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Abstract

Directed test program-based verification or formal verifi-
cation methods are usually quite ineffective on large cache-
coherent, non-uniform memory access (CC-NUMA) multi-
processors because of the size and complexity of the design
and the complexity of the cache-coherence protocol. A con-
trollable biased/constrained random stimuli generator cou-
pled with an error detection mechanism using scoreboards
and feedback with coverage analysis tools is a promising al-
ternative methodology. We applied this methodology to ver-
ify a shared memory and message passing multiprocessor
system consisting of 32 and 64 bit processor-based symmet-
ric multiprocessing (SMP) servers connected by a propri-
etary cache coherent router-based interconnect fabric. This
paper describes the problems faced, solutions implemented,
and design decisions taken to design the scoreboard and dis-
cusses the errors found by this methodology.

1 Introduction

Traditional verification methodology based on identify-
ing functions and other aspects of the design to be tested
and writing directed test programs to exercise them is be-
ing overwhelmed by the rapid growth in size and com-
plexity of today’s designs. Use of a controllable bi-
ased/constrained random stimulus-based simulation cou-
pled with scoreboards to analyze and detect error conditions
and coverage analysis tools to provide feedback on the qual-
ity of the vectors generated has been shown to achieve cov-
erage goals more quickly than directed test program-based
verification [1]. In this paper we apply this methodology
to verify an industrial server system. We concentrate on is-
sues in designing the scoreboard which is a critical and com-
plex entity in the methodology and in large part determines
its success or failure. The server consists of a set of Intel
McKinley/Foster-based symmetric multiprocessing (SMP)
Processor Nodes and IO nodes connected by a network of
proprietary Cache Coherent Routers. The Cache Coherent

Router and its supporting chips constitute the ASICs un-
der test. The verification environment supports both di-
rected and random simulation. Simulation vectors for di-
rected simulation are typically written to check a specific
function or condition of the system. Therefore, it is usually
easy to check if the system passed the simulation or failed it.
However for random simulation the steps of execution are
not known before-hand. In the absence of a golden model
which can be simulated alongside the design, self-checking
can be used to detect design errors. Unit-level self-checking
by inserting assertions in RTL often cannot detect system-
level errors. This motivates the need for a scoreboard that
can globally watch the simulation, analyze the information
it gathers, make intelligent deductions about the correctness
of the system under test, and output pertinent information
about an error once it is detected.

The rest of the paper is organized as follows. We dis-
cuss related literature in Section 2. In Section 3 we describe
the overall architecture of the enterprise server, with an em-
phasis on the architecture of the Cache Coherent Router.
In Section 4 we describe the salient features of the cache
coherence protocol of the system. In Section 5 we describe
the verification testbench. Detailed description of the score-
board is given in Section 6. In Section 7 we discuss the
different errors that were detected by the scoreboard in the
design and the verification environment. We present our
conclusions in Section 8.

2 Existing Literature on Verification of CC-
NUMA Multiprocessors

Several verification efforts on CC-NUMA multiproces-
sors have been reported in literature. Application of formal
verification to the HAL S1 System cache coherence proto-
col has been reported in [2]. In this work an abstract model
of the directory-based cache coherence protocol was created
using Murphi [3, 4] description. The abstract system con-
sisted of two types of abstract nodes. One type contained
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Figure 1: Basic Configuration of the Server (Basic
Server Unit)

just a memory and a directory, and in the other type just
a processor cache was modeled. This abstract design had
a much smaller state space. The Murphi verification tool
was applied to carry out the verification. This methodol-
ogy, applied very early in the project, can uncover protocol
level errors. However, since it works on an abstract version
of the design it cannot uncover any RTL errors. In [5] the
authors present their methodology to automatically gener-
ate executable test suites for the cache coherence protocol
of BULL’s CC-NUMA architecture. This paper deals with
black box conformance testing where the behavior of the
implementation can be observed only through its interac-
tions with its environment. Testing consists of stimulating
the design and observing its reactions at the interfaces. In
[6] a technique to target error-causing interactions among
different components in a design has been presented. This
enables automatic generation of test vectors which exercise
all transitions of control logic during simulation. The au-
thors have applied this technique to validate an embedded
dual issue processor in the node controller of the Stanford
FLASH Multiprocessor [7] which supports both cache co-
herent shared memory and high performance message pass-
ing.

3 Architecture of Server

The server system in this work is a cache-coherent non-
uniform memory access (CC-NUMA) multiprocessor with
distributed shared memory and message passing and is tar-
getted towards large parallel applications as well as a large
number of single-threaded applications running in parallel.
The basic configuration of the server consists of K proces-
sors as shown in Figure 1. The system can scale upto a P �

K1 processor configuration.

3.1 Basic Server Unit

Each Basic Server Unit (Figure 1) consists of the follow-
ing units: (1) A set of Cache Coherent Routers (for the sake
of simplified explanation in this paper, we have assumed
only 1 Cache Coherent Router in each Basic Server Unit)
(2) A set of SMP Intel McKinley/Foster-based Processor
Nodes. Each Processor Node is connected to the Cache Co-
herent Router through Local IO Ports. A bus-based snoop-
ing protocol keeps the processors coherent in each Proces-
sor Node. (3)A set of IO Nodes, each hosting IO devices,
and each connected to the Cache Coherent Router through
Local IO Ports. (4) A set of Remote Data Cache units. (5) A
set of Directory Tag units. The Cache Coherent Router has a
set of Global IO Ports. These ports are used to communicate
with Cache Coherent Routers in other Basic Server Units
through a proprietary fast interconnect fabric. A brief de-
scription of the functionality of the Cache Coherent Router
is given below.

3.1.1 Cache Coherent Router

The Cache Coherent Router analyzes each packet that
comes in and carries out various actions to maintain cache
coherence throughout the system. The principal functions
carried out by the Cache Coherent Router are as follows.
(1) It acts as the interface to the Directory Tag units which
maintain ownership and caching state information of cache-
lines. Accesses to the same cacheline are properly se-
quenced to maintain coherence. (2) Correct routing of pack-
ets is carried out with a memory map of the system. (3)
The Remote Data Cache bank maintains recently accessed
cachelines that are stored in the shared caching state. This
reduces the latency of future accesses to these cachelines.
The Cache Coherent Router updates and maintains cache
coherence of the Remote Data Cache and also properly se-
quences read and write requests to identical cachelines. (4)
It handles several system management functions which in-
clude accessing and setting system registers and configuring
the system.

The Cache Coherent Router has a bank of Local IO Ports
and Global IO Ports to receive and foward incoming and
outgoing packets. It also has a switching network for rout-
ing incoming and outgoing packets to appropriate protocol
layer units or Local IO Ports, or Global IO Ports.

The Cache Coherent Router communicates with a bank
of Processor Nodes and IO Nodes. The Processor Nodes
act as the interface between the Cache Coherent Router
and the processors. This unit is connected to the processor

1The exact values of K and P are proprietary information.



front-side bus, and the Local IO Ports of the Cache-coherent
Router. It receives messages from the front-side bus, creates
appropriate packets and sends them to the correct Local IO
Port. It also receives packets from the Local IO Ports and
decodes these packets and sends messages and data to the
front-side bus. The IO Node acts as the interface between
the cache-coherent router and the IO devices.

Data flow in the system takes place by means of trans-
actions, each having a unique ID and consisting of a set of
packets. The basic unit of data flow is a 128 bit long flit.
Each physical link is shared by several virtual channels.

4 Cache Coherence Protocol

The directory-based cache coherence protocol of the sys-
tem is designed to run on a distributed shared memory mul-
tiprocessor and provides a coherent shared image of mem-
ory to each Processor Node. Main memory is physically
distributed across the Processor Nodes, is globally coherent
and is addressed through a single flat address space. A por-
tion of this flat address space is mapped onto each Processor
Node. Reads to local lines are serviced faster than reads to
lines which are not local. Each Basic Server Unit has a di-
rectory which maintains information about the nodes in the
system that are currently caching any local cacheline. It also
maintains the caching states of these lines.

A transaction originates in a Processor Node or an IO
Node and consists of a series of messages. The first mes-
sage in a transaction is a memory access request, for ex-
ample a read, or a write, or invalidate. The messages in a
transaction are of two types: a) Request b) Response. In
order to describe all possible legal transactions in the cache
coherence protocol, the Processor Nodes and the IO Nodes
in the system are broadly classified into three categories: a)
Source Node - the transaction (memory request) originates
at this node. b) Home Node - the address of the cacheline
accessed in a given transaction resides in a memory at this
node. c) Sharer Node - this node is a sharer or owner of the
cacheline being accessed by a given transaction.

An example of a transaction initiated by a request to read
an uncached memory block is shown in Figure 2. The trans-
action is initiated by a request RL (Read Line) from Pro-
cessor Node-A to read an uncached line. The request is
routed to the Cache Coherent Router-A which sends the re-
quest via the Global Interconnection Network to the Cache
Coherent Router-B which is connected to the home node
of the cacheline. The Cache Coherent Router-B gener-
ates two packets simultaneously: a) a request packet RLM
(Read Line from Memory) and sends it to Processor Node-
B which is connected to the memory which contains the
requested cacheline, and b) a response packet CAS (Cache
As Shared), which is sent to Processor Node-A, indicating
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Figure 2: Example of a Coherent Transaction

that the cacheline must be cached in the shared state. At the
same time an entry is created in the directory connected to
Cache Coherent Router-B with the information of the shar-
ing node and the caching state of the cacheline. The mem-
ory responds with the cacheline data. After receiving the
data the Processor Node-B creates the data packet, which
is a response packet of type LD (Line Data). This packet
contains one header flit and several data flits and is routed
through Cache Coherent Router-B, the Global Interconnec-
tion Network and Cache Coherent Router-A to Processor
Node-A. Processor Node-A receives the data and sends it
to the requesting processor. This ends the transaction. The
Cache Coherence Protocol describes all possible legal trans-
actions in the system.

5 Verification Testbench

The verification testbench for one Basic Server Unit is
shown in Figure 3. This testbench consists of RTLs of
Cache Coherent Router, Remote Data Cache, and Directory
Tag. In addition, it contains instances of functional mod-
els of the Processor Nodes and IO Nodes, and instances
of functional models of memory. In addition, there is a
scoreboard and some amount of control logic used to con-
trol the testbench configuration and functionality. The func-
tional models of Processor Nodes and IO Nodes can be pro-
grammed to create deterministic or random request pack-
ets which are sent to the Cache Coherent Router. Fig-
ure 4 shows how programming is done to create a particular
packet instance. This instance can then be executed which
causes the packet to be injected into the RTL. In this ex-
ample a packet instance for a read type request is created
for a cacheline with address “0xabcd”, for which the Home
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                                        .home_node == N1;
                                        .src_node == N2; 
                                        .opcode == read_line;
                                        .cacheline_address == 0xabcd;                              

};

Packet instance = {

Figure 4: Packet Generation Through Functional
Model

Node is N1. The request originates from node N2 which is
the Source Node. The instance can contain other informa-
tion fields as well.

6 Scoreboard Design

In order to design the scoreboard the following issues
had to be understood and addressed:

1. Level of operation - We had to decide which level the
scoreboard would operate at. Broadly speaking, there
are three layers of operation in the system - the proto-
col layer, the link layer and the physical layer. After
detailed consideration, it was decided that the protocol
layer would be most appropriate since it would allow
the scoreboard to monitor the design at a higher level
and also detect errors at the same level. This would
reduce the complexity of the scoreboard and make it
more robust. At the same time since errors would be
caught and reported at the protocol layer, debugging
would become easier.

2. Scope of operation - We had to decide which units
in the system the scoreboard would have access to.
Since the Processor Nodes, IO Nodes, and memory
were third party chips, it was decided that these would
not be monitored. Since the level of operation was

chosen to be at the protocol layer, it was decided to fo-
cus on protocol level errors. Since the protocol could
be understood by watching the signals at the Local IO
Ports, it was decided to monitor these ports. Thus, all
the signals shown in Figure 2 would be visible to the
scoreboard.

3. Checking goals - The following self-checking goals
were set for coherent transactions:

� Verify correctness of cacheline data

� Verify correctness of cacheline state

� Verify that each transaction has all protocol level
messages in correct order

� Verify that no transaction has spurious messages

For non-coherent transactions the scoreboard verified
the mutual orderings of non-coherent writes to mem-
ory.

4. Complexity goal - A full-scale implementation of the
cache coherence protocol would work well as a score-
board. But, that would require significant effort al-
most similar to that of writing the RTL. Also due to the
complexity, the scoreboard itself would be susceptible
to errors. Therefore, abstraction was applied manu-
ally to the cache coherence protocol to minimize the
number of message types to be monitored. (Note that
this abstraction did not prune away any details of the
design unlike abstractions typically used with formal
verification methods.) This resulted in a simple algo-
rithm which was used to update internal data struc-
tures of the scoreboard and detect errors.

5. Efficiency goal - The scoreboard operated as follows.
Whenever it observed a new flit on any Local IO Port,
it stopped the simulation, grabbed the flit and decoded
its contents. These contents were then analyzed to
detect errors and internal data structures of the score-
board were updated with the new information. Once
this was finished, control was returned to the simula-
tor. Since this was an “invasive” process which de-
layed simulation, it was important for the scoreboard
to be very fast. Special care was taken to make the
data structures very compact and light weight.

The overall organization of the scoreboard is shown in
Figure 5. There are three basic units in the scoreboard: a)
Transaction Storage, b) Data Storage, and c) Central Anal-
ysis Engine. The Transaction Storage stores information
about each new transaction observed on a Local IO Port.
When the first message in a new transaction is observed on a
Local IO Port, a new Transaction Storage Entry is created in
the Transaction Storage. Each transaction in the system has
a unique transaction ID. This ID is used to uniquely identify
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the corresponding Transaction Storage Entry. A Transac-
tion Storage Entry is deallocated when the transaction fin-
ishes. There is a Data Storage Entry in the Data Storage for
each unique cacheline which is accessed during simulation.
The Data Storage stores the correct data and state of each
cacheline. Each Data Storage Entry is associated with two
flags - a) a V flag which is TRUE when the data stored in the
Data Storage Entry is valid, and b) an S flag which is TRUE
if the main memory entry for this cacheline has invalid data,
i.e. is stale. Figure 6 shows the state transition diagram of
each Data Storage Entry. Each Data Storage Entry functions
as a repository for the correct predicted data and caching
state of the corresponding cacheline. The Central Analysis
Engine identifies each transaction by observing its messages
and independently computes (based on an abstracted cache
coherence protocol-based algorithm) the new data and new
state of the cacheline involved. Errors in the data and state
of a cacheline are detected by comparing the data and state
observed in the system with the data and state computed
by the scoreboard. Since the scoreboard observes and iden-
tifies each transaction, it can detect any incomplete trans-
action, i.e. a transaction for which all messages have not
been observed, and any illegal transaction, i.e. a transaction
which has a spurious or incorrect message. Once an er-
ror is detected, the scoreboard stops further simulation and
gives detailed diagnostic information to help the designer
pinpoint the problem. Detailed diagnostic information in-
cludes the address of the cacheline involved in the error, the
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Figure 6: State Transition Diagram of Each Data Stor-
age Entry

correct and erroneous data, and a trace of computation that
led to the error.

7 Errors Detected by Scoreboard

The scoreboard was deployed during system-level verifi-
cation of the server and detected more than 30 errors in the
RTL and the verification environment. The details of the
errors detected are presented below.

RTL Errors

The following types of errors in the RTL were detected
using the scoreboard:

1. Address decoding error - Several errors in the RTL
were found as a result of which the data in a cacheline
seen at the RTL level was not identical to the data in
the cacheline stored in the Data Storage in the score-
board. These errors were traced to various types of
decoding problems, and problems with timing of the
write signals of memory.

2. Incomplete transaction - Several errors were found
by detecting incomplete transactions. Once a trans-
action in the system is over, the corresponding trans-
action ID is released and can be reused for a subse-
quent transaction. Once a new transaction is observed
in the system, the scoreboard allocates a new Trans-
action Entry in the Transaction Storage. Before allo-
cating this entry it checks to see if any entry with the
same transaction ID still exists in the Transaction Stor-
age. If there is such an entry, that means that an earlier
transaction did not complete legally.



3. Duplicate/spurious messages - The scoreboard keeps
track of legal messages in a transaction. Therefore, it
can detect an illegal message that violates the cache
coherence protocol. Several errors were detected by
this mechanism. Most of these errors were traced back
to incorrect implementation of broadcast logic.

4. Coherence error - A coherence error which occurred
as a result of a tricky timing issue in the Remote Data
Cache was detected. The reason for the error can be
explained as follows. The Remote Data Cache first re-
ceives an invalidation request. As a result, it responds
with a confirmation of invalidation and starts to com-
mit the invalidation. The central directory receives the
confirmation and updates the information about this
cacheline to “invalid”. However, before it can fin-
ish the invalidation the Remote Data Cache receives
a read request for the same cacheline and responds
with the data. This causes the state of the cacheline to
become illegal. This error was detected by the score-
board error detection logic.

Verification Environment Error

In addition, the scoreboard detected a critical error in the
functional model of Processor Node. This error caused the
Processor Node to return data bytes in an incorrect burst
order. This was detected as a cacheline data miscompare
between the data observed during simulation and the data
stored in the Data Storage. This error can be explained as
follows. When a processor issues a request for a certain byte
with an address X , the data is returned as a memory block
within which the requested byte is contained. The block
size for this design was 128 bytes. Now suppose the byte
requested by the processor is the last byte in the returned
block. In that case if the bytes are returned to the processor
in a serial order with the first byte first, the processor would
have to remain idle for 127 clock cycles (assuming one byte
is returned in each clock cycle). Therefore to minimize this
delay, depending on the position of the requested byte in the
memory block being returned, the order in which the bytes
are returned is different. This depends on the exact specifi-
cation of each processor. By detecting a problem with the
burst order implementation in the functional model of the
Processor Node, the scoreboard essentially discovered an
error in conformance with processor specification.

8 Conclusion

Cache coherent non-uniform memory access (CC-
NUMA) multiprocessor architectures are becoming popular
for high-performance enterprise server designs. These de-
signs pose a significant challenge to traditional verification

methodologies due to their size and complexity. In this pa-
per we apply biased/constrained random stimuli-based veri-
fication along with scoreboards and coverage tools to verify
an industrial server system. We describe the various chal-
lenges faced in designing an efficient and powerful score-
board and give details of its goals and architecture. Finally
we describe the different errors that were discovered by this
methodology in the RTL and testbench.
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