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ABSTRACT
In many embedded systems, existence of a data cache might in-
fluence the effectiveness of process scheduling policy significantly.
Consequently, a scheduling policy that takes inter-process data reuse
into account might result in large performance benefits. In this pa-
per, we focus on array-intensive embedded applications and present
a locality-conscious scheduling strategy where we first evaluate the
potential data reuse between processes, and then, using the results
of this evaluation, select an order for process executions. We also
show how process codes can be transformed by an optimizing com-
piler for increasing inter-process data reuse, thereby making locality-
conscious scheduling more effective. Our experimental results ob-
tained using two large, multi-process application codes indicate sig-
nificant runtime benefits.

1. INTRODUCTION
The success of any embedded system depends largely on the de-

gree and effectiveness of the coordination between hardware and
software. In fact, many codesign strategies (e.g., [3, 4, 2]) try to come
up with hardware and software architectures that work well together.
In this context, operating system (OS) plays an important role in clos-
ing the gap between hardware and software and interfacing them. It
achieves this through several inter-related activities such as resource
managing, scheduling and context switching, and protection. Process
scheduler, in particular, is an important part of an OS as it is the ma-
jor component that decides how processor(s) will be shared among
processes. The process scheduling in embedded systems [12] is dif-
ferent from that in general purpose computing in at least two ways.
First, the scheduler in an embedded system can be fully customized
based on the applications at hand. Second, since most of embedded
systems execute either a single or a small set of applications, the pro-
cess granularities can be smaller than those in their general-purpose
counterparts. It should also be stressed that in many cases, due to
code clarity and maintenance purposes, it might be more beneficial
to program a large application as multiple inter-related processes.
Consequently, it is not uncommon to divide a large embedded appli-
cation into multiple processes and schedule these processes using a�

This work is supported in part by NSF Career Award #0093082.

customized scheduler.
Data caches are being increasingly employed in embedded de-

signs. Previous work [6] shows that compiler based optimizations
can be very important in increasing the effectiveness of cache mem-
ories. In an OS-based environment, when context switches occur
frequently (either due to fine granular processes or due to frequent
interrupts), flushing the contents of cache memory during context
switches may not be a wise option. This is particularly true if the
processes in the system share data structures; e.g., they are extracted
from the same application. Instead, a better alternative would be
making the process scheduler cache-conscious and exploiting the
contents of the data cache as much as possible when moving from
one process to another during execution.

In this paper, we focus on array-intensive embedded applications
and present a technique to schedule processes in a locality-conscious
(cache-sensitive) manner. In this approach, we view a given appli-
cation as a set of processes that communicate with each other us-
ing shared memory.1 Since these processes share data, the order
in which they are activated may influence the data cache behav-
ior significantly. Our two-step optimization strategy first, using an
optimizing compiler and a polyhedral library, evaluates the poten-
tial data reuse between processes, and then (using the results of this
evaluation) selects an order for process executions (i.e., a schedule).
While our approach is in essence a static scheduling technique, the
experimental results obtained using two large, multi-process appli-
cation codes indicate significant runtime benefits. We also show
in this paper how process codes can be transformed (e.g., using a
compiler) for increasing inter-process data reuse, thereby making
locality-conscious scheduling more effective. In other words, the
work described in this paper also demonstrates how an optimizing
compiler can be used in increasing OS performance.

The rest of this paper is organized as follows. In Section 2, we
give an overview of our approach, and present our assumptions. In
Section 3, we explain a strategy for evaluating data reuse between
processes. In Section 4, we present our locality-conscious process
scheduling strategy. In Section 5, we present our experimental setup
and report performance data. Finally, in Section 6, we conclude the
paper with a summary of our major contributions and a brief outline
of future research.

2. OVERVIEW OF OUR APPROACH
Many embedded systems execute a number of processes concur-

rently. A problem occurs in a cache-based environment when data
cache locality created by one process during its time quantum is not
preserved until its next time quantum. This may occur frequently, for
example, when an intervening process execution causes eviction of
data cache contents belonging to a previous process.

�
As a matter of fact, in most OS literature, these light-weight pro-

cesses are called threads.
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Figure 1: Overview of our optimization strategy.

While a similar problem occurs in instruction caches as well, there,
a careful mapping of processes to memory can help reduce the sever-
ity of this problem significantly (by minimizing the number of in-
struction cache conflicts between different processes). In the in-
struction cache case, this is a viable option as the sizes of processes
(measured in bytes or words) are not very large in general, and in
most cases it might even be possible to come up with a conflict-free
process-to-memory mapping. We refer the reader to [14] and [8]
for elegant process mapping strategies that target instruction caches.
Li and Wolfe [9] present a model for estimating the performance of
multiple processes sharing a cache.

Unfortunately, as compared to process sizes, sizes of data manip-
ulated by processes might be very large. This is particularly true
for embedded data-intensive image and video processing applica-
tions where small nested loops can manipulate large quantities of
data. Given that the most data caches used in embedded systems are
relatively small in size, in most cases, it may not be possible to find a
suitable data space-to-memory mapping that maintains data locality
of a given process between its successive quanta.

In this paper, we propose an alternative solution for maintaining
data locality of processes in a data cache based execution environ-
ment where processes are extracted from the same application. In-
stead of trying to map data spaces of processes in memory such that
the cache interference will be minimized, our approach tries to reuse
the data in the cache as much as possible. Our objective is to mod-
ify process scheduler such that the successively scheduled processes
exploit as much data cache locality as possible. An important ques-
tion then is to determine the potential data reuse between two pro-
cesses. In order to do this, we employ a compiler-oriented data reuse
analysis. In other words, using an optimizing compiler, we analyze
source codes of processes, and come up with a suitable order of ex-
ecution that maximizes data cache locality. Our strategy is summa-
rized in Figure 1. The application code is first analyzed and, based
on this analysis, a process dependence graph is built. Then, an op-
timizing compiler evaluates the amount of data reuse between pro-
cesses and constructs a data reuse table (i.e., a table that holds the
amount of data reuse between processes). Finally, using the pro-
cess dependence graph and data reuse table, we determine a legal,
layout-conscious schedule for processes. We also show that in some
cases applying loop transformations to process codes may improve
inter-process locality, thereby enhancing the effectiveness of locality-
conscious scheduling.

We assume (mainly for simplicity) that each process consists of a
loop nest and that the data dependences between processes are repre-
sented using inter-process dependence graph (see Figure 1), PDG. In
this graph, each node represents a process (loop nest) and a directed
edge from one node to another indicates that the process represented
by the second node is dependent on the process represented by the
first node (i.e., it cannot start execution until the first one finishes).
Note that any schedule constraint other than data dependences are

also captured in this graph. We further assume that all processes run
on a single CPU and each process is run to completion. Finally, it is
assumed that when all the processes in the PDG are executed, the ex-
ecution jumps to the first process and the entire execution sequence
is repeated.

Our focus in this paper is on affine programs [5] as defined by
Feautrier. Data structures in these programs are restricted to be ar-
rays and scalar variables, and control structures are limited to se-
quencing and nested loops. Each iteration of a given nested loop is
represented by an iteration vector, �� , which contains the values of
the loop indices from outermost position to innermost. Each array
reference to an � -dimensional array in a nested loop that contains �
loops (i.e., a � -level nest) is represented by �
	 ���� =  ���� �� , where ��
is the iteration vector. For a specific ���� �� , the data (array) element����� �� is accessed. In this representation, the ����� matrix  is
called the access (or reference) matrix and the � -dimensional vector�� is called the offset (or constant) vector [11, 13]. All values that can
be assumed by an iteration vector �� define an iteration space, � .

The application of a loop transformation represented by a square,
non-singular matrix � can be accomplished in two steps [13]: (i)
rewriting loop body and (ii) rewriting loop bounds. The first step
is quite easy. Assuming that �� is the vector that contains the orig-
inal loop indices and ������ � �� is the vector that contains the new
(transformed) loop indices, each occurrence of �� in the loop body is
replaced by ��� � �� � (note that � is invertible). In other words, each
reference represented by  �� � �� is transformed to !� � � ����"� ���# Deter-
mination of the new loop bounds is more complicated and in general
may require the use of Fourier–Motzkin elimination [13].

3. INTER-PROCESS LOCALITY EVALUA-
TION

The objective of our inter-process locality evaluation strategy is
to find out the maximum potential locality between two processes.
We start by checking whether the two processes have any common
array. If not, then there is no data reuse between these processes, and
(from the data locality perspective) there is no benefit in scheduling
these two processes one after another. On the other hand, if there
exists at least one common array between the processes, we proceed
as explained in the following subsections.

We consider two different strategies for addressing this inter-process
reuse evaluation problem. In the first strategy, we assume that no
transformation will be performed on the source codes of the pro-
cesses. That is, the source codes will be used as they are without
any modification. In the second strategy, we assume that we have the
flexibility of modifying the source codes (maintaining all intrinsic
data dependences) if doing so leads to better exploitation of inter-
process locality.

3.1 Evaluating Locality Without Transforma-
tions

The problem can be defined as one of determining the amount of
data reuse between two processes that can be scheduled one after an-
other. Since we assume that, in each activation, a process executes
its code to completion (unless an external interrupt occurs), one sim-
ple measure of inter-process data reuse is the number of array ele-
ments shared between processes. Let us first focus on a simple case
where each process code contains a single array ( $ ) and a single ref-
erence to it. Assume that we have two processes, % and & , and that$(' �
	�����*) occur in the first process and $(' +,	!��
�*) occur in the second
one, where � and - are the corresponding iteration spaces and, ��/.� and ��0. - are the iteration vectors. In order to express the num-
ber of elements shared between these two references, we use Pres-
burger Formulas. Presburger formulas are set expressions that con-
tain affine constraints, the usual logical connectives (i.e., ‘and’, ‘or’,
and ‘not’ connectives), and 1 (universal) and 2 (existential) quanti-



fiers. Note that many concepts associated with nested loops and array
accesses can be expressed using Presburger formulas [7]. For exam-
ple, the set of iterations executed by a loop nest can be described as� ' 3 �54 #6#6# 4 387 ):9  �<; 3 �<;>=0� and #6#6# and ?7 ; 387 ;>= 7@� , whereBA and = A are the affine lower and upper bounds, respectively, for
loop index 3CA . In our context, we can express the set of elements
shared between the two processes mentioned above ( % and & ) as:DFEHG I 	*$ �?� � �JLK 2M���. � and 2N��O. - such that �J � �
	�����P� +,	:��
� � #
So, the degree of reuse (DR) between these two processes (due to
array $ ) can be expressed as:K DFEHG I 	*$ � K 4
that is, the number of elements in

D EHG I 	*$ � . While in general com-
puting the number of elements in

D,EHG I 	*$ � is expensive, there are
several polyhedral tools from academia and industry that work very
well (fast) in practice. One such tool is the Omega library [7]. Using
the Omega library we can generate a loop that enumerates the ele-
ments that belong to a Presburger set, and by executing this loop we
can count the number of elements it contains. Our experience shows
that the Omega Library is very fast in practice. Note also that our lo-
cality evaluation activity is an off-line strategy; that is, we can afford
to spend more cycles (than a runtime strategy) for obtaining a good
schedule (with large runtime benefits).

As an example, let us assume that the reference in the first process
is $(' 3 �RQS) ' � ) , where T ; 3 4 Q 4 � ;0U and the reference in the second
process is $(' UWVYX ) ' � ) , where T ; � ;ZU . Here, 3 , Q , and � are loop
variables (indices). Then, the common elements can be expressed as:DFEHG I 	*$ �[� � ' J � ) ' J5\ ) K 	]T ; 3 ;^U � and 	]T ; Q ;^U � and	]T ; � ;0U � and 	 J � � 3 �OQ�� U_VYX � and 	 J5\ � � � � #
In general, let as assume that one of the processes has ` references to
array $ (denoted $(' � � 	���a�*) , $(' � \ 	b��a�*) , ...., $(' �dce	b����*) ), and the other
has f references (denoted $(' + � 	
��B�*) , $(' + \ 	!��
�*) , ...., $(' +bg�	!��
�*) ). Then,
we have:D,EHG I 	*$ �[� � �JLK 2h� 4ji*4 �� 4 �� such that 	]T ; � ; ` � and	]T ;Zi:; f � and 	���N. � � and 	:��O. - �

and	 �J � �dkh	���a�P� +blm	:��B�n� � #
Note that in general there might be more than one common ar-

ray between two processes. Assuming that $ � , $ \ , ..., $!o are the
common arrays between process % and process & , we can define the
overall degree of reuse between these two processes as:K DFEHG I K 4
whereD,ESG I � D,ESG I 	*$ � �qp DFEHG I 	*$ \ �Bp #r#6#6#6# p DFEHG I 	*$ o � � �qp DFEHG I 	*$ o �� ostvu � DFEHG I 	*$ t �
Note that our approach computes K DqESG I K for each process % and pro-
cess & that can be scheduled (without breaking inter-process depen-
dences) one after another. Note also that since we do not consider
any transformation of the codes of the processes, whether we sched-
ule process % followed by process & or process & followed by process% does not make a difference in computing K D,EHG I K . Once the K D,EHG I K
values have been found, we can fill the entries in the data reuse table
(Figure 1).

3.2 Evaluating Locality Using Transformations
In some cases, K D,EHG I K may not be a very accurate measure when the

data manipulated by a given process is very large as compared to the
cache capacity. For example, consider the following code fragment
that belongs to a process (called % ):

for (i=0; i w n; i++)
for (j=0; j w n; j++)
c = c + U[i][j];

In this fragment, if the cache capacity is much smaller than U \
(array size), only a small subset of the array (e.g., the last couple of
rows) might stay in the cache after the execution. Consequently, if
we have another process (called & ) with the following nest:

for (i=0; i w n/8; i++)
for (j=0; j w n; j++)
d = d + (U[i][j]*U[i][j]);

we might not be able to take advantage of the reuse between these
two processes if we schedule them one after another. This is because
this second loop access only the first U
xdy rows of the array. With a
small cache capacity, these elements may not even be in the cache
after the execution of the loop in process % . Note, however, that the
strategy described in Section 3.1 determines (for this case) a degree
of reuse K D EHG I K � U \ xdy�4 which indicates a significant amount of data
reuse between these two processes. So, the strategy in Section 3.1
is not very accurate in capturing locality when the volume of data
manipulated is much larger than the available cache capacity.

There are two apparent solutions to this problem. First, instead
of scheduling first % and then & , we can schedule first & and % . The
problem with this approach is that, in general, data dependences be-
tween two processes do not permit such a scheduling. The second
solution is to transform the loop of the first process in such a fashion
that the transformed loop, after the execution, leaves in the cache the
elements that will be accessed by the second process. We can achieve
this by transforming the said code to the following fragment:

for (i=n-1; i z 0; i– –)
for (j=n-1; j z 0; j– –)
c = c + U[i][j];

In this code fragment, the array is traversed in the opposite di-
rection of the original code. Therefore, when the loop finishes its
execution, the cache contains (depending on the cache size) the ele-
ments that will be needed by process & . If, instead, the process & had
the following loop:

for (i=0; i w n; i++)
for (j=0; j w n; j++)
e = e + (U[i][j]*U[i][j]);

a suitable solution would be transforming this loop to the following
form (without modifying the original code of process % ):

for (i=n-1; i z 0; i– –)
for (j=n-1; j z 0; j– –)
e = e + (U[i][j]*U[i][j]);

This discussion reveals that in cases where data manipulated by
processes cannot be fit in the cache, it might be better to use loop
transformations to increase data reuse between the processes. It should
be mentioned that in considering two processes % and & , when we
take into account the possibility of transforming loops, we may need
to compute both

D,EHG I
and

D,IjG E
separately. In computing

DqESG I
, our

approach tries to transform process & (considering the footprint of% in the cache after execution), whereas in computing
DBInG E

, it tries
to transform % (considering the footprint of & in the cache after ex-
ecution). This is reasonable as

DqESG I
(resp.

D,IjG E
) is only meaningful

when process % (resp. process & ) is to be scheduled immediately be-
fore process & (resp. process % ).

To capture the footprint of a process in the cache after its execu-
tion, we use a representation called footprint vector. Informally, for
a given reference, its footprint vector indicates how the array is tra-
versed by the process using that reference. Let us assume that the
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Figure 2: The access patterns implied by (a) �{ t � '|T~} )C� , and
(b) �{ A � ' }�T ) � .

reference in question has an access matrix  and an offset vector �� .
Assume further that �� denotes a specific loop iteration and ��5� A de-
notes the loop iteration that has the same entries as �� except that the
loop index value in the

Q
th position is increased by 1 (we assume that

this increase does not exceed the upper bound of this loop). As an
example, if ���� ' ��� ) � , then ��5� t � ' ��� ) � and ��5� A � ' ��� ) �
(here, 3 is the outer loop whereas

Q
is the inner).

We can define the footprint vector for this reference in the
Q
th

position as:�{ A � 	����5� A � �� � V 	������ �� �P� M	b���� A V ��a�?� i A
where i A is the

Q
th column of  . For example, in the original loop of

the process % above, we have: ��� T�}}�T�� and �� ��� }}�� #
Therefore, the footprint vectors are:

�{ t � � T} � and �{ A � � } T � #
Note that what this �{ t means is that if we keep the loop index

Q
at

a fixed value and keep increasing the value of the loop index 3 , we
traverse the array from the first row to the last. Similarly, the vector�{ A given above means that if we keep increasing the value of

Q
by

keeping 3 at a specific value, we traverse the array from left to right.
These two scenarios are illustrated in Figures 2(a) and (b).

Note that in general there might be multiple references to a given
array in the same loop. Consequently, we need to use a footprint ma-
trix (for each position) instead of a footprint vector. As an example,
if we have two references, $(' 3 ) ' Q@� T ) and $(' QS) ' 3 �OQS)

, the footprint
matrices are as follows:� t ��� T�}}�T�� and

� A ��� }�TT�T�� #
In cases where we have a footprint matrix for a given loop position
instead of a footprint vector, we build a summary footprint vector
for that position. In mathematical terms, we need to generate a sin-
gle vector from several vectors. There are at least three alternative
strategies for doing that. The first alternative selects the most fre-
quently used reference to the array and uses its footprint vector as
the summary footprint vector for the entire array. The second alter-
native selects the footprint vector of the last reference to the array (in
execution) as the summary footprint vector for the entire array. The
third alternative combines multiple footprint vectors into a summary
footprint vector using some form of vector operator. In this work, we
used simple vector combination as the operator. In the following dis-
cussion, when we mention footprint vector it can also mean summary
footprint vector; the intend should be clear from the context.

It should be emphasized that the footprint vectors give information
about the access pattern of the loop and give an idea about which
part of the array might be in the data cache after the execution. For
example, if �{ t � '|T~} )C� and �{ A � ' }�T )C� and 3 is the outer loop,
we know that, after the execution, only the last couple of rows can
stay in the cache (if the cache capacity is small).

After determining the footprint vectors, we need to transform the
code of the second process such that the resulting loop takes the best
advantage of the contents of the cache. This can be achieved if we
traverse the array (in the second process) along a footprint vector
direction which is the opposite of the footprint vector direction of
the first process. As an example, suppose that a process & has the
following code:

for (i=0; i w n; i++)
for (j=0; j w n; j++)
e = e + (U[i][j]*U[i][j]);

Since from the first process (process % ) we have �{ t � '|T�} )�� and�{ A � ' }�T ) � , the loop of process & should be transformed such that
the transformed loop has �{ t � ' V T�} )v� and �{ A � ' } V T )C� . In
other words, the array should be traversed from right to left and from
bottom to top. This is so because such a traversal starts with the array
elements that are most likely to be in the cache after process & has
completed its execution. In order to restructure the loop in process& to obtain these footprint vectors, we build an equational system
and solve it for the entries of � , the loop transformation matrix (see
Section 2). In our current example, this system has the following
form: � T�}}�T � � � � ��� V T }} V T �
To see this, recall that the footprint vector in the

Q
th position is theQ

th column of the access matrix. Therefore, the transformed access
matrix (  � � !� � � ) should have the desired footprint vectors as its
columns. In this example, we obtain:� � � � � V T }} V T � �q� � � � V T }} V T � #
Note that this transformation corresponds to loop reversal [13] and
results in the following transformed loop for the process & :

for (i=n-1; i z 0; i– –)
for (j=n-1; j z 0; j– –)
e = e + (U[i][j]*U[i][j]);

In general, in order to transform the loop belonging to a process& assuming that it will be scheduled after a process % , our approach
first determines the footprint vectors for the loop in process % . It then
computes a new set of footprint vectors (for the loop in & ) such that
if the loop in & is transformed to obtain these footprint vectors, most
of the data in the cache (i.e., the contents after the execution of % )
will be reused by & . In order to find the new footprint vectors, we
simple negate the entries of the footprint vectors of % . To find the
loop transformation matrix that realizes these new footprint vectors,
we just build a new (desired) access matrix (for process & ) from these
vectors and solve the resulting system for the entries of � .

When we take into account transformations, computing K DqEHG I K for
a given process pair 	"% 4 & � is done as follows. First, we try to de-
termine the elements that remain in the cache after the process % ’s
execution. To do this, we employ a binary search algorithm and the
Omega library, and try to find an iteration point � . � such that the
elements accessed by iterations � , � � T , � � X , ..., � �

(where� �
in the last iteration) fill the cache. Then, using the Omega library

and these iterations, we compute the array elements in the cache. As
explained in this subsection, the code of the process & is transformed
taking into account the access pattern of the code of the process %
and is expected to use the elements that remain in the cache after% ’s execution. Thus, if the compiler is able to transform & to exploit
the cache contents (that is, if data dependences allow such a loop
transformation), we set K D,EHG I K to the contents of the cache after % ’s
execution. If, on the other hand, such a loop transformation is not
possible (e.g., due to data dependences), we conservatively set K DqEHG I K
to 0. Note that while this is not a very accurate strategy, our experi-
mentation shows that it performs very well in practice.



4. LOCALITY-CONSCIOUS SCHEDULING
As in the problem of evaluating inter-process data reuse, we solve

the problem of determining a suitable schedule in two levels.

4.1 Scheduling Without Transformations
Having computed K D,ESG I K for all processes % and & , we need to select

an order of execution for processes. We first build a data reuse table
where each entry 	"% 4 & � gives the degree of reuse between process %
and process & (see Figure 1). We then determine a schedule using
the process dependence graph (PDG) and the entries in this table.
Note that we can use any scheduling algorithm on PDG to determine
a legal schedule. One such algorithm is list scheduling. However,
since we want to exploit inter-process data reuse as much as possible,
in selecting the next node (process) to schedule, we use the reuse
information available in the data reuse table we built.

More specifically, suppose that we have just scheduled node { E
and we can schedule � nodes, { Im� , { I8� , ..., { I*��� � , and { I � , immedi-
ately after { E . In this case, we select the node by considering the
entries 	"% 4 & � � , 	"% 4 & \ � , ..., 	"% 4 &�� � � � , and 	"% 4 &�� � in the data reuse ta-
ble, and picking up the one with the largest value (i.e., the largest
degree of reuse). Note that this approach is a greedy heuristic and is
not guaranteed to generate the best result in every case. One partic-
ular problem with this approach is that it does not take into account
the fact that after execution the last process the first process (in the
schedule) will be executed again; so, the degree of reuse between
the last and the first processes might also make a difference. How-
ever, if there are large number of processes, the impact of this last
node-to-first node transition will be minimal.

4.2 Scheduling Using Transformations
When we take into account the possibility of transforming the

source codes of the processes, the optimization strategy changes dras-
tically. This is because in the previous case (i.e., the one without
transformations) it was possible to separate the problem of deter-
mining degrees of reuse between processes from that of finding a
schedule. That is, we can solve first the reuse degree determina-
tion problem and then the scheduling problem. However, when we
consider loop transformations, such a separation is not possible due
to the fact that the best loop transformation (hence, the maximum
degree of reuse) for a given process depends on the process that im-
mediately precedes it in the schedule. Therefore, selecting a good
schedule and determining loop transformations should be handled
together.

Recall that the transformation strategy discussed in Section 3.2 in-
dicates that if we know that process & will (immediately) follow pro-
cess % , we can transform process & ’s code to take advantage of the
data that are left by process % in the cache after its execution. Based
on this mechanism, we propose a branch-and-bound solution to the
problem. While the worst-case complexity of this approach is expo-
nential, its average complexity can be much less, making it a viable
option in practice. In this approach, an alternative (potential) solu-
tion is not investigated further if its estimated cost is already larger
than the minimum cost found so far. In determining and reducing
the additional cost of scheduling a node (that is, adding a node to a
partial schedule), we use the loop transformation strategy discussed
in Section 3.2.

As an example, consider the decision tree fragment illustrated in
Figure 3, where each node corresponds to a process and each path
represents a partial solution (schedule). Let us focus on the leftmost
branch in the tree. We see that this branch indicates the schedule:% � – %h� – % \ – %�  – %h¡ . In obtaining this schedule, we proceed as
follows. We first transform the code of %e� considering the footprint
vectors of % � . After that, % \ is transformed taking into account (the
already transformed version of) % � . Then, %h  is transformed based
on the new footprint vectors of % \ and, finally, %h¡ is transformed
considering %�  .

Let us now focus on the partial solution % � – % � – % ¡ in Figure 3.

a2a1
a3

a5 a2 a3

a2 a3

a4

a3

Figure 3: A decision tree fragment.

We define a best degree of reuse (BDR) of this partial solution as:K D Ed��G E�¢ K � K D E�¢�G E�£ K �¥¤(¦ D ��	"%�¡ 4 w0% \ 4 %� �§ � 4
where

¤�¦ D ��	"%�¡ 4 w¨% \ 4 %� �§ � is the best possible degree of reuse
considering that %h¡ is the node (process) that has just been scheduled
and % \ and %�  are the nodes (processes) to be scheduled next. To
compute

¤�¦ D � , we (optimistically) assume that the nodes to be
scheduled next will have the best degree of reuses between them.
So, the best degree of reuse for the partial solution given above has
two components. The first component gives the degree of reuse of
the partial solution itself, whereas the second component represents
the best possible degree of reuse for the remaining nodes (i.e., the
unscheduled ones). In a sense, the best degree of reuse is the best
result that can be obtained when one starts with a partial solution
(schedule). In general, we compute the best degree of reuse (BDR)
of a partial schedule © as:¤(ªN« 	|© �¬�

degree of reuse 	|© ���¤�¦ D ��	 i % J ��	|© � 4 unscheduled nodes
� #

Note that, for a complete schedule © � , its best degree of reuse (that
is,

¤(ªN« 	|© ��� ) and its degree of reuse (that is,
ªN« 	|© �v� are the same.

Returning to the example in Figure 3, suppose that the branch-and-
bound strategy has completed the analysis of the leftmost path and
computed its degree of reuse,

ªN« 	|© � , where © is % � – %h� – % \ – %h 
– %h¡ . Assume that we are now considering whether to explore the
partial solution © � = % � – %h� – %�¡ further. In deciding that, we check
whether ¤�ªN« 	|© � � w ªN« 	|© �
hold. If it does, then we further explore this partial solution. Other-
wise, we stop there and this partial solution is not explored further;
instead, we move to another branch in the decision tree. During exe-
cution, our branch-and-bound algorithm keeps the current minimum
cost and the current best schedule and decides whether to explore
each subtree by comparing its cost (BDR) with the current minimum
cost.

5. EXPERIMENTS
To test the effectiveness of our locality-conscious scheduling strat-

egy, we performed experiments with array-based versions of two
large, real-life embedded applications: encr and usonic. encr im-
plements an algorithm for digital signature for security. It has two
modules, each with eleven processes. The first module generates a
cryptographically-secure digital signature for each outgoing packet
in a network architecture. User requests and packet send operations
are implemented as processes. The second module checks the digital
signature attached to an incoming message. The main data structure
used is an array of lists. The application code contains 335 C lines.



Figure 4: Results with small input size.

Our second application, usonic, is a feature-based object estimation
algorithm. It stores a set of encoded objects. Given an image and
a request, it extracts the potential objects of interest and compares
them one-by-one to the objects stored in the database (which is also
updated). It is written in C, consists of twelve processes, and contains
830 lines. For each application, we experimented with two different
input sizes: small and large. With the small input size, most of the
processes do not overflow data cache, whereas with the large input
they do.

We performed experiments with seven different scheduling strate-
gies. original is a list scheduling technique that selects the next node
(process) to schedule randomly from among all schedulable nodes.
list1 is another list scheduling based strategy. In selecting the next
node to schedule, it gives priority to the process with the shortest ex-
ecution time. list2 is also a list scheduling strategy; but, in selecting
the node to schedule, it favors the node which has the maximum num-
ber of common arrays with the last node scheduled. map is a strategy
that uses list scheduling; but, once the schedule has been determined,
it maps the arrays onto memory locations such that the array used by
neighboring processes (in the schedule) do not occupy same cache
lines as much as possible (if they are not common arrays). lcs1 and
lcs2 are the two layout-conscious scheduling strategies explored in
this work. lcs1 does not use any code transformation, whereas lcs2
does. Finally, opt is an optimal strategy based on integer linear pro-
gramming (ILP). Once the degrees of reuse have been found (as in
lcs2), opt uses ILP to find the best schedule. The details of the opt
and map strategies are omitted due to lack of space. All schedul-
ing strategies are evaluated using a simple simulator. This simulator
takes an input program (PDG), scheduling strategy, cache configura-
tion, and cache simulator as parameters, and records the number of
cache hits/misses and execution cycles. For cache simulations, we
used a modified version of Dinero III [10].

We only present execution time results as cache hit/miss trends are
very similar to execution time trends. Figures 4 and 5 give (for the
small and large input sizes, respectively) the percentage improve-
ments in execution time with respect to the original version. The
cache used is 16KB, two-way associative with a line size of 32 bytes.
Based on these results, we make the following observations. First, we
see that both lcs1 and lcs2 versions perform better than the rest (ex-
cept the opt version), indicating that locality-conscious scheduling
is successful in practice. Second, the performance of lcs2 is close to
that of opt, meaning that a list scheduling based strategy makes sense
provided that the cost metrics used are accurate enough. Third, the
difference between lcs2 and lcs1 is much larger with the large input.
That is, when the input size is increased, using code transformations
for enhancing inter-process reuse becomes more critical. Fourth, the
map version does not perform very well, mainly due to the fact that
it is very difficult to map arrays in memory in a conflict-free manner.
The results in Figures 4 and 5 are obtained using the most frequently
occurring footprint vector as the summary footprint vector. When

Figure 5: Results with large input size.

we use vector combination instead, we observed a 3.4% (4.1%) ad-
ditional improvement in encr (usonic).

6. CONCLUSIONS AND FUTURE WORK
We have presented a locality-conscious process scheduling strat-

egy and shown that taking into account inter-process data reuse dur-
ing process scheduling can make large differences in execution time.
We have also shown that in cases where the sizes of datasets manip-
ulated by processes are very large, compiler-based transformations
might improve inter-process data reuse. We plan to extend this work
by relaxing the assumptions we made. We will also perform more ex-
periments with different media applications with varying input sizes.
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