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ABSTRACT
A system of binary linear constraints or difference constraints (SDC)
contains a set of variables that are constrained by a set of unary or
binary linear inequalities. In such diverse applications as schedul-
ing, interface timing verification, real-time systems, multimedia
systems, layout compaction, and constraint satisfaction, SDCs have
successfully been used to model systems of both temporal and spa-
tial constraints. Formally, SDCs are modeled by weighted, directed
(constraint) graphs. The consistency of an SDC means that there is
at least one instantiation of its variables that satisfies all its con-
straints. It is well known that the absence of positive cycles in a
graph implies the consistency of the corresponding SDC, so the
consistency can be decided in strongly polynomial time. If a SDC
is found to be inconsistent, it has to be repaired to make it con-
sistent. This task is equivalent to removing positive cycles from
the corresponding graph. All the previous algorithms for this task
take time proportional to the number of positive cycles in the graph,
which can grow exponentially. In this paper, we propose a strongly
polynomial-time algorithm, i.e., an algorithm whose time complex-
ity is polynomial in the size of the graph. Our algorithm takes in a
graph and returns a list of edges and the changes in their weights to
remove all the positive cycles from the graph. We experimentally
quantify the length of the edge list and the running time of the al-
gorithm on large benchmark graphs. We show that both are very
small, so our algorithm is practical.

Keywords
Behavioral synthesis, high-level synthesis, scheduling, timing con-
straints, rate analysis, constraint satisfaction.

1. INTRODUCTION
A special case of the general linear-programming problem is the

system of difference constraints (SDC). In such a system, each con-
straint is a binary linear inequality defined over two variables. As
such, this type of a system is mapped to a weighted, directed graph

(called a constraint graph) where vertices correspond to the vari-
ables and the edges correspond to the constraints. A solution to a
given SDC means finding an instantiation of the variables that sat-
isfies all the constraints. If at least one solution exists, the SDC is
consistent; otherwise, it is inconsistent. If the SDC is inconsistent,
it is also said to be over-constrained.

Once the constraint graph for an SDC is constructed in a certain
way, it can be shown that the inconsistency of an SDC is tied to
the presence of positive cycles in the graph. Thus, a simple single-
source longest-paths algorithm is all that it takes to verify the in-
consistency of the SDC. However, if a solution is needed, the SDC
has to be repaired, or the inconsistency has to be resolved. Sim-
ply, converting every positive cycle in the graph to a zero cycle will
make the SDC consistent. One way or another, most of the ap-
proaches in the literature are based on this intuition. The problem
here is, of course, that the graph can have an exponential num-
ber of positive cycles, resulting in exponential time algorithms to
gain consistency. The main contribution of this paper is to propose
an intelligent algorithm that not only restores consistency correctly
(by outputting a list of edges whose weights have to be changed)
but also performs this task in time that is a polynomial function of
the number of vertices and the number of edges in the input graph,
resulting in a strongly polynomial-time algorithm.

The reason why we should care about such an algorithm is the
wide applicability of SDCs. Below we list only a few applications
without being exhaustive:

� scheduling, e.g., operation scheduling in behavioral synthe-
sis [20, 23, 28, 32], software scheduling [8, 22], job / task
scheduling [9], or data-flow scheduling [31];

� interface timing verification [3, 4];

� rate analysis [10, 25];

� real-time systems, e.g., real-time scheduling [27], run-time
monitoring timing constraints [29], or safety analysis of real-
time systems [18];

� modeling most of the temporal, spatial, and quality-of-service
requirements for collaborative multimedia systems [5];

� layout compaction [14, 17, 19, 21, 26, 30]; and

� constraint satisfaction problems [13].

Note that the constraints in an SDC can be used to model tem-
poral, spatial, and possibly other kinds of constraints as long as
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Figure 1: Modeling a minimum constraints Xj �Xi � l with
a forward edge and a maximum constraintu� Xj �Xi with a
backward edges.

they result in unary or binary linear inequalities. For example, for
scheduling, all the constraints are timing constraints (derived from
data / control flow ordering and user constraints) whereas for lay-
out compaction, all the constraints are spatial constraints (derived
from technology design rules and user constraints). Our interest in
this paper is on timing constraints.

2. PROBLEM FORMULATION
We now present the formal definition of an SDC (x 2.1), the

modeling it using a constraint graph (x 2.2), the correspondence
between the inconsistency of the system and the presence of pos-
itive cycles in the constraint graph (x 2.3), the problem of resolv-
ing inconsistency (x 2.4), and a list of previous approaches to this
problem (x 2.4). The section is largely based on the references
mentioned in the introduction section.

2.1 Systems of Difference Constraints

Definition 1. A system of difference constraints (SDC)consists
of n unknowns (or variables)X1;X2; : : : ;Xn andm difference con-
straints, in which each difference constraint is abinary linear in-
equalityof the (canonical) formXj �Xi � bk, where 1� i; j � n,
1� k�m, andbk are constants.

Definition 2. Given an SDC withn variables andm constraints,
ann-tuplex = (x1;x2; : : : ;xn) is a (feasible) solutionif the assign-
ment (or instantiation)fX1 = x1;X2 = x2; : : : ;Xn = xng satisfiesall
the constraints. Each constraint that is not satisfied is said to bevi-
olated. The system isconsistentif at least one solution exists, and
is inconsistentotherwise.

2.2 Modeling Using Constraint Graphs

Definition 3. Given an SDC withn variables andm constraints,
the correspondingconstraint graphis a weighted, directed graph
G= (V;E;w) with jVj= (n+1) vertices,jEj= (m+n) edges, and
an edge weight functionw, in whichV = fX0;X1; : : : ;Xng andE =
f(Xi ;Xj) : w(Xi ;Xj)=bkg[f(X0;Xj) : w(X0;Xj )= 0g for 1� i; j �
n. Every constraint of the formXj �Xi � bk is converted to an edge
(Xi ;Xj ) with weightw(Xi ;Xj) = bk.

Note thatG contains a vertex for each variable and an extra ver-
tex X0, which is the reference or source vertex and is connected to
every other vertex via zero(-weighted) edges. (An edge or a cycle
is positive, negative, or zero based on the sign of its weight). For
simplicity, we assign zero toX0 in any solution.

We will use the notationsSDC[G] andG[SDC] to denote the SDC
corresponding toG and vice versa, respectively. An SDC as mod-
eled by a constraint graph is general enough to model any unary

and binary linear constraints, which can contain either� or�. That
is, any such constraint can be converted to the canonical form, as
shown in the following examples for two variablesXi andXj :

� Xj � 5, Xj �X0 � 5;

� Xj � 5, X0�Xj ��5;

� Xj �Xi � 5, Xi �Xj ��5; and

� Xj �Xi = 5, Xj �Xi � 5 andXi �Xj ��5.

Therefore, without loss of generality, we will consider binary con-
straints in the canonical form.

Definition 4. Consider an SDC andG[SDC]. A constraint of the
form Xj �Xi � bk is called aminimum constraintas it provides a
lower bound bk for the differenceXj �Xi . The corresponding edge
(Xi ;Xj) with weightbk is called aforward edge. A constraint of the
form Xj �Xi � bk is called amaximum constraintas it provides a
upper bound bk for the differenceXj �Xi. This constraint is equiv-
alent toXi �Xj � �bk in the canonical form. The corresponding
edge(Xj ;Xi) with weight�bk is called abackward edge.

Fig. 1 depicts modeling binary constraints with forward and back-
ward edges.

2.3 Characterizing Consistency Using Positive
Cycles

THEOREM 1. (e.g., [9]) Consider an SDC and G[SDC]= (V;E;w).
Then, G is consistent if and only if G contains no positive cycles.
Furthermore, if G is consistent, then

x= (0;d(X0;X1); : : : ;d(X0;Xn)) (1)

is a solution where d(X0;Xi) is the length of the longest path from
X0 to Xi for 1� i � n. This solution is also the smallest one in that
it minimizes Xi �X0 for each Xi.

If we reverse every edge inG and negate their weights, then the
consistency ofSDC[G] is guaranteed in the absence of any nega-
tive cycles [9]. Thus, without loss of generality, we will deal with
positive cycles.

To detect the presence of positive cycles and find a solution in
their absence, we can use a single-source longest-path algorithm. In
theory, the fastest time bound for such algorithms isO(nm), which
is achieved by the well-known Bellman-Ford algorithm. In prac-
tice, faster algorithms exist [7]. Especially, if it is more likely that
G will have a positive cycle, even faster algorithms, e.g., Tarjan’s
algorithm, exist [6]. One algorithm that is not reported in [6, 7] is
the Liao-Wong algorithm [21]. Its time complexity isO((b+1)m)
whereb = O(n) is the number of the backward edges inG. As
such, this algorithm can be more suitable ifb is small.

Now that we know how to find a solution whenSDC[G] is con-
sistent, we next focus on resolving inconsistency whenSDC[G] is
inconsistent.

2.4 Dealing With Inconsistency and Previous
Work

To simplify our discussion, we assume the following scenario.
Suppose a designer has a problem in one of the applications men-
tioned in the introduction. S/he maps the problem to an SDC, and
uses a software tool to check its consistency. The tool internally
converts the input SDC to a constraint graph and checks for posi-
tive cycles to decide the consistency (by Theorem 1). If no positive



cycles are found, the tool reports “success”. If the graph has posi-
tive cycles, the tool reports “failure” but also tries to remove them
by either (1) changing the topology of the graph, or (2) changing
the edge weights, or (3) both. This paper focuses on (2) because it
seems “easier”. Thus, we assume that the tool will report a list of
edges together with the needed weight changes for each edge.

By changing the edge weights, the positive cycles can be con-
verted to either (1) zero cycle, or (2) negative cycles. Without loss
of generality, we have chosen (1). Since the designer will be more
satisfied if the edge list is minimized, we want to solve the follow-
ing problem.

PROBLEM 1. (POSITIVE CYCLES PROBLEM) Given G as in
Def. 3, find the minimum number edges whose weights must be
changed to make G free of positive cycles.

The solution of this problem depends on the solution of a more
specialized problem called the feedback arc set (FAS) problem.

PROBLEM 2. (FEEDBACK ARC SET PROBLEM) Given an un-
weighted, directed graph G, find the minimum number of edges (or
arcs) whose removal makes G acyclic.

Since the FAS problem is NP-hard [16], Prob. 1, being its gen-
eralization, is also NP-hard. Due to this unfortunate difficulty, we
relax Prob. 1 and opt for a best-effort approach.

PROBLEM 3. (BEST-EFFORT POSITIVE CYCLES PROBLEM)
Given G as in Def. 3, find a “small” set of edges whose weights
must be changed to make G free of positive cycles.

Prob. 3 is our main problem in this paper. The chief difficulty
of this problem stems from the numberp of positive cycles in
G, which can be exponential inn. Not surprisingly, the previous
approaches and our approach propose ways of dealing with this
difficulty. All the previous approaches can be classified into two
main groups: (1) “resolve-all” approaches and (2) “resolve-some”
approaches. For simplicity, assume that each approach is imple-
mented in the tool mentioned in the first paragraph.

Resolve-all approaches [10, 21, 31] offer the designer an edge
list that removesall of the positive cycles fromG. These approaches
first find all the simple cycles (those that do not contain other cy-
cles) using one of the algorithms in [24], and then visit and resolve
each positive cycle. The total worst-case time complexity is expo-
nential (O(p(n+m))).

Resolve-some approaches [4, 8, 14, 17, 20] offer the designer
an edge list that removessomeof the positive cycles fromG. The
edge list is found in polynomial time. The designer is expected to
resolve the output positive cycles and rerun the tool until the consis-
tency is achieved. Therefore, the total worst-case time complexity
is proportional top, i.e., exponential. These approaches have the
variations as listed below.

1. “Output” variation [4, 8, 20] finds one positive cycle inO(nm)
time and just outputs it.

2. “Backward edge” variation [17] first removes all the back-
ward edges fromG and repeats the following two steps until
all the backward edges are eliminated: (1) temporarily add
one backward edge back toG and check for a positive cycle;
(2) if a positive cycle is found, output the cycle and eliminate
the backward edge from further consideration. This variation
runs inO(bnm) time for b backward edges.

3. “Freeze” variation [14] repeats the following two steps: (1)
find one positive cycle inO(nm) time; (2) “freezes” it, i.e.,
collapses it into one vertex. This variation runs in (O((m�
n+1)nm)) time.

Our approach can also be considered as a resolve-all approach;
however, we do not enumerate every positive cycle inG. In the
previous resolve-all approaches, the positive cycles to resolve are
selected arbitrarily. In the next section, we show that making the se-
lection in a certain way implicitly resolves many other positive cy-
cles such that the total worst-case time complexity becomes strongly
polynomial in the size ofG.

3. OUR ALGORITHM: FIX
We now present the cycle means (x 3.1), the graph property that

our algorithm is based on, the characterization of the presence of
positive cycles using cycle means (x 3.2), and our algorithm (x 3.2)
together with its correctness (x 3.3) and running time proofs (x 3.4).
This section contains the main contribution of this paper. Without
loss of generality, we assume thatG is cyclic.

3.1 Cycle Means

Definition 5. The (cycle) meanλ(C) of a cycleC in G is defined
as

λ(C) =
w(C)

jCj
=

∑e2C w(e)
jCj

; (2)

wherejCj is the length ofC, i.e., the number of edges on it.

Note that (1) the mean of a cycle gives its average edge weight,
and (2) the maximum cycle mean inG is well defined sinceG has
a finite number of cycles.

Definition 6. The maximum cycle meanλ�(G) of G is defined
as

λ�(G) = max
8C2G

fλ(C)g (3)

A cycle whose mean is equal to the maximum cycle mean is called
a critical cycle.

The maximum cycle mean ofG can found inO(nm) time, e.g.,
see a list of the possible algorithms in [12]. In practice, we have
found out and reported in [11] that the Young-Tarjan-Orlin algo-
rithm (YTO) [33] is one of the fastest maximum cycle mean al-
gorithms. Its time complexity isO(nm+ n2 lgn) using Fibonacci
heaps, but these heaps are not efficient in practice. For our experi-
ments, we used an efficient implementation using binary heaps al-
though it resulted in a higher worst-case time complexity ofO(nmlgn).

3.2 Finding Positive Cycles Using Cycle Means
in FIX

The following result gives another characterization of inconsis-
tency and easily follows from Def. 5. It enables us to use a maxi-
mum cycle mean algorithm to resolve positive cycles.

THEOREM 2. A cyclic graph G has at least one positive cycle
if and only ifλ�(G)> 0.

GivenG as an input, YTO computesλ�(G) as well as returns one
of the positive cycles that is critical. Using YTO as a subroutine,
we get the algorithm FIX in Fig. 2 to restore consistency toSDC[G].
FIX iterates untilλ�(G)� 0, which, by Theorem 2, implies thatG
no longer has any positive cycles. At each iteration, we go over
the positive edges ofC and change one or more edge weights to
makeC a zero cycle. We ensure that non-negative edge weights
stay non-negative during these weight changes.

Note that lines 5-7 of FIX can easily be replaced to use any other
heuristics (e.g., based on “priority” or “criticality” of the edges),



FIX(G)
1. Empty the edge listL.
2. repeat
3. (λ�(G);C) = YTO(G).
4. if (λ�(G)> 0) then
5. Select one or more positive edges onC.
6. Decrease the sum of their weights byw(C), i.e., zerow(C).
7. Add the edges toL.
8. until (λ�(G)� 0).
9. return L.

Figure 2: Our algorithm FIX to resolve the inconsistency in
SDC[G]. FIX uses the Young-Tarjan-Orlin algorithm (YTO) as
a subroutine to find critical cycles.

or to simulate any resolve-some approaches. However, to guaran-
tee the polynomial-time complexity of FIX, any of these heuristics
must not increase any edge weight, i.e., they must not create new
positive cycles.

The output of FIX is an edge listL. At each iteration of FIX, the
edges whose weights have to be changed are added toL. The goal
is to make the lengthjLj of L as small as possible. This goal may
be realized in many ways, e.g., by associating counters with edges.

3.3 Correctness of FIX
We first prove the following simple lemma, which states that FIX

does not create any new positive cycles. The proofs in the sequel
assume the correctness of YTO, e.g., see [33] for a proof.

LEMMA 1. At line 6 of FIX, zeroing w(C) decreases the weight
of every other cycle that shares an edge with C.

PROOF. We have to show that any non-positive cycle stays as
non-positive after makingw(C) zero. The proof is by contradiction.
Let C0 be a non-positive cycle, i.e.,w(C0) � 0. SupposeC andC0

share a number of edges. By line 5,w(C0) can change only if one
or more of these edges have positive weights. Assume that the total
change in their weights isδw > 0. Then, ifw(C0)� δw > 0 after
line 6, we must havew(C0)> δw> 0, which is a contradiction.

We now prove that FIX is correct.

THEOREM 3. FIX makes G free of positive cycles in finite time.

PROOF. Consider an iteration of FIX. By the correctness of YTO,
C of line 5 is a positive cycle. By Lemma 1, FIX does not create
new positive cycles. Also, FIX decreases the number of positive cy-
cles at least by one. SinceG has a finite number of positive cycles,
FIX resolves all the positive cycles in finite time.

3.4 Time Complexity Analysis of FIX
By Theorem 3, FIX takes finite time. We now show that FIX with

a slight modification at line 5 is actually a strongly polynomial-time
algorithm, i.e., its time complexity is a polynomial function ofn
andm. The modification is that FIX selects only one edge at line 5.
We first prove the following simple but important lemma.

LEMMA 2. Let e be the edge selected at line 5. At line 6 of FIX,
zeroing w(C) makes every other positive cycle C0 on e non-positive
if jC0j � jCj.

PROOF. First, by the correctness of YTO,C of line 5 is a posi-
tive cycle that is critical. Thus, by Eq. 2, we must have

w(C)

jCj
�

w(C0)

jC0j
: (4)

Second, sincew(e) is decreased byw(C) at line 6, the weight of
C0 after line 6 becomesw(C0)�w(C).

Now, assume thatC0 was a positive cycle before line 6 andjC0j �
jCj. Then, Eq. 4 implies thatw(C)� w(C0), or 0� w(C0)�w(C).
Thus,C0 becomes non-positive after line 6.

We are now ready to prove the main theorem of this paper.

THEOREM 4. The loop of lines 2-8 in FIX iterates at most nm
times.

PROOF. During its execution, FIX resolves positive cycles of
different lengths; however, since these cycles are simple cycles
without loss of generality, these lengths range from 1 ton. Thus,
the worst-case time complexity of FIX occurs when the length of
C of line 5 monotonically increase from 1 ton during the iterations
of FIX. Now, we have to find out how many iterations are required
to resolve all the positive cycles of a given length, sayk, 1� k� n.

Let Nk denote all the positive cycles of lengthk in G. For each
edgee in G, letNk(e) denote those cycles inNk that containeas one
of their edges. On the one hand, by Lemma 2, resolving a critical
cycle in Nk(e) for some edgee (at line 5-6) resolves every other
cycle in Nk(e). On the other hand,Nk � ∑e2GNk(e). Therefore,
to resolve all the cycles inNk, each edgee needs to be selectedat
most once, or FIX needs to iterate at mostm times. Sincek ranges
from 1 ton, the total number of iterations of FIX is at mostnm.

COROLLARY 1. The time complexity of FIX on G is O(nmT(n;m))
where T(n;m) is the time complexity of computing the maximum cy-
cle mean of G, which is currently O(nm). In particular, FIX with
YTO runs in O(nm(nm+n2 lgn)) time with Fibonacci heaps and in
O(nm(nmlgn)) time with binary heaps.

In [33], it is shown that YTO runs inO(m+nlgn) time on the
average (for random graphs). In [11], we validated this claim for
both random graphs and circuits. Therefore, the average time com-
plexity of FIX is at least a factor ofn less than its worst-case time
complexity.

4. EXPERIMENTAL RESULTS
We now present our experimental setup and test suite (x 4.1), and

the experimental results (x 4.2).

4.1 Experimental Setup and Test Suite
We wrote all our programs in C++ and built them using the GNU

g++ compiler (version 2.95.2). We performed all the experiments
on one CPU of an 8-CPU SUN workstation computer running the
UNIX operating system (SunOS version 5.7). Each CPU was a 336
MHz UltraSPARC-II processor. This processor has a 16 KB in-
struction cache and a 16 KB data cache, both of which seem small.
The computer had 7.2 gigabytes of main memory, which was more
than enough for our experiments to fit in main memory.

Instead of reporting the total running time, we report the running
time of the part of the program that takes in a graph that is already
in the main memory and produces its output. To give an idea about
the total running time, we note that the time to read the largest
graph in our test suite and prepare it as an input took less than 10 s.



Table 1: Our test suite (the first three columns) and the experimental results for the algorithms DFS, FAS, POS-CYCLE, and FIX.
Here, n denotes the number of vertices,m the number of edges,jLj the length of the edge list returned (i.e., the solution quality),B
the bound on the solution quality of FAS,T the running time in seconds, andm+ the number of positive edges in the input graphs of
POS-CYCLE and FIX.

Test DFS FAS POS-CYCLE FIX
Name n m jLj T jLj B T jLj T jLj m+ T

i01 12,752 36,681 6,227 0.01 3,309 14,656 0.03 35 0.31 35 3,694 0.93
i02 19,601 61,829 9,287 0.03 6,140 25,101 0.07 7 0.11 7 1,663 0.25
i03 23,136 66,429 8,334 0.04 7,263 29,168 0.09 8 0.22 8 2,147 0.36
i04 27,507 74,138 10,305 0.04 6,600 32,266 0.11 8 0.21 8 1,284 0.33
i05 29,347 98,793 4,871 0.02 5,350 13,730 0.05 2 0.05 2 196 0.08
i06 32,498 93,493 13,905 0.05 7,566 41,235 0.15 11 0.45 11 3,745 0.95
i07 45,926 127,774 20,586 0.08 11,946 54,211 0.22 49 2.47 48 9,944 7.54
i08 51,309 154,644 29,271 0.10 13,433 67,220 0.26 7 0.58 7 1,553 0.66
i09 53,395 161,430 20,572 0.09 16,104 69,834 0.25 70 4.24 69 10,569 11.77
i10 69,429 223,090 37,240 0.14 23,342 97,826 0.40 33 3.92 33 8,002 6.54
i11 70,558 199,694 25,693 0.13 20,455 85,668 0.38 35 3.31 35 6,256 5.95
i12 71,076 241,135 23,338 0.15 23,524 107,054 0.44 6 1.10 6 3,530 1.01
i13 84,199 257,788 25,022 0.16 21,885 114,642 0.51 8 1.03 8 4,707 1.77
i14 154,605 394,497 57,519 0.33 34,102 170,542 0.98 3 1.52 3 5,331 1.72
i15 161,570 529,562 52,033 0.37 40,915 237,486 1.18 115 33.66 115 30,538 77.51
i16 183,484 589,253 82,799 0.42 54,069 260,718 1.41 41 12.84 41 17,525 18.17
i17 185,495 671,174 63,103 0.46 55,961 302,893 1.55 3 1.93 3 2,387 2.13
i18 210,613 618,020 64,988 0.48 42,340 257,727 1.43 12 3.44 12 6,060 4.66

Our test suite is presented in Table 1 (the first three columns).
We generated the graphs i01-i18 in our test suite from the ISPD98
circuit benchmark suite [2]. This test suite contains newer and far
larger circuits than those in the ACM/SIGDA (or MCNC) bench-
marks. These circuits are not constraint graphs but large enough
to give an idea about the running time of our algorithm in practice.
The circuits in the ISPD98 had the direction information for their
nets. We used this information to generate directed edges and con-
vert the circuits to the directed graphs in our test suite. This way,
the total number of edges in our graphs equaled approximately 2.8
times the total number of nets in the original circuits.

We chose the edge weights uniform-randomly out of the interval
[-1, -3000]. To generate positive cycles, we computed the maxi-
mum cycle mean of the graph, multiplied it by 4, and added it to
every edge weight. The columnm+ in Table 1 shows the total num-
ber of positive edges resulted.

4.2 Experimental Results and Discussion
We implemented four algorithms to compare: (1) FIX, (2) the

depth-first search algorithm (DFS) [9], (3) an approximation algo-
rithm for the feedback arc set problem (FAS) [15], and (4) POS-
CYCLE, which is explained below.

POS-CYCLE is an algorithm similar to FIX in that both repeat
the following two steps: (1) find a cycle and (2) make it a zero
cycle. For both algorithms, the cycle at step 1 is not arbitrary: FIX
finds a critical cycle, whereas POS-CYCLE finds a positive cycle,
hence, its name. To find a cycle, FIX uses YTO, one of the fastest
maximum cycle mean algorithms [11], whereas POS-CYCLE uses
Tarjan’s algorithm, one of the fastest positive (or negative) cycle
detection algorithms [6].

We compared all the implemented algorithms in terms of the run-
ning time and the solution quality. The latter refers to the length of
the edge list returned. For both criteria, the smaller, the better.

The length of the edge list returned by any algorithm is trivially
bounded bym. For DFS,jLj gives the number of the back edges
(those edges that create cycles, as defined in [9]) in the input graph.
Among the algorithms, only FAS has a provably worst-case solu-
tion quality: the lengthB of the edge list returned by FAS is at most
B(m;n) = m=2�n=6 [15].

The experimental results are presented in Table 1. For each algo-
rithm, we give the lengthL (in the number of edges) of the returned

edge list and the running timeT (in seconds). In addition, for FAS,
we also give the worst-case boundB on L, and for POS-CYCLE
and FIX, we also give (in FIX’s columns only) the numberm+ of
positive edges in the input graph.

The results in Table 1 indicate that (1)jL[FAS]j is almost half
jL[DFS]j; (2) the bound onjL[FAS]j is not tight; (3) jL[FIX ]j is
slightly shorter thanjL[POS�CYCLE]j; (4) jL[POS�CYCLE]j
and jL[FIX ]j are three orders of magnitude (1300x) shorter than
jL[FAS]j; and (5) FIX is the slowest algorithm although its running
time is in a few seconds.

From these observations, we conclude that DFS and FAS should
not be used at all for over-constraint resolution because their solu-
tion quality is not satisfactory. After eliminating them, the choice
is between POS-CYCLE and FIX. In terms of the solution quality,
FIX is the best algorithm though the difference is insignificant: ex-
cept for i07 and i09, both algorithms return the samejLj; for i07
and i09,jL[FIX ]j is one less thanjL[POS�CYCLE]j.

In terms of the running time, POS-CYCLE is almost 2x faster
than FIX although the running times of all four algorithms are al-
most negligible compared to the time (around 10s) to read the input
graph. For only i15 and i16, POS-CYCLE and FIX take more time
than the time it takes to read the input.

In addition to the running time, we should also compare POS-
CYCLE and FIX in terms of their worst-case time complexity. As
proved in this paper, FIX runs in strongly polynomial time, whereas
POS-CYCLE can run in exponential time [1]. Note that we have
not proved the worst-case time complexity of POS-CYCLE in this
paper; instead, we have extrapolated it from those of similar al-
gorithms for the minimum cost flow problem [1]. Interestingly,
although we developed FIX independently, we later realized that
similar algorithms had been developed to obtain the first strongly
polynomial time algorithm for the minimum cost flow problem [1].

5. CONCLUSIONS
We have defined the problem of ensuring the consistency of a

system of difference constraints in terms of the problem of remov-
ing the positive cycles from the corresponding constraint graph. We
have reviewed the previous approaches to these problems and noted
that they result in exponential time algorithms. We have then pre-
sented our approach and algorithm and showed that the algorithm is



correct and runs in strongly polynomial time. Finally, we have dis-
cussed our experiments done to compare our algorithm with three
other algorithms on very large circuit benchmarks. The experimen-
tal results show that our algorithm is very efficient in practice, and
its solution quality is the best.
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