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ABSTRACT (called a constraint graph) where vertices correspond to the vari-

A system of binary linear constraints or difference constraints (SDC) ables and the edges correspond to the constraints. A solution to a

contains a set of variables that are constrained by a set of unary Orgi;(en SIIID(; means fi_ndingl fan ilnstantiation |°f the va_riablelf thsaééat_
binary linear inequalities. In such diverse applications as schedul- 'Sfl€S all the constraints. If at least one solution exists, the IS

ing, interface timing verification, real-time systems, multimedia consistent; otherwise, it is inconsistent. If the SDC is inconsistent,

systems, layout compaction, and constraint satisfaction, SDCs have't i?) also ‘T‘qaid to be (_)ver-conhs;rainedéD Ci di .
successfully been used to model systems of both temporal and spa- nce t et():onsr:ralnt g:]rap h oran St Is confstructe na ge:jtaln
tial constraints. Formally, SDCs are modeled by weighted, directed W It can be shown that the inconsistency of an SDC is tied to

(constraint) graphs. The consistency of an SDC means that there isthe preslence of poiltlvel cyglﬁs n thﬁ gt:aph. TEUS‘ a S|m_ple slngle-
at least one instantiation of its variables that satisfies all its con- SOUrc€ onges]:t-ﬁatssbg gfi“t m 1S i t alt It takes to (\j/egfyk: eS'S&:
straints. It is well known that the absence of positive cycles in a consistency of the - However, If a solution Is needed, the

graph implies the consistency of the corresponding SDC, so the has to be f_epa"ed' or th_e_ |ncon5|§tency has to be resolved. Sf'm'
consistency can be decided in strongly polynomial time. If a SDC PIY: converting every positive cycle in the graph to a zero cycle will
is found to be inconsistent, it has to be repaired to make it con- make the ,SDC qon5|stent. One way or r_;m_othe_r_, most of the ap-
sistent. This task is equivalent to removing positive cycles from proac_hes in the literature are based on this intuition. The problem
the corresponding graph. All the previous algorithms for this task here is, Of_ COurse, that the _graph can haV? an exponer_ltlal num-
take time proportional to the number of positive cycles in the graph, ber of positive cycles, resulting in exponential time algorithms to

which can grow exponentially. In this paper, we propose a strongly gai_n consistency. '_I'he main contribution of this paper Is o propose
polynomial-time algorithm, i.e., an algorithm whose time complex- an intelligent algorithm that not only restores consistency correctly

ity is polynomial in the size of the graph. Our algorithm takes in a (by outputting a list .Of edg’?s \{vhose W_elghts have to be ch_anged)
graph and returns a list of edges and the changes in their weights tg?ut S0 performs this task in time that is a polynomial function of
remove all the positive cycles from the graph. We experimentally "€ number of vertices and the number of edges in the input graph,
quantify the length of the edge list and the running time of the ai- "€sulting in a strongly polynomial-time algorithm.

gorithm on large benchmark graphs. We show that both are very _The reason yvhy we should care ab(_)ut such an algorif[hm_ Is the
small, so our algorithm is practical. wide applicability of SDCs. Below we list only a few applications

without being exhaustive:

KeyWOI‘dS e scheduling, e.g., operation scheduling in behavioral synthe-
Behavioral synthesis, high-level synthesis, scheduling, timing con- sis [20, 23, 28, 32], software scheduling [8, 22], job / task
straints, rate analysis, constraint satisfaction. scheduling [9], or data-flow scheduling [31];

e interface timing verification [3, 4];
1. INTRODUCTION . 1341
A special case of the general linear-programming problem isthe ¢ rate analysis [10, 25];
system of difference constraints (SDC). In such a system, each con-
straint is a binary linear inequality defined over two variables. As
such, this type of a system is mapped to a weighted, directed graph

e real-time systems, e.g., real-time scheduling [27], run-time
monitoring timing constraints [29], or safety analysis of real-
time systems [18];

e modeling most of the temporal, spatial, and quality-of-service
requirements for collaborative multimedia systems [5];

e layout compaction [14, 17, 19, 21, 26, 30]; and
e constraint satisfaction problems [13].

Note that the constraints in an SDC can be used to model tem-
poral, spatial, and possibly other kinds of constraints as long as



u _> Xj - Xi _> I and binary linear constraints, which can contain either >. That
is, any such constraint can be converted to the canonical form, as
forward shown in the following examples for two variablsandX;:

e Xj>5& X=X >5;

@ @ ¢ X =5e X=X = -5

e Xj—X <5& X —X;> -5 and

backward
o Xj—X =5&Xj—X >5andX —X; > 5.
Figure 1: Modeling a minimum constraints Xj —X; > | with Therefore, without loss of generality, we will consider binary con-
a forward edge and a maximum constraintu > Xj — X with a straints in the canonical form.

backward edges.

Definition 4. Consider an SDC an@[SDJ. A constraint of the
form Xj — X > by is called aminimum constraings it provides a
lower bound | for the differenceX; — X;. The corresponding edge
(%, X)) with weightby is called adorward edge A constraint of the
form Xj — X < by is called amaximum constrainas it provides a
upper bound pfor the differenceX; — X;. This constraint is equiv-
alent toX; — Xj > —by in the canonical form. The corresponding
edge(X;,X;) with weight—by is called abackward edge

2. PROBLEM FORMULATION Fig. 1 depicts modeling binary constraints with forward and back-

We now present the formal definition of an SDE4.1), the ward edges.
modeling it using a constraint graph 2.2), the correspondence .. . . ..
between the inconsistency of the system and the presence of posz-3 Characterlzmg ConS|stency Usmg Positive
itive cycles in the constraint grapl§ £.3), the problem of resolv- Cycles
ing inconsistency§2.4), and a list of previous approaches to this
problem § 2.4). The section is largely based on the references THEOREM 1. (e.g., [9]) Consider an SDC and[SD(Q = (V, E,w).
mentioned in the introduction section. Then, G is consistent if and only if G contains no positive cycles.

. . Furth LifGi istent, th
2.1 Systems of Difference Constraints urihermore, & 1s consistent, then
x= (0,d(Xo,X1),.--,d(Xo,Xn)) @

is a solution where @Xp, X;) is the length of the longest path from
Xo to X for 1 <i < n. This solution is also the smallest one in that
it minimizes X— Xg for each X.

they result in unary or binary linear inequalities. For example, for

scheduling, all the constraints are timing constraints (derived from
data / control flow ordering and user constraints) whereas for lay-
out compaction, all the constraints are spatial constraints (derived
from technology design rules and user constraints). Our interest in
this paper is on timing constraints.

Definition 1. A system of difference constraints (SR@)sists
of n unknowns (or variablesXs, Xo, ..., Xy andm difference con-
straints, in which each difference constraint ibiaary linear in-
equalityof the (canonical) fornX; — X > by, where 1<1i,j <n,

1< k< m, andby are constants. If we reverse every edge B and negate their weights, then the

Definition 2. Given an SDC witm variables anan constraints, consistency oSDQG] is guaranteed in the absence of any nega-
ann-tuplex = (x,%,..., %) is a(feasible) solutiorif the assign- tive _c_ycles [9]. Thus, without loss of generality, we will deal with
ment (or instantiation] Xy = x1, Xz = X, ..., Xn = Xn } satisfiesall positive cycles. N . o
the constraints. Each constraint that is not satisfied is said ¥o be To detect the presence of positive cycles and find a solution in
olated The system igonsistentf at least one solution exists, and  their absence, we can use a single-source longest-path algorithm. In
is inconsistenbtherwise. theory, the fastest time bound for such algorithm®(am), which

is achieved by the well-known Bellman-Ford algorithm. In prac-
tice, faster algorithms exist [7]. Especially, if it is more likely that
G will have a positive cycle, even faster algorithms, e.g., Tarjan’s
algorithm, exist [6]. One algorithm that is not reported in [6, 7] is
the Liao-Wong algorithm [21]. Its time complexity @((b+ 1)m)
whereb = O(n) is the number of the backward edgesGn As
such, this algorithm can be more suitablé is small.

Now that we know how to find a solution wh&DJG] is con-
sistent, we next focus on resolving inconsistency wB&TG] is
inconsistent.

2.2 Modeling Using Constraint Graphs

Definition 3. Given an SDC witm variables anan constraints,
the correspondingonstraint graphis a weighted, directed graph
G = (V,E,w) with V| = (n+1) vertices |E| = (m+n) edges, and
an edge weight functiow, in whichV = {Xg, X1,...,Xn} andE =
{06, X)) - w(X;, Xj) = by FU{(Xo, X)) : W(Xg, Xj) =0} for 1 <i, j <
n. Every constraint of the form(j —X; > by is converted to an edge
(%, X)) with weightw(X;, X;) = by.

Note thatG contains a vertex for each variable and an extra ver- 2.4 Dea“ng With InconS|stency and Previous

tex Xg, which is the reference or source vertex and is connected to Work

every other vertex via zero(-weighted) edges. (An edge or a cycle To simplify our discussion, we assume the following scenario.

is positive, negative, or zero based on the sign of its weight). For Suppose a designer has a problem in one of the applications men-

simplicity, we assign zero t¥g in any solution. tioned in the introduction. S/he maps the problem to an SDC, and
We will use the notationSDCG] andG[SD(Q to denote the SDC uses a software tool to check its consistency. The tool internally

corresponding t@& and vice versa, respectively. An SDC as mod- converts the input SDC to a constraint graph and checks for posi-

eled by a constraint graph is general enough to model any unarytive cycles to decide the consistency (by Theorem 1). If no positive



cycles are found, the tool reports “success”. If the graph has posi- Our approach can also be considered as a resolve-all approach;

tive cycles, the tool reports “failure” but also tries to remove them however, we do not enumerate every positive cycl&inin the

by either (1) changing the topology of the graph, or (2) changing previous resolve-all approaches, the positive cycles to resolve are

the edge weights, or (3) both. This paper focuses on (2) because itselected arbitrarily. In the next section, we show that making the se-

seems “easier”. Thus, we assume that the tool will report a list of lection in a certain way implicitly resolves many other positive cy-

edges together with the needed weight changes for each edge.  cles such that the total worst-case time complexity becomes strongly
By changing the edge weights, the positive cycles can be con- polynomial in the size o6.

verted to either (1) zero cycle, or (2) negative cycles. Without loss

of generality, we have chosen (1). Since the designer willbe more 3, QOQUR ALGORITHM: FIX

satisfied if the edge list is minimized, we want to solve the follow-

ing problem. We now present the cycle mear§s3(1), the graph property that

our algorithm is based on, the characterization of the presence of
ProBLEM 1. (POSITIVE CYCLES PROBLEM) Given G as in  positive cycles using cycle mear§s3.2), and our algorithmg(3.2)

Def. 3, find the minimum number edges whose weights must betogether with its correctnes$ 8.3) and running time proof§ 3.4).

changed to make G free of positive cycles. This section contains the main contribution of this paper. Without

The solution of this problem depends on the solution of a more loss of generality, we assume tiis cyclic.

specialized problem called the feedback arc set (FAS) problem. 3 1 Cycle Means

ProBLEM 2. (FEEDBACK ARC SET PROBLEM) Given an un- e o )
weighted, directed graph G, find the minimum number of edges (or ~ Definition 5. The (cycle) meai (C) of a cycleC in G is defined

arcs) whose removal makes G acyclic. as

Since the FAS problem is NP-hard [16], Prob. 1, being its gen- AC) = L(C) = 7Ze€cw(e)7 )
eralization, is also NP-hard. Due to this unfortunate difficulty, we IC| IC|
relax Prob. 1 and opt for a best-effort approach. where|C| is the length of, i.e., the number of edges on it.

PrRoOBLEM 3. (BEST-EFFORT POSITIVE CYCLES PROBLEM)
Given G as in Def. 3, find a “small” set of edges whose weights
must be changed to make G free of positive cycles.

Note that (1) the mean of a cycle gives its average edge weight,
and (2) the maximum cycle mean @is well defined sinc& has
a finite number of cycles.
Prob. 3 is our main problem in this paper. The chief difficulty

of this problem stems from the numberof positive cycles in Definition 6. The maximum cycle meak*(G) of G is defined
G, which can be exponential in. Not surprisingly, the previous as

a_pproaches and our _approach propose ways of de_a_ling_ with this A(G) = max{A(C)} ©)
difficulty. All the previous approaches can be classified into two YCeG

main groups: (1) “resolve-all” approaches and (2) “resolve-some” A cycle whose mean is equal to the maximum cycle mean is called
approaches. For simplicity, assume that each approach is imple- critical cycle.

mented in the tool mentioned in the first paragraph.

Resolve-all approaches [10, 21, 31] offer the designer an edge The maximum cycle mean @& can found inO(nm) time, e.g.,
list that removesll of the positive cycles frors. These approaches  see a list of the possible algorithms in [12]. In practice, we have
first find all the simple cycles (those that do not contain other cy- found out and reported in [11] that the Young-Tarjan-Orlin algo-
cles) using one of the algorithms in [24], and then visit and resolve rithm (YTO) [33] is one of the fastest maximum cycle mean al-
each positive cycle. The total worst-case time complexity is expo- gorithms. Its time complexity i©(nm+ n?Ign) using Fibonacci

nential O(p(n+m))). _ heaps, but these heaps are not efficient in practice. For our experi-
Resolve-some approaches [4, 8, 14, 17, 20] offer the designerments, we used an efficient implementation using binary heaps al-
an edge list that removes®meof the positive cycles fronG. The though it resulted in a higher worst-case time complexit®@fmign).

edge list is found in polynomial time. The designer is expected to L. . .
resolve the output positive cycles and rerun the tool until the consis- 3.2 _Flndlng Positive Cycles Using Cycle Means
tency is achieved. Therefore, the total worst-case time complexity in FIX

is proportional top, i.e., exponential. These approaches have the  The following result gives another characterization of inconsis-
variations as listed below. tency and easily follows from Def. 5. It enables us to use a maxi-
1. “Output” variation [4, 8, 20] finds one positive cycle@fnm) ~ mum cycle mean algorithm to resolve positive cycles.

time and just outputs it. THEOREM 2. A cyclic graph G has at least one positive cycle

2. “Backward edge” variation [17] first removes all the back- if and only ifA*(G) > O.
ward edges fron® and repeats the following two steps until
all the backward edges are eliminated: (1) temporarily add
one backward edge back @and check for a positive cycle;
(2) if a positive cycle is found, output the cycle and eliminate
the backward edge from further consideration. This variation
runs inO(bnm) time for b backward edges.

GivenG as an input, YTO computes (G) as well as returns one
of the positive cycles that is critical. Using YTO as a subroutine,
we get the algorithm FIX in Fig. 2 to restore consistenc RG]
FIX iterates untih*(G) < 0, which, by Theorem 2, implies th&
no longer has any positive cycles. At each iteration, we go over
the positive edges o€ and change one or more edge weights to
3. “Freeze” variation [14] repeats the following two steps: (1) makeC a zero cycle. We ensure that non-negative edge weights
find one positive cycle iO(nm) time; (2) “freezes” it, i.e., stay non-negative during these weight changes.
collapses it into one vertex. This variation runs @((m— Note that lines 5-7 of FIX can easily be replaced to use any other
n+ 1)nm)) time. heuristics (e.g., based on “priority” or “criticality” of the edges),



FIX(G)

1. Empty the edge lidt.

2. repeat

3. (A*(G),C) =YTO(G).

4. if (A\*(G) > 0) then

Select one or more positive edges@n

Decrease the sum of their weightswfC), i.e., zerow(C).
Add the edges th.

8.until (A*(G) <0).

9.return L.

5.
6.
7.

Figure 2: Our algorithm FIX to resolve the inconsistency in
SDJQG]. FIX uses the Young-Tarjan-Orlin algorithm (YTO) as
a subroutine to find critical cycles.

or to simulate any resolve-some approaches. However, to guaran-

tee the polynomial-time complexity of FIX, any of these heuristics

PrROOF First, by the correctness of YT@, of line 5 is a posi-
tive cycle that is critical. Thus, by Eg. 2, we must have
w(C) _ w(C)
cl = c]

4)

Second, since(e) is decreased by(C) at line 6, the weight of
C' after line 6 becomew(C') — w(C).

Now, assume thal’ was a positive cycle before line 6 af@l| <
IC|. Then, Eq. 4 implies that/(C) > w(C'), or 0> w(C') — w(C).
Thus,C' becomes non-positive after line 61

We are now ready to prove the main theorem of this paper.

THEOREM 4. The loop of lines 2-8 in FIX iterates at most nm
times.

PrRoOF During its execution, FIX resolves positive cycles of
different lengths; however, since these cycles are simple cycles

must not increase any edge weight, i.e., they must not create neW,ithout loss of generality, these lengths range from b.t@hus,

positive cycles.

The output of FIX is an edge list At each iteration of FIX, the
edges whose weights have to be changed are addedTioe goal
is to make the lengtiL| of L as small as possible. This goal may

be realized in many ways, e.g., by associating counters with edges.

3.3 Correctness of FIX

the worst-case time complexity of FIX occurs when the length of
C of line 5 monotonically increase from 1 toduring the iterations
of FIX. Now, we have to find out how many iterations are required
to resolve all the positive cycles of a given length, ka¥ < k < n.

Let N denote all the positive cycles of lengthin G. For each
edgeein G, letN(e) denote those cycles M that contaireas one
of their edges. On the one hand, by Lemma 2, resolving a critical

We first prove the following simple lemma, which states that FIX cycle inNg(€) for some edge (at line 5-6) resolves every other

does not create any new positive cycles. The proofs in the sequel

assume the correctness of YTO, e.g., see [33] for a proof.

LEmMMA 1. Atline 6 of FIX, zeroing {C) decreases the weight
of every other cycle that shares an edge with C.

PrROOF We have to show that any non-positive cycle stays as
non-positive after making/(C) zero. The proof is by contradiction.
LetC' be a non-positive cycle, i.ew(C') < 0. Suppos€ andC’
share a number of edges. By lineviC’) can change only if one

cycle inNg(e). On the other handyx < YecgNk(€). Therefore,
to resolve all the cycles iNk, each edge needs to be selected
most onceor FIX needs to iterate at mosttimes. Sincek ranges
from 1 ton, the total number of iterations of FIX is at masn [

COROLLARY 1. The time complexity of FIX on G is®nT(n,m))
where T(n, m) is the time complexity of computing the maximum cy-
cle mean of G, which is currently(@m). In particular, FIX with
YTO runs in @nm(nm+-n?Ign)) time with Fibonacci heaps and in
O(nm(nmign)) time with binary heaps.

or more of these edges have positive weights. Assume that the total

change in their weights i&w > 0. Then, ifw(C') — dw > 0 after
line 6, we must haver(C') > dw > 0, which is a contradiction. (I

We now prove that FIX is correct.

THEOREM 3. FIX makes G free of positive cycles in finite time.

PrROOF Consider an iteration of FIX. By the correctness of YTO,
C of line 5 is a positive cycle. By Lemma 1, FIX does not create
new positive cycles. Also, FIX decreases the number of positive cy-
cles at least by one. Sin€has a finite number of positive cycles,
FIX resolves all the positive cycles in finite time[]

3.4 Time Complexity Analysis of FIX

By Theorem 3, FIX takes finite time. We now show that FIX with
a slight modification at line 5 is actually a strongly polynomial-time
algorithm, i.e., its time complexity is a polynomial function of
andm. The modification is that FIX selects only one edge at line 5.
We first prove the following simple but important lemma.

LEMMA 2. Lete be the edge selected at line 5. At line 6 of FIX,
zeroing WC) makes every other positive cycled e non-positive
if IC] < ICI.

In [33], it is shown that YTO runs i®©(m+ nlgn) time on the
average (for random graphs). In [11], we validated this claim for
both random graphs and circuits. Therefore, the average time com-
plexity of FIX is at least a factor af less than its worst-case time
complexity.

4. EXPERIMENTAL RESULTS

We now present our experimental setup and test sgitel(), and
the experimental result§ 4.2).

4.1 Experimental Setup and Test Suite

We wrote all our programs in C++ and built them using the GNU
g++ compiler (version 2.95.2). We performed all the experiments
on one CPU of an 8-CPU SUN workstation computer running the
UNIX operating system (SunOS version 5.7). Each CPU was a 336
MHz UltraSPARC-II processor. This processor has a 16 KB in-
struction cache and a 16 KB data cache, both of which seem small.
The computer had 7.2 gigabytes of main memory, which was more
than enough for our experiments to fit in main memory.

Instead of reporting the total running time, we report the running
time of the part of the program that takes in a graph that is already
in the main memory and produces its output. To give an idea about
the total running time, we note that the time to read the largest
graph in our test suite and prepare it as an input took less than 10 s.



Table 1: Our test suite (the first three columns) and the experimental results for the algorithms DFS, FAS, POS-CYCLE, and FIX.
Here, n denotes the number of verticesm the number of edges|L| the length of the edge list returned (i.e., the solution quality)B
the bound on the solution quality of FAS,T the running time in seconds, andm; the number of positive edges in the input graphs of

POS-CYCLE and FIX.

Test H DFS ‘ FAS POS-CYCLE FIX
Name| n [ m L | T L | B [ T M| T ] m [ T
i01 12,752 | 36,681 6,227 | 0.01 | 3,309 | 14,656| 0.03| 35 031 35 3,694 | 0.93
i02 19,601 | 61,829 9,287 | 0.03 | 6,140 | 25,101 | 0.07 7 0.11 7 1,663 | 0.25
i03 23,136 | 66,429 8,334 | 0.04| 7,263 | 29,168| 0.09 8 0.22 8 2,147 | 0.36
04 27,507 | 74,138 10,305| 0.04 | 6,600 | 32,266 | 0.11 8 0.21 8 1,284 | 0.33
i05 29,347 | 98,793 4,871 0.02 | 5,350 | 13,730 0.05 2 0.05 2 196 0.08
i06 32,498 | 93,493 | 13,905| 0.05| 7,566 | 41,235| 0.15 11 0.45 11 3,745 | 0.95
i07 45,926 | 127,774| 20,586 | 0.08 | 11,946 | 54,211 | 0.22 | 49 247 | 48 9,944 | 7.54
i08 51,309 | 154,644 || 29,271 | 0.10 | 13,433 | 67,220 | 0.26 7 0.58 7 1,553 | 0.66
i09 53,395| 161,430 || 20,572 | 0.09 | 16,104 | 69,834| 0.25| 70 424 69 | 10,569 | 11.77
i10 69,429 | 223,090 || 37,240 | 0.14 | 23,342 | 97,826 | 0.40 | 33 3.92 | 33 8,002 | 6.54
i11 70,558 | 199,694 || 25,693 | 0.13 | 20,455 | 85,668 | 0.38 | 35 331| 35 6,256 | 5.95
i12 71,076 | 241,135|| 23,338 | 0.15 | 23,524 | 107,054 | 0.44 6 1.10 6 3,530 | 1.01
i13 84,199 | 257,788 || 25,022 | 0.16 | 21,885 | 114,642 | 0.51 8 1.03 8 4,707 [ 1.77
i14 | 154,605 | 394,497 || 57,519 | 0.33 | 34,102 | 170,542 | 0.98 3 1.52 3 5331 172
i15 | 161,570 | 529,562 || 52,033 | 0.37 | 40,915 | 237,486 | 1.18 | 115 | 33.66 | 115 | 30,538 | 77.51
i16 | 183,484 | 589,253 [ 82,799 | 0.42 | 54,069 | 260,718 | 1.41 | 41 [ 12.84| 41 | 17,525]| 18.17
i17 | 185,495 671,174 || 63,103 | 0.46 | 55,961 | 302,893 | 1.55 3 1.93 3 2,387 | 213
i18 | 210,613 | 618,020 || 64,988 | 0.48 | 42,340 | 257,727 | 1.43 12 3.44 12 6,060 | 4.66

Our test suite is presented in Table 1 (the first three columns).

edge list and the running tine(in seconds). In addition, for FAS,

We generated the graphs i01-i18 in our test suite from the ISPD98 we also give the worst-case bouBdon L, and for POS-CYCLE
circuit benchmark suite [2]. This test suite contains newer and far and FIX, we also give (in FIX's columns only) the numbeg of

larger circuits than those in the ACM/SIGDA (or MCNC) bench-

positive edges in the input graph.

marks. These circuits are not constraint graphs but large enough The results in Table 1 indicate that (I)[FAS| is almost half

to give an idea about the running time of our algorithm in practice.
The circuits in the ISPD98 had the direction information for their

ILIDFS; (2) the bound orlL[FAS] is not tight; (3)|L[FIX]| is
slightly shorter thariL[POS— CYCLHE|; (4) |[L[POS— CYCLE]|

nets. We used this information to generate directed edges and conand |L[FIX]| are three orders of magnitude (1300x) shorter than

vert the circuits to the directed graphs in our test suite. This way,

IL[FAS|; and (5) FIX is the slowest algorithm although its running

the total number of edges in our graphs equaled approximately 2.8time is in a few seconds.

times the total number of nets in the original circuits.

We chose the edge weights uniform-randomly out of the interval
[-1, -3000]. To generate positive cycles, we computed the maxi-
mum cycle mean of the graph, multiplied it by 4, and added it to
every edge weight. The colunmy. in Table 1 shows the total num-
ber of positive edges resulted.

4.2 Experimental Results and Discussion

We implemented four algorithms to compare: (1) FIX, (2) the
depth-first search algorithm (DFS) [9], (3) an approximation algo-
rithm for the feedback arc set problem (FAS) [15], and (4) POS-
CYCLE, which is explained below.

POS-CYCLE is an algorithm similar to FIX in that both repeat
the following two steps: (1) find a cycle and (2) make it a zero
cycle. For both algorithms, the cycle at step 1 is not arbitrary: FIX
finds a critical cycle, whereas POS-CYCLE finds a positive cycle,

From these observations, we conclude that DFS and FAS should
not be used at all for over-constraint resolution because their solu-
tion quality is not satisfactory. After eliminating them, the choice
is between POS-CYCLE and FIX. In terms of the solution quality,
FIX is the best algorithm though the difference is insignificant: ex-
cept for i07 and i09, both algorithms return the safnje for i07
and i09,|L[FIX]] is one less tha{L[POS-CYCLH].

In terms of the running time, POS-CYCLE is almost 2x faster
than FIX although the running times of all four algorithms are al-
most negligible compared to the time (around 10s) to read the input
graph. For only i15 and i16, POS-CYCLE and FIX take more time
than the time it takes to read the input.

In addition to the running time, we should also compare POS-
CYCLE and FIX in terms of their worst-case time complexity. As
proved in this paper, FIX runs in strongly polynomial time, whereas
POS-CYCLE can run in exponential time [1]. Note that we have

hence, its name. To find a cycle, FIX uses YTO, one of the fastest not proved the worst-case time complexity of POS-CYCLE in this
maximum cycle mean algorithms [11], whereas POS-CYCLE uses paper; instead, we have extrapolated it from those of similar al-

Tarjan’s algorithm, one of the fastest positive (or negative) cycle
detection algorithms [6].

We compared all the implemented algorithms in terms of the run-
ning time and the solution quality. The latter refers to the length of
the edge list returned. For both criteria, the smaller, the better.

The length of the edge list returned by any algorithm is trivially
bounded bym. For DFS,|L| gives the number of the back edges

gorithms for the minimum cost flow problem [1]. Interestingly,
although we developed FIX independently, we later realized that
similar algorithms had been developed to obtain the first strongly
polynomial time algorithm for the minimum cost flow problem [1].

5. CONCLUSIONS

(those edges that create cycles, as defined in [9]) in the input graph.  We have defined the problem of ensuring the consistency of a

Among the algorithms, only FAS has a provably worst-case solu-
tion quality: the lengtiB of the edge list returned by FAS is at most
B(m,n) =m/2—n/6 [15].

system of difference constraints in terms of the problem of remov-
ing the positive cycles from the corresponding constraint graph. We
have reviewed the previous approaches to these problems and noted

The experimental results are presented in Table 1. For each algo-that they result in exponential time algorithms. We have then pre-

rithm, we give the length (in the number of edges) of the returned

sented our approach and algorithm and showed that the algorithm is



correct and runs in strongly polynomial time. Finally, we have dis-

cussed our experiments done to compare our algorithm with three
other algorithms on very large circuit benchmarks. The experimen-

tal results show that our algorithm is very efficient in practice, and
its solution quality is the best.
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