

Abstract

Design for performance-optimization of programmable, semi-
custom SoCs requires the ability to model and optimize the
behavior of the system as a whole. Neither the hardware-testbench
style nor the software-benchmark style is adequate to capture
completely the design interactions required in concurrent software-
on-hardware systems. We use a formal relationship between a
computer system design content and its external context to motivate
the need to consider a more effective modeling framework to which
concurrent software-on-hardware computer systems are designed.

Keywords

Hardware/Software Codesign, Modeling, Simulation, Concurrent
Computation, Digital System Design

1. Introduction

Next generation SoCs will be semi-custom platform designs that
must be both programmable and performance-effective across a
range of anticipated applications. The platform will include
concurrency in the software and hardware and the software
scheduling will involve both time and data-multiplexed resource
sharing. These designs will only be as good as the model of the

context

 to which they are being designed and evaluated.
Traditionally, two dominant means of design evaluation exist.

The first is a hardware-testbench style used for both pure hardware
and reactive systems in which inputs are presented at physically
timed intervals and outputs are evaluated for coupled logical and
physical correctness. The second is a software-benchmark style in
which a set of representative programs — a benchmark suite —
executes on a physical platform or its model. By measuring the
start-to-finish execution of the benchmark suite, relative cross-
platform performance is determined.

Neither the hardware-testbench style nor the software-benchmark
style is adequate to capture completely the design interactions
required in concurrent software-on-hardware systems. The logical
and physical sequencing of hardware-testbench systems is too
tightly coupled in both the model of the design and its external
context. The software-benchmark style does not allow the system
formed by software executing on hardware to be evaluated for
sustained interaction with another system.

The downfall of these approaches, when used for evaluating
concurrent systems, is that they model and analyze portions of a
system in isolation. SoC designs will consist of a programmable
computer system interacting with another, where each system could
contain concurrent software and hardware — for the SoC as a

whole, as well as for portions of its design. At high levels of design,
one computer system can be considered the design, and the other
can be considered its

context

 — our term for a view beyond
testbenches and benchmarks. Modeling the overall performance of
these systems requires consideration of a system’s ability not
merely to react to, but to

interact with

 its context. Modeling must be
based on a holistic view that captures effective interactions between
partitions, not on isolation and reaction.

Novel ways of conceptualizing the design space of
programmable, concurrent digital systems are required at high
levels of design — beyond a box-style component. For instance, in
SoCs, design elements are more sharable than for other multi-
computer designs — the penalty for interconnect is significantly
less between portions of a chip as compared to portions of designs
interconnected between chips. This affects not only the way a
system is designed and evaluated, but also partitioned. A design’s
environment is strongly related to its basis for partitioning; reactive
approaches define partitions

a priori

.
System models that formally advocate one or more models of

computation while only indirectly accommodating other key design
concepts that designers require are inadequate. Key design
concepts, such as shared state and layering, must be acknowledged
as part of the performance design space that designers manipulate.
Such concepts lead to a larger view of how systems are partitioned,
optimized, and extended by additional programming or physical
hardware. We should not be looking for ways to restrict the SoC
design space. With this paper, we illustrate the restrictions when
only hardware-testbench or software-benchmark styles are used,
motivating the need to capture the interactions between concurrent
software-on-hardware systems and their context.

2. Modeling Computer Systems

We begin by summarizing our formal foundation [1] which
models systems using logical and physical sequencing of events.
The definition of an event model as a pair of data and time values is
not new and the notions that digital systems include both logical
and physical sequencing [8] as well as partially and totally ordered
sequences [9] are both well established. We adopt the nomenclature
in [12] referring to a time value in an event tuple as a tag. We
observe that the relationship between the logical and physical
events of a system model imply the type of design. We then
motivate the need to consider a programmable concurrent system as
a layered model of logical-on-physical sequencing and show how
interactions among concurrent elements must be captured.

An

event

 in a system model has a tag and a value e = (t, v). The

value

 represents an operand v

∈

V, the set of all operands in the
system, which is the result of a calculation. The

tag

 indicates a
point in a sequence of events in which the operand is calculated.

Threads are an ordered set of N events,
Th = {e

1

, … , e

N

}
where the ordering is specified by the tags of the events and N may
be considered infinite. Thus event e

i

 < e

j

 iff T(e

i

) < T(e

j

), where

The Design Context of Concurrent Computation Systems

JoAnn M. Paul, Christopher M. Eatedali, Donald E. Thomas

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{jpaul, eatedali, thomas} @ ece.cmu.edu

T(e

x

) represents the tag of event e

x

.
In addition to a specific logical or physical ordering of tags,

there are separate

data precedence

 constraints to consider in a
thread. These often arise from sequential language specifications
where the resultant operand from line

i

 of the specification is used
in another calculation on line

j

, where

i

 <

j

. That is, making the
single change of moving line

i

 in the language specification to be
after

j

 would make the results of line

j

’s computation invalid. Thus
a basic assumption is that reordering the events of a thread (i.e.,
reordering the time tags) is allowable as long as the data
precedences are not violated.

2.1 Logical and Physical Ordering

Computer systems contain two kinds of event ordering —
logical and physical [8]. The tags used in

logical ordering

 specify
a sequence which is not physically based. There is no physical
meaning to the interval between any two events; we only know that
one precedes the other or that the tags are the same. Logical
ordering often arises from functional language specifications at a
high level of design. The tags used in

physical ordering

 represent a
real time basis, establishing a physical basis for the system.

Separately, logical and physical event ordering can be
characterized by the maximum total amount of state that is
advanced by any event, the maximum complexity of the functional
state advancement between any two events, and the number of
events that can be considered to occur simultaneously or at the
same time tag. The latter allows for a determination of the number
of functions that can be considered to execute simultaneously in
the system. The ordered sequence

Th = {e

1

, … , e

N

}
is ordered based on the tags. Clearly, a physically ordered system
is totally ordered. A

partially ordered

 system has at least two
logical tags t and t’ for which we do not know if t < t’ or t’ < t.
Thus, assuming events e

a

 and e

b

 are partially ordered, one mapping
to a physical order is the sequence

Th = {…, e

a

, e

b

, …},
and another correct mapping of events is

Th = {…, e

b

, e

a

, …}.
It is also possible that the two events are concurrent and have the
same tag. Thus a key reason for describing a system with a
partially ordered sequence is to allow greater flexibility in the
design of the system; partially ordered events give rise to alternate,
and potentially concurrent, implementations of the system.

Computer system models potentially contain two distinct types
of thread sequences, Th

L

 and Th

P

, which are sequenced to logical
and physical time bases respectively. Designers do not design
event sequences, rather they design to models that generate them.
An implementation of a system results in a resolution of the logical
events to physical events. We discuss how implicit assumptions on
the means of resolution impact the implementation.

2.2 Concurrent Hardware/Software Systems

For the effective design of concurrent systems, interactions
between Th

L

 and Th

P

 must be explored prior to partitioning into
components [12] or separating design concerns [11]. We first
consider the design implications when logical and physical
sequences are

independent

. When logical sequencing alone is used
to sequence a system — software design — the system will have
unknown physical execution times between the events in Th

L

. The
key to this view is the assumption that the

design

 of the logical
ordering of the system (writing the software), is not significantly
affected by the actual physical system (the processor, or system
architecture) upon which it will ultimately execute. This is the case

because the software and hardware are largely independently
optimizable. Function and architecture can be separated. Clearly
there must be some assumptions on the existence of a physical
machine to execute the software [10], but the actual physical
execution performance of the software is not part of the system
model. The system is literally formed at runtime, when the
software is deployed on the platform by a scheduler. At this time,
the logical events are resolved to physical events.

When logical and physical sequence are

identical

, a hardware
design scenario results. While it is possible to assign a time base to
logically sequenced systems by assuming a fixed execution order
and time on partially ordered events for resolution to a common
time base [12], these approaches strongly couple a logical
sequence to a physical time base [6][13]. The event sequences Th

L

and Th

P

 are identical because they are both sequenced by a
physical time base. While they give insight into system
correctness, they do not give insight into the

design

 of systems in
which the interactions of logical and physical sequencing have a
great impact on performance.

For instance, assume that the thread sequence,
Th

L

 = {e

1

, … , e

i

,…}
is a high level model. Because the events represent a relatively
large amount of functional advancement, we term them

macro
states

 or

macro events

. These macro events can be decomposed
into several states or events which have relatively less functional
advancement — we term these

micro states

 or

events

. If the macro
states are totally ordered, they allow for substitution on micro
event sequences, allowing the sequence to be re-written as

Th

L

 = {(e

11

, e

12

,… , e

1i

,…), (e

21

, e

22

,… , e

2i

,…), …}
Thus, each macro event, e

i

, is seen to

contain

a sequence of
micro events, e

i1

,e

i2

,…e

ik

, where all the micro events of macro
event e

i

 must complete before any of macro event e

j

 can execute
(where i<j). This physical decomposition ultimately results in
simple functions, such as gates. In this component-based,
hardware design view, all logical state advancement may
eventually be substituted 1:1 by a physical sequence Th

P

, the
physical time tags of the micro events may be combined to form a
physical macro event tag, and the substitutions can be made
without affecting the sequencing of higher-level events nor events
in other branches of the hierarchy.

Finally, we observe that neither independent specification of
sequences (software design), nor component-like containment
captures the way logical and physical sequencing are related in
concurrent hardware and software systems. Consider such a
logical sequence of macro states

Th

L

 = {e

1

, e

2

, …, e

i

,…}.
Typically, concurrent software events are partially ordered.
Further, the micro states implied by events e

1

 and e

2

may be

interleaved

 with each other on shared resources by a scheduler.
That is, schedulers serve to resolve logical-on-physical sequencing
— they arbitrate both logical (data-multiplexed) and physical
(time-multiplexed) interleaving of a resource.

As illustrated below, the actual execution of the micro event
sequences are no longer substitutable and atomic, but interleaved.

Th

L

 = {e

21

, e

11

, e

12

, e

j1

, e

22

,… }
For instance, e

j1

 above might be a hardware network event that
makes data ready based upon a number of factors. The time at
which e

j1

 occurs is dependent on other data dependent dynamic
software and e

j

’s time base. Indeed, this is only one ordering of the
system’s events as the true order depends on the data dependent
and dynamic unbounded software, the scheduling method of the
scheduler, and the shared resources (processors, busses, and

networks).
Clearly in the performance modeling of concurrent systems, the

function and architecture are not independently optimizable as in a
single processor software system. This is easily seen when
considering the effects of adding either physical or logical
concurrency to a computer system — the new system may have
better or poorer performance. The key point is that in a truly
concurrent software system, logical and physical sequencing are
related — not identical as in system-level components or
independent as when concerns are orthogonalized. Approaches
that assign time delays to system-level software [13], as does a
behavioral HDL, do not capture logical-

on

-physical sequencing.

3. Model Relationships

In this section, we formally illustrate the fundamental modeling
differences between a hardware-testbench style of design and a
software-benchmark style of design, starting from a general model
of an I/O system. We observe that not only must the content of the
concurrent software system be modeled as a logical-on-physical
layering, but so also must the context within which it is being
designed. We formally describe the design interactions in
computer systems that must be facilitated by models, simulators
and methodologies that capture the design space at hand.

3.1 Physical Testbenches

We begin with a very general model of an input/output system S
[9] as illustrated in Figure 1 as:

S = (T, I, O,

Ω

, Q,

∆,

Λ

),
where

T is a time base
I is a set of input values
O is a set of output values

Ω

 is a set of input segments, or allowable (value, tag) pairs
Q is the set of states

∆

 is the global state transition function

Λ

 is the output function
As a very general model, the I/O system can be used to model

designable entities, like digital computers, or things we can largely
only observe, like the weather. Thus, as a general model of a
physical entity, an I/O system can be used to model a system being
designed, as well as the environment with which it interacts as in
Figure 2. A physical model of the computer system being
designed, or the computer system content, S

N

, can be related to the
model of the system’s environmental context, S

X

, in a relationship
on I/O ports. This is a formal way of thinking of a conventional
hardware testbench, or even a model of the physical behavior of
the environment of an embedded computer. The overall wired,
ported model takes on the form of:

S

W

= (T

X

,T

N

,I

X

=O

N

,O

N

=I

X

,

Ω

X

,

Ω

N

,Q

X

,Q

N

,

∆

X

,∆

N

,Λ

X

,Λ

N

).
The elements of the

closed form S

W

 system
tuple are related. For
example, one system
must not produce
outputs which violate
the input segments
(value and time) of the
other system. This implies that the physical time granularity
(interval size) of the systems must correspond — typically one
system must not produce outputs faster than another system can
accept them, even if it is only to store them in its internal state for
later processing.

For physical system models, the time base of both the testbench
and the simulation are often both identical and physical, such as

for discrete event (DE) simulations. Here the time base is totally
ordered by physical interval sizes as well as for fixed interval
simulations, such as cycle accurate simulations. Thus, T

X

=T

N

. The
wired, ported system model thus simplifies to:

S

W

= (T

W

, C

W

, Q

X

, Q

N

, ∆X, ∆N, ΛX,ΛN)
where TW implies a common time base and CW defines a common
coupling basis, such as a wire or other interface model. So long as
a common coupling basis can be found, the model can be extended
to include more arbitrary forms of ported interconnect. This is a
generalized I/O port model, with private state spaces in which
entities can only exchange information across I/O ports.
Interestingly, it has been difficult to achieve standardization for
software components because of the absence of a software wire, or
means of interconnecting on boundaries that behave like physical
interconnect [5].

Analytical techniques for real-time scheduling of hardware-in-
the-loop computation have focused on how multiple, largely
independent inputs may be processed by a single or conceptually
single processing element so that the real-time physical demands
of the external physical system are met. Thus, given a computation
platform, the challenge is in understanding if and how the
computation can be time-multiplexed so that the computation
demands presented by the external system are met over time [7].
Note that, regardless of whether the analysis views the inputs to the
computer system as rate-based, for real-time demands to be met,
the inputs must be considered as occurring over some fixed interval
of time, with processing completing within some interval of time.

3.2 Logical-on-Physical Benchmarking
By contrast, systems

modeled as a software
program executing on a
processor are represented
as mixed logical and
physical sequencing; these
require the modeling of
the resolution of two (or
more) time bases. That is,
a software program is typically not thought of as being resolved to
the processor through an I/O wire-like coupling of ported models,
but by the sharing of a portion of the state vectors between two
models that resolve to a single I/O system. This results in a layered
partitioning of an I/O system as illustrated in Figure 3. SP is the
Platform and SC represents the Completion of the model, with
software. We say that software completes the system by resolution
to the platform. SP can be thought of as a model that generates one
or more physical event sequences, ThP, while SC can be thought of
as a model that generates one or more logical event sequences,
ThL. The resultant layered system, SL, is:

SL = (TC, TP, IL, OL, ΩL, QC, QP, QS, ∆C, ∆P, ΛC, ΛP)
where QS is a subset of state common to both QC and QP.
Significantly, the state of the programmatic completion in the
layered model, QC, need not be considered finite. Some portions of
a software program may be written to allow for conceptually
unbounded state which is only resolved to finite state when the
program is resolved to a physical platform, i.e, at runtime. This
also allows for runtime, data-dependent resource sharing of the
hardware by the software.

SL is characterized as a system formed by the resolution of two
time bases through this common state and a scheduling contract
between the layers. This results in a physical I/O system so long as
one of the time bases is physical, i.e., it assigns physical time

Figure 1 I/O System
state

I O

 Figure 2 Context Relationship

SX

SN

OX=INON=IX

ΩX

ΩN

 Figure 3 I/O System Formed by
Shared State Between
Two Layered Models

IL OL
SC

SP

QS

SL

intervals to the system outputs. For single clock domain [8]
processors, this can be thought of as the state of the model of the
software program, resolved to the processor state — the register
file, program counter, and control register, through the implied
scheduling contract (the instruction set architecture). Both the
processor and software contain local state that does not overlap
with the other. For instance, when the processor is modeled on a
more finely detailed time base, it contains state on wires that
interconnect registers. Similarly, the software program contains
state in memory which may not overlap with the hardware view of
the processor.

QS and either implied or implicit scheduling contracts between
the layers form the means of resolving the sequencing between
logical and physical layers in a programmable system, ultimately
resulting in a physical system which can be analyzed and designed
for effective sequencing — overall performance. For concurrent
programs executing on concurrent platforms, a challenge is
defining a general way to model state shared between the layers
which will adequately capture high-level resource sharing
decisions, but still in the absence of fully detailed models.

If the lower platform layer is physically sequenced, the higher,
logical layer can be seen as a programmatic completion of the
platform into an I/O system that interacts with some external
environment SX as in Figure 4. In the figure, the layered model, SL,
has been substituted for the system content, SN, in the closed form
relationship between context and content of SW of Figure 2.

When designing an instance or
a programmable platform, SPi,
such as a general-purpose single
processor or parallel processor,
SX can be thought of as triggering
a program from a benchmark
suite, BC = {SC1, SC2, …, SCi,
…}, and measuring latency of the
functional state advancement in
SC. Performance evaluation is
considered very differently from
that of the hardware-testbench
style of design. One platform may be evaluated against another
from a set of platforms, BP = {SP1, SP2, …, SPi, …}, for a given set
of benchmarks, BC, by weighting performance of one benchmark
against another, or even by considering throughput of successive
benchmarks from the set BC. From this, performance of
anticipated actual programs is predicted. Or, BC can be used to
predict the performance of certain programming constructs on a
given platform.

4. Design for Interaction
Neither the hardware-testbench style nor the software-

benchmark style is adequate to capture completely the design
interactions required in concurrent software-on-hardware systems.
The hardware-testbench style of design specifies system
throughput by presentation of time-bounded inputs to a physical
model — these must respond within a fixed amount of time. This is
one system reacting to another, where sequencing is ultimately
done by physical time. The actual physical sequencing of the
system is thus specified and not inferred, as in a programmatic
sense. The software-testbench style of design characterizes the
latency of logical-on-physical sequencing, but does not provide the
ability to optimize the interaction of a programmable computer
system with its environment or design context. Particularly
significant is that the design context is another computer system.

Based on Figure 3, Figure 5 shows a more
general model, a layered/ported model, in
which two layered computer systems
communicate via a common wire interface.
Subscripts, N and X, refer to the computer
system content and context, respectively.

The closed form system of Figure 5 now
includes a richer set of possibilities for
design and evaluation for overall
performance of the interacting systems as a
whole than hardware-testbenches or
software-benchmarks alone. For instance,
since the design context is now a logical-on-
physical computer system, it is possible to
optimize the design content to the state and
scheduling decisions in the context — its
data-dependent resource sharing decisions. The scheduling of the
system as a whole may be considered.

4.1 Conventional Performance Measures
The actual performance of the closed form system of Figure 5

can be seen when related to more standard techniques for
measuring performance. A hardware-testbench style is often used
to maximize throughput on a physical portion of the system, such
as the wired interface, Cw. This can be considered the gross
throughput of the hardware portion being evaluated, or its physical,
gross capacity. Since gross capacity is often measured as a
constant value over time (instructions/sec, bytes/sec, frames/sec),
or in rates, we use the symbol RG. Or, when a software-testbench
style is used, benchmarks can be considered to characterize the net
capacity of software-on-hardware execution for representative
programs of the programmable computer system.

The net capacity, RN, can be considered as a rate also, but for far
more complex forms of computation or communication that
characterize a wider range of data-dependent execution — for
example, average numbers of DCTs, list insertions, or sorts per
second, are often found in a benchmark. In general, RN is a
physical measure of logical execution performance of a program
on a platform. Unlike RG which tends to be a measure of constant
throughput, RN, tends to be averaged over numbers of datasets, or
even a number of benchmark programs.

Significantly, in general, RN ≠ k*RG. That is, RN is not generally
proportional to RG. This captures the need to execute software
benchmarks on platforms in the first place — execution time is
determined by logical-on-physical sequencing which is, in general,
even less proportional for concurrent software on concurrent
hardware than for single processors.

4.2 Interactive Performance
In addition to RN and RG, overall performance of one computer

system interacting with another can be thought of as the interactive
performance, RI, of the overall system. Again, significantly, RI ≠
k*RN. The overall performance of one computer system
interacting with another is not directly proportional to either the
gross hardware performance or the programmed performance of
any single portion of the computer system. This observation is
consistent with the notion that adding a unit of logical or physical
concurrency to an already concurrent system does not predict if the
actual performance of the system will be improved or made worse.

Maximization of RI for anticipated programming scenarios can
be thought of as the art of computer architecture design for
programmable computer systems. This acknowledges that the

Figure 4 Context, Content &
Platform Modeling

SC

SP

QS
CW

CW SX

SN=SL

Figure 5 Layered/
Ported
Model

SNC

SNP

QNS

CW

SXC

SXP

QXS

system is not merely reacting to a hardware-testbench model, nor
is it characterized only by the performance of a program resolved
to execute on a physical architecture.

For instance, portions of the behavior of the system being
designed might be improved by considering more effective
relationships between the common state between each system,
which runs counter to the notion of the design of the SoC as a
reactive device. One system is not designed to respond or react to
the state emitted by another system. Rather, the global context
permits the two systems to be designed more effectively together.

This is shown in Figure 6 where
common state, or a global context, QG,
between the models of the computer
system content and context allows for
optimization of the net behavior of a
computer system interacting with another
computer system. As a physical entity, QG
may either reside in a single copy
sharable by both systems, or be resolved
by regular interaction between systems.
As a separate modeling entity, QG also
often utilizes particular, custom portions
of the system architecture. Unlike
hierarchically composed finite state
machines, QG is not a single state
machine composed from many. Rather, it is a portion of the overall
system state which is considered common across multiple clock
domains — it models state at the same design level of detail as the
content and context of the closed form system. Further, none of the
state in the model of Figure 6 need be considered finite.

Figure 6 represents our final model of interacting computer
systems, as introduced in this paper. We consider these systems to
not be synthesizable. That is, we do not expect to be able to
synthesize this level of system architecture from some abstract
description. Rather, a creative design process is required. The
purpose of the figure is to motivate, in a formal way, the implicit
relationship between a design and its context when a creative
design process is required. Clearly, novel design features result
when designers are able to exploit knowledge about how a design
is likely to be utilized. A designer creates a working model of the
significant features of the way a system will be used — the design
context — and reasons about how a design might most effectively
interact with it. This implies two significant things. The first is that
the model of the design context is as important as the model of the
system — a highly manipulable model of each must match for
effective exploitation of the design space. The second is that in
order for creative designs to be possible, the design space as a
whole must not be overly restricted; flexible manipulation is the
key to effective designs. Overall, the designer must have system
models in mind that allow for effective manipulation of the design
space at hand — what a computer system is, as opposed to a highly
idealized view of what it is not.

5. Illustration
No single example which would completely capture the broad

design space advocated by the paper could be summarized in the
space allowed. We introduce a simple example — discussed in
terms of a design scenario — to illustrate some of our points. We
modeled and simulated an SoC interacting with a server through a
network. The SoC in Figure 7 consists of two hardware resources,
modeled as two processors with concurrent threads. Processor P1,
models the main application of the SoC, which consists of n
threads, Th1x, that are clients to the server with which the SoC

interacts. P2 models a software cache which utilizes three threads,
Th2x. The SoC interacts with a server thread through a high-level
model of a network, shown as thread N1. Processor P3 models the
server, which supports a dynamic number of client connections
through its thread-on-accept operation. The system resources, the
three processors and the network, are all physically sequenced.
They have independent, continuous activation but also support
logical sequencing in a layered manner. (In our layered, logical-on-
physical modeling environment [1][2][3][4], physical resources
would be modeled using C threads.) The threads mapped to
processor resources, Thij, are logically sequenced. They are
activated by functional dependency and resolved by a scheduler to
the physical sequencing of the resources. (In our modeling
environment, these would be modeled as G(F) threads —
scheduler threads are not shown here in order to simplify the
presentation, but are included in the simulation.)

The initial design is considered without P2, nor any of the
logical threads mapped to it. We utilized three threads in the client,
where each attempts to request 10 files per second from the server
for a total of 30 requests per second from P1. The client and server
threads communicate by exchanging fixed sized 1016 byte packets
across resource N1, which models a packet accurate network. A
client initiates a connection by sending a single request packet to
the server including the name of the file to be retrieved. The server
spawns a child thread to fulfill the request and terminates the
connection once the file has been sent. P1 and P3 provide
computational power (physical sequencing) for a client or server
thread to process a single packet in 10µs. A working set of 10 files
was drawn from with a distribution of 60% under 10KB, 20%
between 10KB-100KB, and 20% between 100KB-150KB. Each
client request was then chosen uniformly over this distribution.

Simulation results over 10 seconds of simulation time are given
in Figure 8. The performance of this initial system is given in the
lower line (cache disabled). Here, client performance scales
linearly as the bandwidth of the network increases, as anticipated.
Since the network is the only variable impacting overall
performance, the gross, hardware-like performance of the system
can be captured as a simple rate, RG.

Now suppose the designer would like to explore ways of
obtaining increased performance of the client-server system. With
limited network bandwidth, making the client-SoC or even the
server (if it were possible) faster does not help. The only way to
increase performance of the system as a whole is to decrease
demand for the network — performance improvement must be
obtained by considering the system interactions as a whole, not
any part of the system in a hardware-testbench, reactive sense.

After further analysis, the designer determines that there are two
distinct broad categories of data in the system, set A and set B. For
set A, a cache on the server might effectively decrease the network

 Figure 6 Interacting
Computer
Systems

SNC

SNP

QNS

CW

SXC

SXP

QXS

QG

 Figure 7 SoC Content/Context Relationships

N1P1 P2 P3

...Th11
Th21 Th22 Th23

Th32
Th3m

SoC Content

Server

Th31
Th12 Th1n...

NetworkApplication SW Cache

SoC Context

modes: A,B

utilization, because entries become stale relatively infrequently.
However, this particular dataset is not amenable to compression,
such as might be the case for audio and video that are already
compressed. For set B, requests are more likely to become stale, as
when updating more general data, however, this data is far more
amenable to compression. Therefore, the designer proposes two
design features be included in the system that operate under two
different modes of operation, mode A and mode B.

In mode A, a software cache which utilizes a separate processor
is included on the SoC. Note that, while the performance of the
logical-on-physical sequencing of the system is included in the
modeling, utilizing only the software-benchmark style of design
would not include the flexibility to allow the designer to add the
software cache, since it is modeled on a separate processing
resource. The cache consists of three concurrent threads: one for
managing requests for data and two for servicing an outstanding
read or write to the cache, respectively. This allows for at most a
single outstanding read and a single write to be serviced at a time.
In this example, the cache is limited to storing five files and is ideal
in that each of the files can be of arbitrary size. The replacement
policy is random. Figure 8 shows the performance of the system in
mode A in the upper-most line. Performance gains of almost 25%
are observed over the cacheless system. Again, these results could
be approximated in a hardware-testbench environment by limiting
the content partition to the client processor and approximating the
cache by assuming a fixed hit ratio for all client requests —
approximating a fixed RN for the cache. In so doing, modeling
accuracy is sacrificed, such as the effect of the request distribution
on the performance of the cache. More importantly, the simpler
statistical/reactive cache model does not allow for more complex
interaction of the SoC with its context when it is inappropriate to
utilize the cache, as discussed next.

While the cache improves performance during mode A, the
performance of the system is still relatively poor when it is
inappropriate to cache, i.e., for set B. Thus, the designer introduces
compression into mode B operation of the system. Mode B
assumes that files under 10K are compressed to 50% of their size,
between 10K-100K 20%, and 100K-150K 10%. Also, the server
latency per packet is tripled and the client latency per packet is
doubled, accounting for additional compression and
decompression operations, respectively. Note that compression on
both the client and server is required. Compression could have
either been available on the server already, or it could be added,
since the system context can often be considered another portion of
the design of a partitioned system.

Figure 8 now shows the performance of the interactive system,

RI, operating in both modes A and B, as the middle line. The server
begins serving files in mode A, switches to mode B at 3 seconds,
and then resumes serving files in mode A at 7 seconds. The
switching between nodes is arbitrary — we included timing
information only for interpretation of the results. This performance
is obtained by modeling logical-on-physical sequencing in both the
content and context, as well as common state, QG, which
ultimately leads to two modes of operation for the system and the
two distinct design features that support them. While QG is only
two states in this simple example, in general it can be highly
complex and need not be considered conceptually finite. The point
is that system-level features of concurrent, software-on-hardware
systems require modeling and understanding of design interactions
in non-traditional forms of design space partitioning.

6. Conclusion
By formally considering the design implications of relationships

between a computer system design (or content) and the context to
which it is designed, we motivate the need to consider more
complete forms of system modeling, design, and evaluation than
afforded by design to reactive, hardware-style testbenches or
software-style benchmark suites. Designers must be able to reason
about the overall interactions of concurrent systems in novel ways
that directly support shared state and layering concepts. This
ultimately allows designers to more effectively balance
computation systems towards optimization of performance and to
reason about design partitioning and extensibility. We included a
simple example to illustrate our concepts.

7. Acknowledgments
This work was supported in part by NSF Award EIA-0103706,

the General Motors Collaborative Research Lab at Carnegie
Mellon, ST Microelectronics, and the Pittsburgh Digital
Greenhouse. We thank the other MESH research team members.

8. References
[1] J.M. Paul, D.E. Thomas. “A Layered, Codesign Virtual

Machine Approach to Modeling Computer Systems,” DATE
2002.

[2] N.K. Tibrewala, J.M. Paul, D.E. Thomas. “Modeling and
Evaluation of Hardware/Software Designs,” CODES 2001.

[3] J. M. Paul, A. J. Suppe, D.E. Thomas. “Modeling and Simula-
tion of Steady State and Transient Behaviors for Emergent
SoCs,” ISSS 2001.

[4] J.M. Paul, S.N. Peffers, D.E. Thomas. “Frequency Interleav-
ing as a Codesign Scheduling Paradigm,” CODES, 2000.

[5] D. Lyonnard, Y. Sungjoo, A. Baghdadi, A. A. Jerraya. “Auto-
matic generation of application-specific architectures for het-
erogeneous multiprocessor system-on-chip,” DAC 2001.

[6] D. Desmet, D. Verkest, H. De Man. “Operating System Based
Software Generation for Systems-on-chip,” DAC 2000.

[7] P. Pop, P. Eles, Z. Peng. “Schedulability Analysis for Systems
with Data and Control Dependencies,” EURO-DAC 2000.

[8] C.L. Seitz. “System Timing.” Introduction to VLSI Systems.
C. Mead, L. Conway. Reading, MA: Addison-Wesley, 1980.

[9] B. Zeigler, H. Praehofer, T. Kim. Theory of Modeling and
Simulation 2nd Edition. San Diego: Adademic Press. 2000.

[10] D. Skillcorn and D. Talia. “Models and Languages for Paral-
lel Computation,” ACM Computing Surveys. June, 1998.

[11] K. Keutzer, S. Malik, A. R. Newton, et. al. “System-Level
Design: Orthogonalization of Concerns and Platform-Based
Design,” IEEE Trans. CAD, pp. 1523-1543, Dec. 2000.

[12] E. Lee, A. Sangiovanni-Vincentelli. “A Framework for Com-
paring Models of Computation,” IEEE Trans. CAD, Dec. ‘98.

[13] http://www.systemc.org/

 Figure 8 System Performance Under Three Design Scenarios

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Network Bandwidth (Mbps)

R
eq

ue
st

s
S

at
is

fie
d

Cache Disabled

Cache Enabled

Mixed Mode

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

