
Energy Savings Through Compression in Embedded Java
Environments

G. Chen, M. Kandemir, N. Vijaykrishnan,
M. J. Irwin

Microsystems Design Lab
Pennsylvania State University

University Park, PA 16802, USA
fgchen,kandemir,vijay,mjig@cse.psu.edu

W. Wolf
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA

wolf@princeton.edu

ABSTRACT
Limited energy and memory resources are important constraints in
the design of an embedded system. Compression is an useful and
widely employed mechanism to reduce the memory requirements of
the system. As the leakage energy of a memory system increases
with its size and because of the increasing contribution of leakage to
overall system energy, compression also has a significant effect on
reducing energy consumption. However, storing compressed data /
instructions has a performance and energy overhead associated with
decompression at runtime. The underlying compression algorithm,
the corresponding implementation of the decompression and the abil-
ity to reuse decompressed information critically impact this over-
head.

In this paper, we explore the influence of compression on overall
memory energy using a commercial embedded Java virtual machine
(JVM) and a customized compression algorithm. Our results show
that compression is effective in reducing energy even when consid-
ering the runtime decompression overheads for most applications.

Keywords
Compression, Leakage Energy, Embedded Java

1. INTRODUCTION AND MOTIVATION
Java has become a popular vehicle for portable network program-

ming, spanning not just resource-rich server and desktop environ-
ments, but resource constrained environments as well. It is estimated
that the market for Java-enabled devices for resource-constrained en-
vironments such as cell-phones, PDAs and pagers will grow from
176 million in 2001 to 721 million in 2005 [12]. Various embed-
ded Java virtual machines (JVMs) and Java accelerators have been
proposed to target this potential market over the past year.

A Java system for an embedded/portable environment needs to
meet an entirely different set of constraints as compared to execut-
ing on a high-performance or desktop environment. Three important
aspects to which current embedded JVMs such as Sun’s KVM [11]
and HP’s ChaiVM [3] conform are soft real-time, restricted memory
size, and long-duration sessions requirements. Energy consumption
is also an important design consideration for such battery-driven sys-

tems. However, currently, there is little support for analyzing and
optimizing energy behavior of such embedded JVMs. In particu-
lar, the energy consumption in the memory system is a significant
portion of overall energy expended in execution of a Java applica-
tion [15]. Thus, it is important to consider techniques to optimize
memory energy consumption. There are two important components
of memory energy: dynamic energy and leakage energy. Dynamic
energy is consumed whenever a memory array is referenced. Leak-
age energy is consumed as long as the device is powered and is con-
sumed even when the device is not being accessed. While dynamic
energy has been the traditional focus of most optimizations, leakage
is becoming an equally important portion as supply voltages and thus
threshold voltages and gate oxide thicknesses continue to scale [4].
Recent energy estimates for 0.13 micron process indicate that leak-
age energy accounts for 30% of L1 cache energy and as much as
80% of L2 cache energy [9]. Leakage energy is of particular concern
in the dense memory structures as it increases with the size of the
memory. In contrast, the effect of larger SRAM sizes on dynamic
energy can be controlled by partitioning large SRAMs into smaller
structures. Also, it is customary to use multiple levels of memory
hierarchy to confine most accesses in the smallest memory.

In this work, we use a system-on-a-chip (SoC) with two-level
memory hierarchy where a software-managed memory known as scratch
pad memory (SPM) is used between the memory and the processor
core. The SPM, due to its smaller size, has a lesser per access dy-
namic energy cost associated with it. Hence, confining most accesses
to the smaller SPM (instead of large main memory) reduces the over-
all dynamic energy. However, the increased memory space due to the
two-level memory hierarchy can increase the overall leakage energy
of the system. Various compression schemes have been widely used
to reduce the memory requirements. In this work, we use compres-
sion to reduce the size of the required memory. Specifically, we store
the code of the embedded JVM system and the associated library
classes in a compressed form in the memory. Thus, the effective
number of active transistors used for storage and the associated leak-
age are reduced. We employ a mechanism that turns off power supply
to the unused portions of the memory to control leakage. Whenever
the compressed code or classes are required by the processor core,
a mapping structure stored in a reserved part of the SPM serves to
locate the required block of data in the compressed store. Then, the
block of data after decompression is brought into the SPM. Thus, the
use of scratch pad memory in conjunction with a compressed mem-
ory store targets the reduction of both dynamic and leakage energy
of a system. The focus of this paper is on investigating the influence
of different parameters on the design of such a system. The issues
addressed in this work are listed below:
� Storing compressed code or data has an associated decompres-

sion cost from both the energy and performance aspects. To obtain
any energy savings, the energy overhead of decompression must be
smaller than the leakage energy savings obtained through storage of
compressed code. The underlying compression algorithm and the



corresponding implementation of the decompression critically im-
pact the energy and performance overhead. We explore this idea
using a specific hardware compression scheme and also experiment
with different decompression overheads to account for a range of
possible implementations from customized hardware to software.
� The size of the compressed block influences both the compres-

sion ratio and the overhead involved in indexing the compressed data.
A larger granularity of compression, typically, provides a better com-
pression ratio. In turn, this provides an ability to turn off power sup-
ply to more unused memory blocks, thereby providing larger leakage
energy savings. Also, it reduces the mapping overhead for indexing
into the compressed store. However, a larger block also occupies a
larger space in the SPM and increases the storage pressure. This can
lead to more frequent conflicts in the scratch pad memory resulting
in more frequent decompressions.

The rest of this paper is organized as follows. Section 2 introduces
the virtual machine used in this study, our SoC, and our embedded
applications. Section 3 discuss our strategy for saving leakage energy
through compression. Section 4 presents our simulation environment
and Section 5 gives our experimental results. Finally, Section 6 con-
cludes the paper with a summary of our major contributions.

2. KVM, SOC ARCHITECTURE, AND AP-
PLICATIONS

2.1 Virtual Machine
In this study, we used K Virtual Machine (KVM) [11], Sun’s vir-

tual machine designed for resource-constrained (e.g., battery-operated)
environments. It targets embedded computing devices with as little
as a few kilobytes total memory, including actual virtual machine and
Java class libraries themselves. These devices include smart wireless
phones, pagers, mainstream personal digital assistants, and small re-
tail payment terminals.

2.2 Architecture
A system-on-a-chip (SoC) is an integrated circuit that contains an

entire electronic system in a single sliver of silicon. A typical SoC
contains a library of components designed in-house as well as some
cores from chipless design houses also known as intellectual prop-
erty. In this work, we focus on an SoC-based system that executes
KVM applications. Figure 1(a) depicts the high level (logical) view
of the relevant parts of our SoC architecture. This architecture has
a CPU core, a scratch-pad memory (SPM), and two main memory
modules. The processor in our SoC is a microSPARC-IIep embed-
ded core. This core is a 100MHz, 32-bit five-stage pipelined RISC
that implements the SPARC architecture V8 specification. It is pri-
marily targeted for low-cost uniprocessor applications. Both main
memory and SPM are SRAMs which are organized as blocks. Each
main memory block can be mapped into one SPM block. Each SPM
block has a tag register indicating which main memory block is cur-
rently mapped into this SPM block. The tag registers are set by SPM
manager, which is implemented in hardware.

When the CPU generates an address, the high-order bits of this ad-
dress are compared with each tag in parallel. If one of the tags gener-
ates a match, the corresponding SPM block is selected and low-order
bits of the address are used to access the contents of the block. If no
tag match occurs, then the ”Hit” signal line (shown in Figure 1(b)) is
disabled and an interrupt is generated. The corresponding interrupt
service routine activates the SPM manager which brings the faulted
block from main memory to the SPM. In case no free SPM block is
available, a timer-based block replacement policy is used. Specifi-
cally, for each SPM block, there is a timer and an access bit. When-
ever the block is accessed, its access bit is set and its timer is reset.
When a block is not accessed for a certain period of time, the timer
goes off and the access bit is reset. When a block replacement is to
be performed, the SPM Manager always tries to select a block whose
access bit is reset. If no such block exists, the manager selects a

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��

CPU Core

��
��
��
��
��
��
��
��

Main Memory

SPM
SPM

Manager

Main Memory
(KVM Code + Class Libraries) (Heap + Runtime Stack + Application + R/W Data)

A Block of Data

(a)

DATA

ADDRSEL

Hit

Timer

Tag Register

Hit

Set

Reset

Access
Bit

Reset

DATA

ADDR(H)
ADDR(L)

SPM
Block

Data
Block

(b)

Figure 1: (a) High-level view of the SoC memory architecture.
(b) Details for an SPM block.

block in a round-robin fashion. The main memory is composed of
two parts: one part which contains the KVM code and class libraries
and the other part which contains all writable data including heap
and C stack as well as application code.

It should be mentioned that a number of parameters in this archi-
tecture are tunable. For example, the capacities of SPM and main
memory can be modified. Also, by playing with the width of the
timers associated with each block, we can modify the behavior of
the block replacement policy. Finally, the SPM block size can be
changed. Note that changing the block size affects the block replace-
ment rate as well as the overhead (per block) when a replacement
occurs.

Instead of an SPM, a cache could also have been employed. In our
experiments, we found that using 2-way associate 32KB instruction
and data caches both with line sizes of 32 bytes consumed 11% more
energy than an equivalent 64KB SPM configuration. Hence, for lack
of space, we show only SPM results.

2.3 Applications
In this subsection, we describe the applications used in this study.

To test the effectiveness of our energy saving strategy, we collected
twelve applications shown in Figure 2. These applications represent
a group of codes that are executed in energy-sensitive devices such
as hand-held computers and electronic game boxes, and range from
utilities such as calculator and scheduler, embedded web browser to
game programs. These applications represent a good mix of codes
that one would expect to run under KVM-based environments.

3. COMPRESSING KVM CODE AND CLASS
LIBRARIES

As noted earlier, leakage energy consumption of SRAM blocks is
proportional to their size as well as the duration of time that they
are powered on. In this work, we try to reduce the number of active
(powered on) memory blocks by storing read-only data, including
KVM binary codes and Java class libraries, in compressed form. To



Application Brief Description Source
Calculator Arithmetic calculator [Omitted for anonymity]
Crypto Cryptography www.bouncycastle.org
Dragon Game program comes with Sun’s KVM
Elite 3D rendering home.rochester.rr.com/ohommes/Elite/
Kshape Electronic map www.jshape.com
Kvideo KPG decoder www.jshape.com
Kwml WML browser www.jshape.com
ManyBalls Game program comes with Sun’s KVM
MathFP Math lib home.rochester.rr.com/ohommes/MathFP/
Missiles Game program comes with Sun’s KVM
Scheduler Weekly/daily scheduler [Omitted for anonymity]
StarCruiser Game program comes with Sun’s KVM

Figure 2: Brief description of the benchmarks used in our exper-
iments.

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��
��
��
��
��

�
�
�
�

CPU Core

�
�
�
�
��
��
��
��

Decompressor
X-Match
Modified

Main Memory

SPM
Manager

(KVM Code + Class Libraries) (Heap + Runtime Stack + Application + R/W Data)

(a)

Main Memory

SPM

Decompressed
Block

Compressed
Block

(Not Compressed)
Block

... ...

Literature

Address

Control Bits

Control

SPM Block

Address

Index

C-
Bu

f
L-

Bu
f

C-
Ad

dr
L-

Ad
dr

S-
Ad

dr

Address

(b)

Figure 3: (a) High-level view of the SoC memory architecture
with decompressor. (b) Details for the modified X-Match decom-
pressor.

avoid incurring the cost of runtime compression, writable data are
stored in original form. The high-level view of our architecture with
the decompression support is shown in Figure 3(a). When a data item
belonging to a compressed memory block is requested by the pro-
cessor, the whole block is decompressed by the decompressor and
is then written into the SPM. The advantage of this strategy is that
since data in read-only memory is in the compressed form, it occu-
pies fewer memory blocks. This, in turn, reduces the leakage energy
consumption in read-only part of the main memory system. Note
that the amount of this saving is determined by the compression rate
of the algorithm used. The drawback is that decompressing a block
(at runtime) incurs both time and energy penalty. The magnitude of
this penalty depends on how frequently decompression is required
and how much time/energy it takes to decompress a block of data.
The number of decompressions is directly related to the number of
misses in the SPM (which is a characteristic of application behavior
and SPM configuration). The time/energy expended in decompress-
ing the block depends on the decompression method used and can be
reduced by an efficient implementation.

The compression/decompression algorithm to be used in such a
framework should have the following important characteristics: (1)
good compression ratio for small blocks (typically less than 4KB);
(2) fast decompression; and (3) low energy consumption in decom-
pression. Since compression is performed offline, its speed and en-
ergy overhead are not constrained. The first characteristic is desirable
because the potential leakage energy savings in memory are directly
related to the number of memory blocks that need to be powered on.
Note that a compressed memory block needs to be decompressed be-
fore it can be stored in the SPM. Consequently, a decompression
overhead is incurred in every load to SPM and, in order for this
scheme to be effective, we should spend very little time and energy
during decompression.

Kjelso et al. [8] presented a dictionary-based compression/ de-
compression algorithm called X-Match. This algorithm maintains a
dictionary of data previously seen, and attempts to match the current
data element (to be compressed) with an entry in the dictionary. If
such a match occurs, the said data element is replaced with a short
code word indicating the location of data in the dictionary. Data
elements that do not generate a match are transmitted in full (liter-
ally), prefixed by a single bit. Each data element is exactly 4 bytes
in width and is referred to as a tuple. A full match occurs when all
characters in the incoming tuple fully match a dictionary entry. A
partial match occurs when at least two of the characters in the in-
coming tuple match exactly a dictionary entry; the characters that do
not match are transmitted literally. The coding function for a match
encodes three separate fields: (1) match location, (2) match type in-
dicating which characters from the incoming tuple matched the dic-
tionary entry, and (3) any characters from the incoming tuple which
did not match the dictionary entry at the match location (i.e., those
transmitted without encoding).

In the original X-Match algorithm, the dictionary is maintained
using a move-to-front strategy, whereby the current tuple is placed
at the front of the dictionary and other tuples move down by one lo-
cation. If the dictionary becomes full, the tuple occupying the last
location is simply discarded. The move-to-front operation is imple-
mented with content addressable memory, which is expensive from
the energy consumption perspective. In our implementation, we re-
placed the move-to-front strategy with a simple round-robin strategy,
i.e., the new tuple is always appended to the end of current dictio-
nary entries. When the dictionary is full, the replacement pointer is
moved to the first dictionary entry and the entry becomes the one
that will be replaced next time. The elimination of the move-to-front
strategy may cause a slight degradation in the compression ratio, but
the implementation is simpler and energy-efficient. We also separate
the literal bytes from the control bits (i.e., prefixes, match types, and
dictionary locations), which allows the control bits and literal bytes
to be fed into the decompresser as separate streams. We refer to this
modified algorithm as the modified X-Match algorithm in the rest
of the paper. The hardware block diagram of the modified X-Match
decompressor is shown in Figure 3(b).

While this modified X-Match implementation is used in our eval-
uation, the idea of trading additional decompression energy with re-
duced memory leakage energy is applicable using other compression
schemes such as Lempel-Ziv and Huffman.

4. SIMULATION METHODOLOGY

4.1 Energy Model
The energy numbers reported in this paper are obtained by a simu-

lator implemented on the SPARC simulation tool-set, Shade [6], aug-
mented with energy models. The simulator takes as input the KVM
system executing a Java application and computes performance as
well as energy data. The current implementation runs on SPARC
systems and simulates the SPARC V8 instruction set of our target
processor. Our simulator tracks energy consumption in the proces-
sor core, SPM, and main memory blocks. The energy consumed in
the processor core is estimated by counting (dynamically) the num-



ber of instructions of each type and multiplying the count by the
base energy consumption of the corresponding instruction. The base
energy consumptions of the different instruction types are obtained
using a customized and validated version of our in-house cycle ac-
curate energy simulator [14]. T he simulator is configured to model
a five-stage pipeline similar to that of the target microSPARC-IIep
architecture.

The energy consumption in SPM and main memory is divided into
two components: dynamic energy and leakage energy. In computing
per access dynamic energy consumptions for SPM and main mem-
ory, we used the CACTI tool Version 2.0 [10] assuming a 0.10 mi-
cron technology. In computing the leakage energy, we assumed that
the leakage energy per cycle of the entire main memory is equal to
the dynamic energy consumed per access. This assumption tries to
capture the anticipated importance of leakage energy in the future. It
should be stressed that leakage becomes the dominant part of energy
consumption for 0.10 micron (and finer) technologies for the typical
internal junction temperatures in a chip [4]. Note that, as opposed
to dynamic energy which is expended only when an access occurs,
leakage energy is spent as long as memory is powered on.

In computing the overall energy consumption in main memory and
SPM, we assumed that a memory block (or an SPM block) can be in
one of three states (modes) at any given time: R/W, active, or inac-
tive. In the R/W (read/write) mode, memory is being read or written
and consumes full dynamic energy as well as full leakage energy. In
the active state, on the other hand, the memory is powered on but not
being accessed. In this state, it consumes no dynamic energy but full
leakage energy. Finally, the memory modules that are not needed
by the system are not powered on, i.e., in the inactive state, conse-
quently, no energy consumption at all. Obviously, one would want to
place as many memory blocks as possible to the inactive state so that
the energy consumption can be minimized. One way of achieving
this is to reduce the amount of data stored in memory, which can be
achieved using compression.

4.2 Base Configuration and Energy Distribu-
tion

Figure 4 gives the simulation parameters used in our base configu-
ration. Figure 5 shows (in columns two through five) the energy con-
sumptions (in micro-joules) for our applications executing on base
configuration without decompression. The energy consumption is
divided into four components: dynamic energy in SPM, leakage en-
ergy in SPM, dynamic energy in main memory, and leakage energy in
main memory. The contribution of the processor energy to the overall
(main memory + SPM + processor) energy is around 10% and is not
much affected by decompression. Consequently, we focus only on
main memory and SPM energies. A memory block that contains no
valid information throughout the application execution is turned off
so that it does not consume any leakage energy. We see from these
results that the memory leakage energy consumption (shown in the
third column) constitutes a large percentage of the memory system
(main memory + SPM) energy budget (61.74% on the average) and is
a suitable target for optimization. The sixth column in Figure 5 gives
percentage of energy consumption due to read-only part of the mem-
ory. We see that, on the average, the read-only part of the memory is
responsible for 62.42% of the overall memory energy consumption.
Finally, the last two columns give the number of SPM misses and the
number of execution cycles (in millions) for each application.

5. RESULTS
In this section, we present data showing the effectiveness of our

strategy in saving energy and also measure the sensitivity of our strat-
egy to different parameters such as SPM capacity, block size, and
cost of decompression. All energy numbers reported here are val-
ues normalized to the energy consumption in the base case without
any decompression (Figure 5). Also, when a simulation parameter
is modified, the remaining parameters maintain their original values
given in Figure 4.

Parameter Value
SPM capacity 64KB

4KB SPM management
40KB for read-only data
20KB for writable data

SPM block size 1KB for read-only data
512 bytes for writable data

Main memory capacity 512KB
SPM access time 1 cycle
Main memory access time 3 cycles
SPM dynamic energy/read 0.5216 nJ
SPM dynamic energy/write 0.6259 nJ
Main memory dynamic energy/read 1.334 nJ
Main memory dynamic energy/write 1.601 nJ
Main memory leakage energy/byte/cycle ����� ��

�� nJ
SPM leakage energy/byte/cycle ����� ��

�� nJ
SPM access bit reset time 6000 cycles for read-only

4000 cycles for r/w clean
8000 cycles for r/w dirty

Figure 4: Simulation parameters and their values for our base
configuration.

The top part of Figure 6 gives the normalized energy consump-
tions in read-only portion of the main memory and the SPM. It can
be observed from this figure that the energy saving is 20.9% on the
average. The bottom part of Figure 6, on the other hand, shows
the overall (normalized) energy consumption in main memory and
SPM, including the energy expended during decompression. We
see that most of the applications achieve an overall energy saving
of 10% (an average of 7% across all applications). In two appli-
cations (Calculator and Scheduler), the decompression over-
head (energy) plays a larger role and the overall energy consumption
becomes worse than the original case. We also experimented with a
50% reduction in leakage energy per main memory cell to account
for design variations that permit the slower main memory cells to
operate using a higher threshold voltage. In this case, the overall
memory system energy saving across all applications is 5.4% on the
average.

In general, there are two application-related factors that determine
the effectiveness of our energy saving strategy: (1) the overall run-
ning time of the application, (2) the number of SPM misses. Since
the major energy gain in our strategy comes from the memory leak-
age energy, the longer the application runs, we can expect more en-
ergy benefits. Recall that each SPM misses invokes a decompression.
Therefore, the number of SPM misses is an important factor in de-
termining the energy spent in decompression during the course of
execution. The reasons that Calculator and Scheduler do not
get benefit from our strategy are different. In Calculator, the
execution time is rather short (only 5.60 million cycles) and the en-
ergy spent on decompression does not pay off. On the other hand,
although the execution time of Scheduler is not short (105.5 mil-
lion cycles), it suffers from a high number of SPM misses (a total of
96033).

Since our strategy focuses on energy savings in the read-only part
of the main memory, in the rest of this section, we mainly present re-
sults pertaining only this part and the SPM (unless otherwise stated).
However, to evaluate the impact of decompression, we also show the
energy consumed during the decompression process.

5.1 Sensitivity to the Decompression Cost
To see how a more efficient or a less efficient implementation of

the X-Match decompressor would impact our results, we conducted
another set of experiments. Assuming a decompression rate of 4
bytes/cycle and that the energy consumed in each stage is equal to
one SPM access, we determined that the energy consumption for de-
compressing one word (4 bytes) is equal to three SPM accesses. We
normalize this energy cost to 1 and experiment with its multiple as



Application Memory Energy SPM Energy Read-Only Number of Number of
Dynamic Leakage Dynamic Leakage Contribution SPM Misses Cycles

Calculator 1.81 (13.70%) 7.46 (56.58%) 3.08 (23.31%) 0.87 (6.61%) 66.00% 5258 5.59
Crypto 7.30 (3.37%) 137.94 (63.75%) 54.97 (25.40%) 16.17 (7.47%) 60.46% 19848 103.58
Dragon 1.10 (1.05%) 68.70 (65.41%) 27.18 (25.88%) 8.05 (7.67%) 60.86% 3064 51.58
Elite 1.10 (1.12%) 64.42 (65.36%) 25.49 (25.86%) 7.55 (7.66%) 60.88% 3206 48.37
MathFP 2.42 (1.50%) 104.96 (65.04%) 41.70 (25.84%) 12.30 (7.62%) 60.40% 6735 78.81
ManyBalls 5.90 (5.05%) 73.08 (62.59%) 29.22 (25.03%) 8.56 (7.33%) 59.98% 11455 54.87
Missiles 2.51 (2.67%) 60.34 (64.27%) 23.96 (25.53%) 7.07 (7.53%) 61.61% 7288 45.30
KShape 16.18 (5.01%) 201.90 (62.57%) 80.93 (25.08%) 23.66 (7.33%) 61.22% 45321 151.61
KVideo 2.21 (10.24%) 12.69 (58.87%) 5.17 (23.99%) 1.49 (6.90%) 64.87% 6396 9.53
KWML 121.56 (11.97%) 584.96 (56.58%) 240.78 (23.70%) 68.55 (6.75%) 64.35% 339395 439.26
Scheduler 32.96 (13.30%) 140.51 (56.71%) 57.83 (23.34%) 16.47 (6.65%) 66.50% 96035 105.50
StarCruiser 3.22 (4.16%) 48.96 (63.18%) 19.58 (25.27%) 5.74 (7.40%) 61.91% 9356 36.76

Figure 5: Energy consumptions and execution cycles for our applications under the base configuration.

Figure 6: Normalized energy consumption in read-only memory
and SPM (top) and in overall memory and SPM (bottom).

Figure 7: Normalized energy consumption in read-only memory
with varying decompression costs.

well as its fractions. The results shown in Figure 7 are average values
(over all benchmarks) and illustrate that the relative cost of decom-
pression can change the entire picture. For example, with a relative
cost of 2, the energy consumption exceeds that of the original case.
In contrast, with a relative cost of 0.25, the energy consumption is
around 80%, even including the decompression energy. These re-
sults clearly indicate the importance of efficient implementation of
decompression.

5.2 Sensitivity to the SPM Size
Figure 8 shows the impact of SPM capacity (size) on energy sav-

ings. As before, the values shown are averages computed over all
benchmark codes in our experimental suite. We observe from this
figure that, if the SPM size is too small, frequent SPM misses make
energy consumption very high. But, we also see that a very large
SPM also degrades energy behavior. There are two factors that to-
gether create this behavior. First, a larger SPM itself consumes more
dynamic and leakage energy (compared to a smaller SPM). Second,
for each application, there is an SPM capacity that captures the work-
ing set. Increasing the SPM size beyond this capacity does not re-
duce the number of misses further. So, this stability in the number
of misses, combined with the first factor, leads to an increase in en-
ergy consumption. In an embedded system design, the maximum
possible SPM size is determined by the chip budget. Our experimen-
tation indicates that the best SPM size depends on the application at
hand. So, embedded system designers should select a suitable SPM
size considering the applications in question as well as the impact of
SPM size on energy consumption.

5.3 Sensitivity to the Block Size
In this set of experiments, we tried to measure the sensitivity of

our energy savings to the block size used. Recall that our default



Figure 8: Normalized energy consumption in read-only memory
with varying SPM sizes.

Figure 9: Normalized energy consumption in read-only memory
with varying block sizes.

block size was 1KB. The results shown in Figure 9 indicate that,
given the SPM capacity, the size of each block has a great impact
on the energy consumption. For most compression algorithms in the
literature, a larger block size has, in general, a better compression
ratio. However, it should be noted that, a very large block size might
increase both SPM miss rate and miss penalty (decompression cost).
That is exactly the behavior we observed during our experiments. As
shown in Figure 9, a block size 0.5KB generated better results than
our default 1KB blocks. In contrast, increasing the block size to 2KB
increased the original energy consumption by more than a factor of
two.

6. CONCLUSIONS
Storing compressed code or data has an associated decompression

cost from both the energy and performance aspects. However, com-
pression itself helps to reduce the portion of the memory to be pow-
ered on and the consequent leakage energy of the memory system.
Our experiments with a set of embedded applications using a com-
mercial embedded JVM and a specific compression scheme show
that the proposed technique is effective in reducing system energy.
We expect our findings to be applicable to other compression algo-
rithms and implementations as well.

Acknowledgment
This work was supported in part by NSF CAREER Awards 0093082
& 0093085; NSF Awards 0073419, 0082064, 0103583 and an award
from GSRC.

7. REFERENCES

[1] L. Benini and G. De Micheli. System-level power optimization:
techniques and tools. ACM Transactions on Design Automation of
Electronic Systems, 5(2), pp.115-192, April 2000.

[2] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and
A. Vandecappelle. Custom Memory Management Methodology –
Exploration of Memory Organization for Embedded Multimedia
System Design. Kluwer Academic Publishers, June 1998.

[3] ChaiVM for Jornado.
http://www.hp.com/products1/embedded/jornado/index.html

[4] A. Chandrakasan, W. J. Bowhill, and F. Fox. Design of
High-Performance Microprocessor Circuits. IEEE Press, 2001.

[5] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko. Tuning garbage collection in an embedded Java
environment. In Proc. the 8th International Symposium on
High-Performance Computer Architecture, Cambridge, MA, February
2-6, 2002.

[6] B. Cmelik and D. Keppel. Shade: A Fast Instruction-Set Simulator for
Execution Profiling. In Proc. ACM SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems, pp. 128-137, May
1994.

[7] J. Flinn, G. Back, J. Anderson, K. Farkas, and D. Grunwald.
Quantifying the energy consumption of a pocket computer and a Java
virtual machine. In Proc. International Conference on Measurement
and Modeling of Computer Systems, June 2000.

[8] M. Kjelso, M. Gooch, and S. Jones. Performance evaluation of
computer architectures with main memory data compression. Elsevier
Science, Journal of Systems Architecture, 45 (1999), pp. 571–590.

[9] M. D. Powell, S-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar.
Gated-Vdd: a circuit technique to reduce leakage in deep-submicron
cache memories. In Proc. the ACM/IEEE International Symposium on
Low Power Electronics and Design, August 2000.

[10] G. Reinman and N. Jouppi. An integrated cache timing and power
model. COMPAQ Wester Research Lab, Palo Alto, CA, 1999.
http://www.research.compaq.com/wrl/people/jouppi/CACTI.html

[11] R. Riggs, A. Taivalsaari and M. VandenBrink. Programming Wireless
Devices with the Java 2 Platform. Addison Wesley, 2001.

[12] D. Takahashi. Java chips make a comeback. Red Herring, July 12,
2001.

[13] The future of SoC design.
http://www.eetasia.com/ART 8800141212.HTM.

[14] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W. Ye.
Energy-driven integrated hardware-software optimizations using
SimplePower. In Proc. the International Symposium on Computer
Architecture, Vancouver, British Columbia, June 2000.

[15] N. Vijaykrishnan, M. Kandemir, S. Tomar, S. Kim, A.
Sivasubramaniam and M. J. Irwin. Energy Characterization of Java
Applications from a Memory Perspective. In Proc. USENIX Java
Virtual Machine Research and Technology Symposium, April 2001.


	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index




