is not widely used in embedded systems because 
of its costly run-time overhead. To the best of our knowledge 
there is not any approach to DRL multi-context scheduling which 
uses a fixed priority dynamic scheduling technique. 
In the other hand, several references can be found addressing 
temporal partitioning for reconfiguration latency minimization 
[13]. Moreover, configuration prefetching techniques are used to 
minimize reconfiguration overhead. They are based on the idea 
of loading the next reconfiguration context before it is required, 
hence overlapping device reconfiguration and application 
execution. Hauck firstly introduced configuration prefetching in 
[7], where a single-context prefetching technique is presented. 
DRL multi-context scheduling has been addressed in many 
publications [10]. However, all these approaches are based on 
static (compile-time) scheduling techniques. Moreover, these 
previous approaches do not address HW/SW scheduling.  
In [4] an integrated algorithm for HW/SW partitioning and 
scheduling, temporal partitioning and context scheduling is 
presented. This approach is similar to [5] and [8] which address 
HW/SW scheduling for dynamically reconfigurable devices. 
However, they are also based on static scheduling algorithms. 

3. HW/SW CODESIGN METHODOLOGY 

3.1. Definitions 
In our approach, we model a single application as a task graph. 
Concurrent and multi-function systems are modeled as a set of 
several task graphs. A task graph is a directed acyclic graph 
where each node represents a task. Each task is associated with a 
task type. A task represents a coarse grained computation in an 
embedded system (e.g., loops are examples of tasks). An 
embedded system may contain more than one task of the same 
type (e.g. a DCT task may occur in several video applications). 
Each task has associated a priority of execution. This priority is 
calculated and assigned to each task statically (at compile time). 
Tasks are connected using directed edges. Edges represent data 
dependencies between tasks. Each edge is associated with a 
scalar denoting the amount of data that must be transferred 
between the tasks it connects. A task may begin execution only 
after all its incoming edges have been executed.   
Once a task is ready for execution, this is explicitly indicated by 
an event. An event consists of the following information: TaskId, 
TaskGraphId1, TaskPriority and TaskType. Events are 
sequentially ordered by the TaskPriority field. The list of sorted 
events is the Event Stream. 
A Functional Unit is a physical component (i.e. DRL device or 
SW processor) that executes tasks. A DRL device has an active 
reconfiguration context, which in our methodology, is associated 
to a task type. If it is required to process a new task, which has a 
different task type from the currently loaded in the DRL device, a 
reconfiguration will be needed. 
During the processing of a task, a functional unit can be in 
several states (e.g., execution, reconfiguration, etc.). We also 
define the functional unit active set to include the following 
information: functional unit state, TaskId, TaskType and 
TaskGraph, of the task being processed in the functional unit. 

3.2. Codesign Methodology 
The proposed methodology [11][12] is divided into three stages: 
Application Stage, Static Stage and Dynamic Stage. The 
application stage is focused on the system specification.  
The static stage includes: (1) extraction, (2) estimation, (3) 
HW/SW partitioning, and (4) HW and SW synthesis. The 
extraction phase has two main objectives: (1) obtain the task 
graph representation from the system specification and assign to 
each task a priority of execution, and (2) obtain a list of 
independent task types found in the task graph(s). The estimation 
phase can use typical estimators (e.g., delay and area) that can be 
obtained using high-level synthesis and profiling tools. The 
HW/SW partitioning phase decides which task types will be 
executed in reconfigurable HW and which in SW.  
HW/SW partitioning has been demonstrated to be a critical point 
when targeting DRL architectures [12]. The dynamic scheduling 
results highly depend on the quality of the HW/SW partitioning, 
which helps to reduce the run-time reconfiguration overhead. 
The dynamic stage includes HW/SW Scheduling and DRL Multi-
Context Scheduling. Both of them run in parallel and base their 
functionality on events present in the event stream. To better 
understand how this works, let us explain the target architecture.  

                                                           
1 TaskGraphId identifies the task graph to which the task belongs 



 

The target architecture is depicted in fig. 1. It is a heterogeneous 
architecture, which comprises a software processor, a DRL-based 
hardware architecture and shared memory resources. The CPU is 
a uniprocessing system and it can execute only one task at a time. 
The HW/SW and DRL Multi -Context Scheduler are mapped to 
hardware using a centralized control scheme. DRL contexts are 
stored in the DRL Context memory. The Event Stream is stored 
in the Event Stream memory.  
Events are executed in the DRL Array or in the CPU. The data 
that must be transferred between tasks executed in the DRL 
Array is stored in the RAM banks. A concrete DRL may access 
any RAM bank using the Memory Crossbar. Several memory 
accesses to different banks are possible concurrently. A read and 
write operation are possible concurrently in a single bank. 
The HW/SW and DRL schedulers co-operate and run in parallel 
during application run-time execution, in order to meet system 
constraints. Their functionality is based on the use of a look-
ahead strategy into the event stream memory. Event Window 
(EW) is the number of events that are observed in advance. 
At run-time, the HW/SW scheduler assigns events to functional 
units and decides the execution order of the events stored in the 
event window. The DRL multi -context scheduler is used to 
minimize reconfiguration overhead. The objective of the DRL 
multi -context scheduler is to decide: (1) which DRL must be 
reconfigured, and (2) which reconfiguration context (task type) 
must be loaded in the DRL. This scheduler tries to minimize this 
reconfiguration overhead by overlapping the execution of events 
with DRL reconfigurations.  

4. A SCHEDULER ARCHITECTURE FOR 
RECONFIGURABLE PLATFORMS 

4.1. Dynamic Scheduler Architecture 
In this section, we will explain the internal architecture of the 
centralized scheduler (HW/SW and DRL multi -context). This 
architecture is shown in figure 2. The proposed architecture is 
divided in three main parts: (1) The Dynamic Scheduling 
Algorithm, (2) The Graph Dependence Check Logic, and (3) The 
Event Stream Memory Interface Logic. 
This dynamic scheduler architecture can be seen as two processes 
that run concurrently and interact using a shared memory. There 

is a producer process (the Graph Dependence Check Logic) and 
a consumer process (the Dynamic Scheduling Algorithms). Both 
processes produce and consume events, which are stored in the 
event stream memory (Event Stream Memory Interface Logic). 
The Graph Dependence Check Logic knows the functional unit 
active set (functional unit state, TaskId, TaskType and 
TaskGraph) of all DRL’s and CPU. It also receives the interrupts 
signals indicating that a concrete execution has finished. 
In case, a concrete DRL or CPU has finished the execution of a 
task, new tasks may become ready for execution if all it s 
dependences have been completed. This is the main function of 
the Graph Dependence Check Logic block. This module 
internally has the required data structures to check task 
dependences. In the next section, this module will be explained 
in more detail . If new tasks become ready for execution this 
module generates new events, which are inserted in the event 
stream memory using Event Stream Memory Interface Logic.  
The event stream consists of a sorted list of events. Events are 
sorted by the TaskPriority field of the event. This TaskPriority 
field is assigned to each task at compile time. Several priority 
functions can be used for this objective (e.g., number of output 
edges of the task, criti cal path analysis, etc.).  
The event window block consumes events from the event stream 
memory. This will occur at the end of the execution of an event, 
when a concrete functional unit is available to process a new 
event. The event with the highest priority within the event stream 
will be inserted in the event window. Within the event window, 
there are events being processed and events waiting for 
execution. All events waiting for execution within the event 
window are candidates for execution. From all these events, the 
dynamic scheduling algorithm must select a concrete event for 
execution. This selection process changes depending on the 
scheduling algorithm, which may depend on several 
characteristics of the events (e.g., priority, task type, etc.). 
The Dynamic Scheduling Algorithm block implements the 
dynamic run-time HW/SW and DRL multi -context scheduling 
algorithms. It assigns events to functional units (DRL’s or CPU) 
and specifies the execution order of events present in the event 
window. In order to implement this functionality it knows the 
current functional units active sets. The scheduling policy 
depends on the event window size (i.e. number of events which 
are input to the dynamic scheduling algorithm). In section 5, 
several dynamic scheduling algorithms are explained. 
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   Figure 1. Target Architecture. 
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4.2. Graph Dependence Check Logic 
As previously introduced, the main goal of this block is to 
generate new events, which are inserted in the event stream. 
These new events are generated at the end of the execution of a 
task. The architecture of this block is shown in figure 3. 
In this architecture, there are three main components: (1) the 
Successors List (SUCC lists), (2) the SET Matrix, and (3) the 
TEST Matrix. These three components must be replicated for 
each task graph. The successors list maintains for each task a list 
of all it s successor tasks with their associated information 
(TaskType and TaskPriority). The SET matrix stores, for each 
task, which ones of its predecessor tasks have finished its 
execution. Finally, the TEST matrix stores for each task which 
tasks must be previously executed. This matrix should be 
initialized before the application begins its execution. 
This architecture supports several tasks finishing at the same 
time. Thus, a selector block decides which finished active set is 
processed first. The finished task (FTi) identifier is used as input 
to the successors list block. These successor tasks are the output 
of this block, and they are processed sequentially. The following 
process is repeated for each successor task )( j

iS : 
� The successor task id. is used to address the SET matrix in 
order to know the predecessor tasks that have been executed.  

� The read data from the SET matrix is used to update the 
completed dependences of the task, performing a bit-wise OR 
function with the decoded finished task identifier. 

� This updated information of task’s completed dependences is 
compared with the value read from the TEST matrix. In addition, 
the SET matrix is updated. 

� Finally, if the values read from both matrices are equal, a 
new event is generated and the insert signal is asserted, 
indicating that the event must be inserted in the event stream. 

5. SCHEDULING ALGORITHMS 

5.1. Single In-Order Dynamic Scheduling 
The first dynamic scheduling algorithms (HW/SW and DRL 
multi -context scheduling) were presented in [11]. 
In this approach, a single event is being executed on a functional 
unit (DRL or CPU) at the same time. In addition, it is in-order 
because the scheduling algorithm processes events following the 
order in which they are consumed from the event stream.  

Hardware/Software Scheduling 
This algorithm follows a First-In-First-Out policy for the 
scheduling of the events within the event window.  
A second objective of the HW/SW scheduler is to manage the 

functional units active sets (i.e., functional unit state, TaskId, 
TaskType and TaskGraph). It is important to explain the states 
required to process an event (see figure 4). 
In the figure 4.a., the HW/SW scheduler assigns one event to be 
processed in a DRL that is in the idle state. Depending on the 
active reconfiguration contexts, a DRL reconfiguration may be 
initiated. In addition, it is always mandatory to change the active 
TaskId (task switch state). Finally, it is possible that a DRL 
finishes reconfiguration and task switch, but the event cannot be 
executed because the previous events in the event window have 
not finished. In this case, the DRL enters into the wait state.  
Figure 4.b., has a similar functionality for the CPU. The major 
changes are related with the HW/SW communication. In order to 
minimize communications overheads, it is possible to start the 
CPU communication process, while an event is being executed in 
the DRL array. As in the case of DRL, the CPU has a wait state. 

DRL Multi-Context Scheduling  
However, in order to minimize reconfiguration overheads to the 
HW/SW scheduler, it is possible to use a reconfiguration pre-
fetching scheme, which overlaps the reconfiguration of a DRL 
with the event execution in another DRL. From the 
reconfiguration contexts that are loaded in the DRL array, and 
the task types which are required within the event window, the 
DRL multi -context scheduler decides: (1) which reconfiguration 
context must be loaded, and (2) in which DRL it will be loaded. 
This algorithm is executed at the end of the execution of a 
concrete event. At that time, a new event starts its execution and 
a new event enters in the event window. This insertion probably 
means that a new reconfiguration context will be required. 
The basis of the proposed DRL multi -context scheduling 
algorithm is to obtain an array that represents the required 
reconfiguration contexts within the event window. This array is 
obtained from the current state of the DRL’s and from the event 
window. Afterwards, the algorithm obtains from this array the 
number of DRL contexts that are not required within the event 
window. If there is not any DRL available for reconfiguration, 
the algorithm selects (to reconfigure) the DRL that has an active 
reconfiguration context that will be required latest (remember 
that events are processed using a FIFO policy). Note that this is 
not a typical LRU replacement policy. Finally, the first 
reconfiguration context found in the event window, which is not 
loaded within the DRL array will be loaded.  

5.2. Single Out-of-Order Dynamic Scheduling 
As in the previous algorithm, a single event is executed on a 
functional unit at the same time. The main difference of this 
algorithm with the previous one is that events are executed out-
of-order. That is, events may be executed in a different order 
from the one in which they enter in the event window. 

Hardware/Software Scheduling 
The key point of this approach is the selection (within the event 
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Figure 3. Graph Dependence Check Logic 
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Figure 4. Single Event Execution: DRL and CPU states. 



 

window) of the next event to be executed. In the previous case, 
the algorithm follows a First-In-First-Out policy. However, the 
previous approach has two main drawbacks:  

� It may occur that the next event to be scheduled cannot be 
executed because it has not finished the DRL reconfiguration 
and/or task switch. In this case, no useful computation is carried 
out in any functional unit. 

� It may also occur that the DRL array suffers an excessive 
number of reconfigurations, which indeed means that it spends 
more time reconfiguring than performing useful computations. 
This single out-of-order scheduling algorithm tries to overcome 
these limitations. This is achieved changing the selection criteria 
of the next event to be executed. In this new approach, the next 
event selected for execution will be such that:  
(1) There is an active reconfiguration context within the DRL 
array ready for the execution of an event. 
(2)  From all the events within the event window that meet the 
previous condition, select the event with the highest priority. 
This selection criteria has as main goal to process consecutively 
(in the same DRL) events which require the same reconfiguration 
context. Thus, reconfiguration overhead can be reduced. 
In this approach, the used finite state machines for the functional 
units (fig. 4) and the DRL multi -context scheduler algorithm are 
the same as the ones described in the previous section. 

5.3. Concurrent Dynamic Scheduling  
Our target architecture is a multi -processor architecture (fig. 1). 
Executing a single event at the same time prevents the 
architecture of achieving high throughput or utili zation. This new 
approach schedules a new event while multiple events can be 
executing concurrently. 

Hardware/Software Scheduling 
In this approach, it is important to note that the several states 
required to process an event have changed. This functionality can 
be observed in figure 5. The major difference between figures 4 
and 5 is that the wait state has disappeared. Having a functional 
unit in the wait state limits the concurrent execution capabilit y.  
This algorithm is executed at the end of the execution of an event 
or when a DRL finishes its reconfiguration process. In this 
approach, the next event selected for execution will be such that:  
(1) There is an active reconfiguration context within the DRL 
array ready for the execution of an event.  
(2) From all the events within the event window that meet the 
previous condition, select the event with the highest priority. 

DRL Multi-Context Scheduling  
This algorithm is executed at the end of the execution of a 
concrete event, if a new event cannot be scheduled for execution 
by the HW/SW scheduler.  
At that time, a new event will enter in the event window, and 
probably, a new reconfiguration context will be required. This 
needed reconfiguration context will be loaded in the DRL which 

is in the idle state. It is important to note that no replacement 
policy is needed in this new approach, because whenever the 
DRL multi -context scheduler is executed always there wil l be a 
DRL available for reconfiguration. 
The algorithm also selects a reconfiguration context to be loaded. 
The reconfiguration context (which is not currently loaded in the 
DRL array) associated to the highest priority event found in the 
event window wil l be selected to be loaded. 

5.4. Dynamic Scheduling with Replication 
Due to the previous DRL multi -context scheduler policy, all 
events being executed use a different reconfiguration context. 
Thus, in the DRL array there are not two DRL’s, which have 
loaded the same reconfiguration context.  
It is possible to find an application in which multiple tasks 
requiring the same reconfiguration context could be executed 
concurrently. In our approach, this situation is shown when 
multiple events, which require the same reconfiguration context, 
are found in the event window.  
Executing this situation using the concurrent dynamic scheduling 
algorithm has a main drawback: all events requiring the same 
reconfiguration context will be processed sequentially in the 
same DRL, while other DRL’s may be in the idle state.  
It is possible to improve the performance of the previous 
scheduling algorithm by having the same reconfiguration context 
loaded in several DRL’s. This is the objective of the concurrent 
dynamic scheduling algorithm with replication. 
In this new approach, the HW/SW scheduler has the same 
functionality as the one presented in the previous subsection. The 
DRL multi -context scheduler has been modified (in the selection 
of the next reconfiguration context to be loaded) to allow the 
same reconfiguration context to be loaded in several DRL’s. 

6. EXPERIMENTS AND RESULTS  
We have implemented the four explained dynamic run-time 
scheduling algorithms in our HW/SW codesign framework [11].  
Our HW/SW co-simulation tool accepts task graphs generated by 
TGFF [6]. In these experiments, we used the HW/SW 
partitioning algorithms proposed in [12]. In order to test the 
presented scheduling algorithms, we have performed a large 
number of experiments (more than 3000 simulations). 
Important parameters to study and its effect on the scheduling 
algorithms are: the number of DRL’s, its reconfiguration time 
(and its relation to the tasks’ average execution time), the size of 
the event window (EW) and the used priority function. 
With the idea to cover a wide range of applications, we have 
generated synthetically task graphs using TGFF. We have 
generated four different test-benches. Each one of these test-
benches has three task graphs, and each task graph has in average 
25 tasks. The number of task types (in each one of the test-
benches) is 5, 10, 15 and 20, respectively. 
The number of DRL’s used in the experiments is 2, 4 and 8. The 
reconfiguration time of the DRL’s is a value, which is relative to 
the tasks average execution time. Thus, the used reconfiguration 
times are 4x, 2x, 1x, ½x and ¼x the tasks’ average execution 
time in a DRL. The event window size is another parameter we 
have tested. It has been tested for sizes between 1 and 16. 
Finally, we have used two functions to assign the TaskPriority 
field of the events. These two functions are: (1) criti cal path 
analysis (cp), and (2) number of output edges (oe) of the task. 
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Figure 5. Concurrent Event Execution: DRL and CPU states. 



 

6.1. Obtained Results 
Samples of the obtained results are shown in figure 6. The 
pictures show performance when the event window (EW) 
increases. The EW size has been found to be one of the key 
parameters of the dynamic scheduling algorithms. A trade-off 
must be performed when selecting the EW size. Scheduling 
algorithms need big EW sizes to perform a better scheduling. As 
events are inserted in order in the event stream but no in the EW, 
smaller EW sizes allow to maintain more sorted the event stream.  
We cannot compare our techniques to any other approach, since 
previous approaches to HW/SW scheduling for DRL-based 
architectures and DRL multi -context scheduling are based on 
static scheduling techniques. 
Figures 6.a. shows the execution time when two DRL’s with a 4x 
reconfiguration time are used. It is possible to observe the results 
obtained when using both single execution schedulers (v1 and v2 
respectively) and the concurrent execution scheduler (v3) without 
replication. Moreover, the results of using both priority functions 
are shown. From figure 6.a., it may be concluded that when few 
DRL’s with slow reconfiguration time (4x) are used, then:  
(1) There is a great impact of the priority function in all 
schedulers. The number of output edges (oe) priority function 
obtains better results than using a criti cal path analysis function.  
(2) The out-of-order and concurrent dynamic schedulers require 
events windows of large size in order to improve performance. 
However, the benefits of the out-of order scheduler compared to 
the in-order scheduler may be reduced when: (1) the number of 
DRL increases, or (2) DRL’s with a fast reconfiguration time are 
used. These both conditions mean a perfect overlapping of 
execution and reconfiguration when using the in-order scheduler. 
The results for the concurrent dynamic scheduler are presented in 
figure 6.b. We can observe the results obtained when using four 
DRL’s. Results for reconfiguration times 4x, 1x and ¼x, are 
presented and compared to an all HW solution, where no 
reconfiguration overheads exits (i.e. lower bound). The optimal 
EW size also depends on the DRL reconfiguration time. When 
using DRL’s with slow reconfiguration time, bigger EW sizes are 
required. However, if DRL’s with fast reconfiguration times are 
used, the EW size may be reduced.  
Finally, figure 6.c. compares the concurrent dynamic scheduling 
(v3) and the dynamic scheduling algorithm with replication (v4). 
In this picture, the results correspond to an architecture with 8 
DRL’s with different reconfiguration times (4x and ¼x). The 
replication strategy obtains better results if DRL’s with fast 
reconfiguration time are used. In case that DRL’s with slow 
reconfiguration time are used, the scheduler with replication 
obtains worst results than the concurrent scheduler. 

7. CONCLUSIONS 
Dynamic run-time scheduling for SoC platforms has become an 
important field of research. However, no previous work has been 
carried out in dynamic DRL multi -context scheduling and 
dynamic HW/SW scheduling for DRL-based architectures. We 
have addressed this open problem and we have presented: (1) a 
dynamic scheduler hardware architecture, and (2) four dynamic 
scheduling algorithms for DRL multi -context platforms. These 
algorithms cover a wide range of designs. Out-of-order dynamic 
scheduling can be applied to low-power designs (idle and wait 
states can represent low-power states). Concurrent dynamic 
scheduling should be applied to designs where both power and 
performance are criti cal. Finally, concurrent dynamic scheduling 
with replication can be used in high-performance designs. 
An exhaustive study of these scheduling algorithms has been 
performed, and the effect of the algorithms parameters has been 
studied. Results demonstrate the benefits of our approach. 
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Figure 6. Obtained Results. 
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