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Abstract 

Choosing the right methodology is a significant step 
towards successful VLSI designs. Traditional 
methodologies and tools are no longer adequate to handle 
large and complex designs. This paper presents a novel 
design methodology for complex deep-submicron designs, 
using a case study of the development of a high-end 
network processing ASIC chip-set. The paper focuses on 
the synergetic use of the “dual design verification 
approach”, along with static verification methods in 
achieving defect free silicon. It also discusses the 
techniques employed for achieving faster and less-
iterative timing closure. 
 
 
1. Introduction 
 

With shrinking geometries, more functionality can be 
integrated on-chip. While higher integration enhances 
performance and helps reduce system costs, it also 
presents higher challenges. As design size grows, 
verification complexity grows in non-linear proportions. 
Achieving timing closure is a significant challenge at 
deep-submicron geometries due to the dominance of 
routing delays over gate delays and increased on-chip 
coupling effects. The design methodology must be robust 
enough to ensure defect-free functionality without 
compromising time-to-market. 

Traditional VLSI design methodologies do not 
address these issues well. Verification environment and 
test cases use hardware description language, which lacks 
verification-friendly constructs, leading to longer 
development time for large designs. Gate level 
simulations using back-annotated timing, used for 
checking functional and timing integrity, are too time-
consuming. Conventional EDA tools lack the 

sophistication necessary to model deep-submicron effects, 
leading to multiple iterations for timing closure.  

Newer approaches are being adopted to deal with 
these shortcomings.  Higher levels of abstraction are used 
to speed up test development time. Static methods like 
static timing analysis and formal verification are 
employed for timing and functional integrity checks. 
Current generation physical design methods use early 
floor-planning, physical synthesis and timing driven 
placement and routing for faster timing convergence. 

Our methodology combines a new functional 
verification approach with the static verification methods 
to achieve faster functional and timing validation. The 
new approach, called dual design verification, uses two 
representations of a design throughout functional 
verification. One is a behavioral model in ‘C’, developed 
during high-level design phase. The other is an RTL 
model. The ‘C’ model is used as a reference to check the 
RTL representation. It is used not only in unit level, ASIC 
level, and chip-set level simulations, but also in software 
testing. This reuse saves considerable time. Once the 
design is functionally verified, static methods i.e. formal 
verification and static timing analysis, provide functional 
and timing consistency checks throughout the physical 
design cycle. Unique approaches adopted in physical 
design help achieve faster timing closure. 

Design goals are described in section 2, followed by 
discussion on issues and challenges in realizing these 
goals in section 3. An overview of our design 
methodology is provided in section 4. Key features of our 
methodology, namely dual design verification approach, 
static methods and timing closure techniques are 
explained in section 5, 6 and 7 respectively. Section 8 
concludes the paper with key findings.  

 
2. Design Goals 
 

The chip-set implements network processing 
functions upto OC-192 speeds for high-end edge routing 



applications. Flexibility in supporting newer protocols is 
achieved through programmable data inspection and 
formatting engines. The chip-set supports UTOPIA, POS 
and CSIX interface standards to enable seamless 
connection to switch fabric and a variety of physical 
interface devices. Efficient buffer management and 
connection management functions support millions of 
simultaneous connections.  

These functional requirements drive the ASIC design 
goals. Three ASICs are needed to implement the 
functionality in a practical, scalable way. The ASIC core 
and inter-ASIC interfaces operate at 200 MHz while the 
selective interfaces operate at 100 MHz. PLLs (Phase 
Locked Loop) are used to generate in-phase 200 MHz and 
100 MHz clocks. We targeted the design to IBM 0.16 u 
process technology. Area-array based IO implementation 
and flip-chip CCGA (Ceramic Column Grid Array) 
packaging [2][5] is chosen to accommodate the 700+ user 
I/Os. Design for test methodology is LSSD (Level 
Sensitive Scan Design) scan for logic core, MBIST 
(Memory Built-in Self Test) for internal RAMs and IEEE 
1149.1 JTAG boundary scan for the I/Os. 

 
3. Key Design Challenges 

 
Early identification of key issues is an important step 

in the design methodology since it allows incorporating 
checkpoints and strategies for the further work.  

The variety of configuration options needed in 
network processing calls for a sophisticated high-speed 
on-chip system bus for which, issues with heavy loading 
and fanout of common signals need to be addressed. 
Debug features must be provided on-chip to help debug 
such highly configurable designs. Wide, on-chip buses 
operating at high frequencies and large number of on-chip 
as well as off-chip memories place a significant constraint 
on design partitioning and make timing closure tougher 
unless design guidelines are well established upfront.  

Verification efforts for multimillion gate ASICs 
consume significant portion of the development cycle. 
Development of reusable components and use of higher 
levels of abstraction for test vector generation becomes a 
key challenge. Achieving high functional coverage on 
complex logic such as multiple instantiated microcode 
programmable data inspection and formatting engines 
would require high-level abstraction, randomization and 
automation in verification.  

Large size, density and high frequency of operation 
of these deep-submicron designs present enormous 
challenges to physical design. Skew targets as low as 150 
ps, requirement to keep the two on-chip clocks in phase, 
source synchronous clocking on inter-ASIC interfaces, 
large on-chip memories occupying majority of the die 
area, and large number of user I/Os switching at high-

speed were the key challenges to clock design, routability 
and timing closure.  

The design methodology discussed in section 4 
addresses these challenges without any compromise. 

 
4. Methodology Overview 

 
A design methodology must put together a right mix 

of tools, techniques and best practices to enable complex 
deep-submicron designs, while keeping in mind the 
demanding time frames. Our methodology balances 
traditional approaches with newer ones, eliminates 
wasteful processes and implements consistency checks 
throughout development cycle. This is made possible with 
unification of design’s reference model, dual design 
verification that reuses design abstraction, use of static 
methods that eliminate costly gate level simulations, and 
novel techniques in timing closure.  

Figure 1 shows the process used for our designs. The 
key phases in the process are described in brief below.  

Design entry involves RTL coding, simulation and 
I/O specification. RTL is purified through linting and 
verified using the Dual Design Verification (DDVM) 
approach. I/O specification is created considering I/O 
interface requirements and SSO issues. [1] 

Design optimization starts with synthesis for 
performance optimization. Bottom up approach allows 
easy integration of design changes. Top-level logic, like 
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PLLs, and boundary scan logic, is instantiated into the 
core netlist through a step called ASIC top-level insertion, 
after which the netlist is flattened for further processing. 

I/O specification of the design is used for I/O 
planning, along with the list of on-chip macros, the 
footprint image of the package and the die. The macros 
are floorplanned first. I/O pads are then placed across the 
die, keeping in mind the vicinity to the package pins and 
placement restrictions due to macros. I/O Planning is 
validated for electrical rules. [3] 

Floorplanning starts with the I/O plan and the post-
synthesis netlist. Logic flow, vicinity to the placed I/O 
and macros, timing and congestion are considered. A 
good floorplan is key to successful physical design. 

Test synthesis and clock insertion are carried out in 
netlist processing. [4] Scan logic is added to the top-level 
inserted netlist and scan chains formed. Test structure 
verification validates the scan insertion. The IEEE 1149.1 
JTAG boundary scan logic is also chained together. Clock 
design is done keeping in mind latency, skew, transition 
time, clock tree configuration and layout considerations.  

Manufacturability Checks are pre-layout checks to 
verify test logic, macro and boundary structures to qualify 
for manufacturability test suitability. Technology checks 
validate the netlist for the technology rules. 

Logic and timing consistency checks are performed 
after each netlist modification. Static timing analysis is 
used for timing consistency checking while logic 
equivalence checking is used for functional consistency 
checking. They eliminate the use of gate level simulation 
for consistency checking and thus are among the key 
features of our methodology.  

Layout involves two stages. In Preliminary Layout, 
the physical design center performs detailed placement 
and wiring, optimizes them, analyzes wireability, 
validates floorplan, analyzes clocks. Production layout is 
performed next. Here, clock trees are balanced for skew 
minimization, and wire lengths as well as capacitive 
loading on latches is minimized along with final routing.  

Layout verification on the production layout checks if 
the performance targets and manufacturability 
requirements are met. It includes technology checks, static 
timing analysis with process variation modeling, test 
structure verification and check for minimum 99% test 
coverage. Manufacturing test data (ATPG) is generated. 

Sign-off is completed after layout verification and 
ATPG. A comprehensive checklist is used here to 
establish readiness for sign-off. 

 
5. Functional Verification 

 
Significant portion of development time is spent in 

functional verification of complex designs. For early 
product deployment, it becomes imperative to reduce the 
verification time without compromising on the quality. 

Newer and innovative techniques are required to verify 
multi-million-gate designs. Bottom-up approach is needed 
to verify a design at unit level, chip level and system 
level, to promote early detection of defects in the system 
verification cycle. These challenges necessitate reuse of 
verification components to speed up test environment 
setup for different levels of verification and development 
of test environment at higher levels of abstraction. 

Our designs consist of multiple programmable data 
inspection and formatting engines and buffering logic. To 
verify the buffering, congestion and flow control 
functions, a probabilistically driven random traffic source 
model is required to generate realistic network traffic 
patterns.  Directed testing alone is not sufficient, 
considering the multitudinous combinations of 
configuration and traffic arrival patterns over multiple 
coexisting connections/flows.  To cover hard-to-think 
possibilities, constraint-driven random testing is required.  

The objective of verification is to validate the design 
functionally against the specification. The interpretation 
of specification must be uniform across all levels of 
verification. A key challenge is to represent the 
specification in an executable form that can be directly 
used in different verification environments. We took a 
“C” modeling approach to get the executable specification 
architecturally validated and to use it as the golden 
reference in subsequent stages of design verification.  

Catering to these challenges and features, our 
verification approach, referred as Dual Design 
Verification Methodology (DDVM), uses the golden 
model, mentioned earlier, as the reference design against 
which the RTL is validated.  It supports validation of RTL 
behavior in random testing and makes the verification 
setup regressionable. This approach not only reduces the 
functional verification time but also speeds up system 
testing. DDVM is explained in the next section. 

 
Dual Design Verification Methodology  

 
Our verification approach is illustrated in Figure 2. 

As evident from the figure, it provides a self-checking 
verification environment. Here, two representative 
designs of the same specification are employed. The 
Design in “C” is the behavioral model, which is used in 
architectural validation, thus can be viewed as an alter ego 
of the specification. As discussed earlier, thorough 
verification at unit, chip and chipset level is required to 
weed off defects and to have abstraction in the level of 
testing. DDVM, when employed in unit level testing of 
design components, uses RTL representation of the design 
unit, which is validated against the “C” representation. In 
chip level verification, the “C” models of all units are 
integrated to form a behavioral representation of the chip.  
Similarly, chipset level simulation setup is realized. In 
this approach, the other components in the verification 



environment are used in all the levels of verification. This 
reuse cuts short the environment development cycle time 
significantly. As is evident, our approach easily paves the 
way for a regressionable verification setup because of 
highly automated on-the-fly validation of response. 

Custom-built constructs and data structures in C, 
combined with the verification friendly constructs of 
Vera, shorten the test case and environment development 
time. It also makes it easier to maintain, debug and reuse.  

Random testing can easily be done in DDVM.  
Randomization of input test stimuli can be statistically 
controlled using dynamic feedback from the test 
environment. Automated, on the fly self-checkers, help 
validate test responses. We recommend random testing in 
verification of networking designs as we uncovered 
number of critical defects, which were either hard-to-
detect or went undetected in directed testing.  

In typical system verification scenario, design not 
only the needs to be verified at unit, chip and chipset level 
simulations but also in the integrated system environment 
where hardware and software components coexist. 
Traditional co-simulation approach is costly and time 
consuming. In our approach, the RTL design and the 
behavioral C model are functionally coherent after the 
thorough chip level functional verification. Hence the C 
model can be used as another representation of the RTL 
design in software integrated system simulation testing as 
well as in standalone software testing. This helps in faster 
prototyping than conventional methodologies allow.  

We employed code coverage and bug arrival rate as 
key metrics for establishing verification adequacy before 

important releases of the design. Bug arrival rate, which 
measures the number of bugs detected with respect to the 
increase in number of executed test cases and the increase 
in functional coverage achieved. At least 99% code 
coverage, flat bug arrival rate and 100% functional 
coverage is required in order to enable tape-out decision. 

 
6. Static Verification Methods 

 
A VLSI design undergoes multiple changes after the 

RTL representation - in synthesis, due to test logic 
insertion, clock tree insertion, etc. Functional and timing 
consistency must be maintained after each change. 
Verifying consistency without overhead of time calls for 
efficient verification methods.  

Both dynamic and static methods are used in design 
consistency verification. Dynamic methods such as 
simulation stimulate the design by applying external test 
vectors over a period of time. The more the vectors used, 
the higher the functional coverage. Our designs had, for 
example, more than a thousand directed tests for chip 
level verification. While simulation is best for functional 
verification of RTL level design, the same doesn’t hold 
good at gate level. Gate level simulations run much 
slower than RTL simulations and become a bottleneck in 
achieving rapid regression cycles for every change in 
design. Static methods, in contrast, are vector less, 
exhaustive and much faster than dynamic methods of 
verification. We discuss here two static methods 
employed in our methodology for consistency checking. 
 
Static Timing Analysis 
 

Static timing analysis examines each timing path in 
the design and checks the path delay against the 
assertions. Checking doesn’t need functional vectors; thus 
is faster than dynamic simulation. It is exhaustive since it 
examines all possible timing paths in the design. Hence, 
coverage of static timing analysis does not depend on the 
quality and quantity of test vectors.  

A complete run of static timing analysis on our multi-
million gate designs takes only a few hours, a significant 
improvement over gate level simulation that would take 
hours even for a single test. Our methodology uses static 
timing analysis for timing verification after synthesis, 
floorplanning, scan insertion, clock tree insertion, clock 
routing and in layout. 

Static timing analysis tools can also profile the 
variation of timing into a histogram (histogram analysis), 
and point to instances that contribute to maximum number 
of timing violations (bottleneck analysis). This is very 
helpful in finding timing problems, especially with large 
designs having hundreds of thousands of timing paths.  

Timing assertions are derived from the ASIC goals. 
They are created right at the beginning and used 

Figure 2 Dual Desi gn Verification 
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consistently there on. For gate delay computation, DCL 
(Delay Calculation Language) models were consistently 
used. Maintaining consistency of assertions and timing 
models is a key to consistency in timing checks. 
 
Formal Verification 

 
There are many formal verification methods – model 

checking, equivalence check, theorem proving, etc. 
Equivalence checking is basically a comparison of two 
designs for functionality. One of the designs is assumed to 
be golden and the other is checked against it using a tool. 
Equivalence checking tools are algorithm based and 
works on logical representation (truth table) of the 
designs. Equivalence check can be run between any two 
representations of a design. Unlike simulation, 
equivalence checking does not need test vectors. 

We used equivalence checking for RTL to gate netlist 
checking, gate netlist to gate netlist checking and for ECO 
changes. The RTL representation of the designs, verified 
through functional simulations, is treated as the “golden” 
model for equivalence checking. Further representation of 
the design, for example, the netlist after synthesis, netlist 
after scan / clock insertion or a layout netlist, is checked 
against the golden RTL model. Like static timing 
analysis, equivalence checking is also exhaustive, and 
provides complete coverage. Thus, there is no need to run 
gate level simulations for logic consistency checking, 
which saves a considerable amount of time. 

Being functional vectorless, equivalence checking 
runs very fast. A million gate design, for RTL to gate 
equivalence check takes only ten hours. Gate to gate 
checking runs even faster. Further speed-up can be 
achieved using hierarchical approach.  

We discovered a couple of synthesis related problems 
and a few scan insertion related problems through 
equivalence check. However, it should be noted that 
equivalence checking is not a substitute for functional 
simulation. If functional simulation was inadequately 
done, equivalence checking cannot find problems in 
implementation. Also, it does not completely eliminate 
the need for gate level simulations. In our case, 
equivalence checking cannot find problems with phase 
relationship of the two clock outputs from the PLL, for 
which gate level simulation is required.  

Static verification approach saved us enormous time, 
allowing us to move from step to step faster and execute 
some of them in parallel. Static timing analysis and logic 
equivalence checking stand out as two solid pillars of our 
methodology that easily support large complex designs. 

 
7. Timing Closure Techniques 

 
Timely time closure is a significant challenge in high-

performance deep-submicron designs. Traditional “over-

the-wall” approach, characterized by little interaction 
among logic and physical designers, no longer works. 
Closer interaction with physical designers and awareness 
of physical design issues among logic designers, are the 
needs of the day. Iterations between physical design and 
logic design are no more exceptions. Successful timing 
closure methodology must employ techniques, both in 
logic and physical design, to minimize iterations.  

Each of the ASIC in our chip-set is unique - One is 
large, IO limited and dense; the other is IO limited, has 
large on-chip macros but limited logic, the third is large, 
not dense or IO limited but contains many on-chip 
macros. Our methodology addresses the needs by 
beginning physical design process early and by employing 
several physical design techniques. 
 
Early Beginning of physical design 
 

Selection of die size, package and I/Os, framing of 
design guidelines, I/O planning and floorplanning are 
crucial in making design decisions based on potential 
timing / physical design problems. The earlier these are 
performed, the lesser the risk of starting all over again and 
wasting time and resources. 

Early design partitioning and finalization of the 
number of signal I/Os helps deciding the die size and 
package, significant especially for I/O limited designs. [6] 
Large macros result in placement and routing restrictions. 
They also obstruct power routes. The required logical size 
of an on-chip macro could be realized through multiple 
configurations of single/multiple macros. Trade-offs must 
be made while choosing the on-chip macros, keeping in 
mind the die size, potential restrictions and timings.  

Design guidelines are driven by the required 
performance, selection of ASIC library, die size, I/O 
methodology and package selection. Guidelines that we 
followed, like point-to-point global nets, fanout 
restrictions, for the high-speed nets crossing unit 
boundaries, for those connecting on-chip macros and I/Os 
of the chips, and maximum logic depth between two flip-
flops, were instrumental in minimizing iterations between 
physical design and RTL. 

In designs employing area-array I/Os, early selection 
of I/Os, die size and package helps in proceeding with I/O 
planning.  Spice simulations are carried out to validate the 
selection of I/O pads, the timing on the I/Os. [6] I/O 
planning is carried out to satisfy the board layout 
requirements, the placement restriction caused by on-chip 
macros, grouping of pads so as to limit the SSO and to 
minimize IO wiring. A good I/O plan thus goes a long 
way in achieving timing closure on the I/O pins and on 
related logic, significant especially for high-speed I/Os. 

Floorplanning is carried out when the first core 
netlist is available. It starts with the I/O plan and 
distributes the logic across the die in physical groups, 

 



while keeping in mind the restrictions caused by on-chip 
macros, logic flow, future introduction of clock tree, 
prevention of highly dense “hot-spot” areas, the vicinity 
to the on-chip macros and I/O pads. Early floorplanning 
helps identifying potential problems like long global 
routes, high fanouts, and routability problems.  

While it was possible to divide the die onto exactly 
blocks that don’t overlap, overlapping is intentionally 
allowed to allow adjustments in floorplan to fix 
routability / timing problems. 

An important consideration in synthesis is to prevent 
use of gates with very low drive and the complex logic 
gates that don’t have scalable drive strength range. Gates 
with very low drive can only drive very small local nets. 
Complex gates typically exhibit larger delays and with 
only a few drive strength options, they are difficult to size 
up later in physical design. Early examination of the 
ASIC library is done to identify such gates and to prevent 
them from being synthesized.  

Modeling of timing assertions close to reality is the 
key to successful timing closure. High Pessimism is not 
good as it could mislead the tools and the designers and 
real problems could remain hidden for long. 

 
Physical Design Techniques for timing closure 
 

While early work in physical design certainly helps, 
it does not prevent all the problems. In deep-submicron 
ASICs, significant timing issues are attributed to the vast 
difference in the estimated and actual route delays. Since 
route delays account for as much as 70 % of total path 
delays, the gross inaccuracy leads to large number of 
timing violations across the chip. Actual routing can 
provide accurate timing information but is not possible to 
do early. High speed ASIC such as ours don’t have large 
timing margins available to absorb such inaccuracies and 
hence physical design must employ alternate techniques 
to converge on timing in spite of the inaccuracies of 
estimation. Some of these techniques are described below: 

In-place-optimization is a traditional method where 
weak gates driving large loads are resized while retaining 
their placement. Resizing can reduce the gate delay 
considerably and thus improve path timing.  

Buffer insertion involves inserting buffers on a net, 
effectively reducing the length of the resulting net 
segments and hence in reduction of loading, resulting in 
lesser delay in driving gates. Buffer insertion is a very 
effective method of solving timing problems associated 
with global long routes. It not only solves timing 
problems but also helps in balancing capacitive loading 
across nets. 

Nets with high fanout could have considerable 
capacitive loading when the target logic of the various 
fanouts is located in different physical areas. Overall 
timing associated with such nets can be improved by 

splitting them into multiple segments using buffers and 
letting the buffers drive the localized fanouts.  

Even when these techniques are employed, a few 
paths would still not time-close. These are typically long 
paths, paths belonging to the interfaces to on-chip macros 
and I/Os, and paths having multiple high-fanout nets. 
These are analyzed in detail, and a change in RTL 
implementation is called for. RTL changes for timing 
closure typically involve breaking a path by adding 
pipeline stages, splitting the critical and non-critical 
portions of the path, cloning of logic and reducing 
fanouts. 
 
8. Summary 
 

Our multi-million gate chip-set design was completed 
in a short span of ten months. The chip-set was a first 
silicon success and the ASICs are perfectly working to the 
specifications in the field. 

Economy of integration at deep-submicron 
geometries has taken the complexity of functional 
verification to astronomical heights, and made timing 
closure is a long iterative cycle. The methodology 
presented in this paper smartly combines novel techniques 
and state of the art tool-set to enable defect free silicon 
and thus a significant time-to-market advantage. 
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