

Static and Dynamic Variable Voltage Scheduling Algorithms for Real-Time
Heterogeneous Distributed Embedded Systems

Jiong Luo and Niraj Jha

Dept. of Electrical Engineering
Princeton Univ., Princeton, NJ 08544

{jiongluo, jha}@ee.princeton.edu

Abstract�
This paper addresses the problem of static and dynamic

variable voltage scheduling of multi-rate periodic task graphs
(i.e., tasks with precedence relationships) and aperiodic tasks in
heterogeneous distributed real-time embedded systems. Such an
embedded system may contain general-purpose processors,
field-programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs). Variable voltage scheduling
is performed only on general-purpose processors. The static
scheduling algorithm constructs a variable voltage schedule via
heuristics based on critical path analysis and task execution
order refinement. The algorithm redistributes the slack in the
initial schedule and refines task execution order in an efficient
manner. The variable voltage schedule guarantees all the hard
deadlines and precedence relationships of periodic tasks. The
dynamic scheduling algorithm is also based on an initially valid
static schedule. The objective of the on-line scheduling
algorithm is to provide best-effort service to soft aperiodic tasks,
as well as to reduce the system power consumption by
determining clock frequencies (and correspondingly supply
voltages) for different tasks at run-time, while still guaranteeing
the deadlines and precedence relationships of hard real-time
periodic tasks.

1. Introduction

This paper addresses the problem of static and dynamic
variable voltage scheduling of hard and soft real-time tasks in
heterogeneous distributed real-time embedded systems [1], in
which processing elements (PEs) can be general-purpose
processors, FPGAs or ASICs. The embedded system may have
both periodic tasks with hard deadlines and precedence
relationships and aperiodic tasks with soft deadlines. The goal
of our scheduling algorithms is to provide good response times
for soft aperiodic tasks and reduce the power consumption of
the system, under the constraints that the deadlines of hard real-
time tasks and their precedence relationships are guaranteed. It
is well-known that variable voltage scaling, which refers to
varying the speed of a processor by changing the clock
frequency along with the supply voltage, has a high potential for
reducing both energy and power consumption. Hence, in this
paper, we focus on developing a power-efficient variable
voltage scheduling algorithm for heterogeneous distributed
embedded systems.

There have been extensive studies in the literature on
scheduling of periodic tasks, aperiodic tasks, and their
combinations. The algorithm given in [3] uses slack stealing,
which serves aperiodic tasks by stealing all the processing time
it can from the periodic tasks. The method in [2] studies
resource reclaiming in shared-memory real-time multiprocessor
systems, where resource reclaiming refers to exploiting a PE at
run-time when the actual execution time of a task is less than its

 Acknowledgments: This work was supported by DARPA under
contract no. DAAB07-00-C-L516 .

specified worst-case execution time. Some other work
addressing joint scheduling of hard periodic tasks and soft
aperiodic tasks can be found in [10, 11].

There is some work addressing variable voltage scheduling
as well. The work in [12] gives an off-line algorithm, which
generates a minimum-energy preemptive schedule for a set of
independent tasks. The work in [14] provides a heuristic for a
similar problem as in [12] for fixed-priority static scheduling.
The work in [5] proposes a heuristic scheduling algorithm for
non-preemptive scheduling of a set of independent tasks with
arbitrary arrival times and deadlines on a variable voltage
processor, which is an NP-complete problem. The work in [13]
uses an energy priority heuristic for non-preemptive scheduling.
The work in [6] presents a power-conscious fixed-priority
scheduling algorithm. Other works can be found in [7, 8, 18,
19]. All the above approaches target only a single processor and
are applicable to only independent tasks.

In this paper, first, we address the issue of variable voltage
static scheduling in a heterogeneous distributed embedded
system for a set of periodic tasks with precedence relationships
and hard deadlines. A valid power-efficient variable voltage
schedule is constructed using heuristics based on critical path
analysis and task execution order refinement. Second, we
address the issue of variable voltage joint scheduling of hard
periodic tasks with precedence relationships along with soft
aperiodic tasks. We take a combined static and dynamic
approach. The static scheduling algorithm discussed above is
used to construct a valid schedule for periodic tasks with
precedence relationships. The static schedule is only partially
fixed such that the on-line scheduler can schedule soft aperiodic
tasks with best effort. The on-line scheduler also dynamically
determines the speed-reduction ratios for scheduled events
whenever there are no soft aperiodic tasks pending.

The new contributions of our approach are as follows. (1)
Although a lot of previous work has been done to optimize
power consumption through variable voltage scheduling of
independent real-time tasks, there is only very limited work
addressing variable voltage scheduling for distributed real-time
embedded systems, in which precedence relationships exist
among tasks [15,16]. In this paper, we develop an efficient
heuristic for this problem motivated by the fact that the
processor power consumption is normally a convex function of
the clock period. Our algorithm is optimal if the problem is
reduced to non-preemptive static scheduling with fixed-priority
assignment on a single processor. (2) For the on-line variable
voltage scheduling algorithm, we develop a unified framework,
which incorporates slack stealing and resource reclaiming to
provide best effort service to soft aperiodic tasks. It performs
run-time analysis of processor clock speeds and voltages
assigned to statically scheduled periodic tasks, by considering
dynamic execution time variations.

2. Energy Consumption Model

This section discusses the relationship between the total
energy consumption for a set of hard real-time tasks with
precedence relationships implemented on multiple processors

and their processor execution speeds. Similar discussions can be
found in [12] for independent tasks on a single processor.

The periodic tasks are specified in the form of task graphs.
A task graph is a directed acyclic graph in which each node is
associated with a task and each edge is associated with the
amount of data that must be transferred between the two
connected tasks. The period associated with a task graph
indicates the time interval after which it executes again. An
arrival time (deadline), the time by which the task associated
with the node can begin (must complete) its execution, exists for
every source (sink) node. Deadlines may exist for some
intermediate nodes as well. Fig. 1 shows two task graphs, where
for simplicity both are assumed to have the same period.

The processor clock frequency, f, can be expressed in terms

of the supply voltage, ddV , and threshold voltage, tV , as
follows (k is a constant):

ddtdd VVVkf /)(2−= (1)

 From (1), we can derive ddV as a function of f,)(fF ,

22)
2

()
2

()(tttdd V
k

f
V

k

f
VfFV −+++== (2)

The processor power, p, can be expressed in terms of the
frequency, f, switched capacitance, N, and the supply
voltage, ddV , as:

22)(
2

1

2

1
ffNFfNVp dd == (3)

which can be proved to be a convex function of f. The
techniques presented in this paper are still valid even if Equation
(1) is not accurate enough, as long as p is still a convex function
of f.

Given the number of clock cycles, iη , for executing task i,

its energy consumption, iE , under supply voltage iV and clock

frequency, if , is given by

)(*)/(iiii fpfE η= (4)
On any PE or link, all the tasks or communication events

should be executed in non-overlapping intervals. Assume task i
starts at istart and ends at ifinish , and its execution intervals

are []11 , ii ba , []22, ii ba , …, []ikik ba , , where

 iikikiiiii finishbababastart =≤≤≤≤≤= ...2211 .
Assume for inter-PE communication edge j, the execution time
is],[jj finishstart . Based on the traditional assumption in

distributed computing, the execution of intra-PE communication
is assumed to take zero time. The total energy consumption for a
set of tasks on different processors is:

)(*)(1(kik) to ik kk

j processor on ij processor

fpab

Energy

∑
∑∑

∈

∀∀
−

=
 (5)

under the following constraints:
)max,max()(jirspredecessojii finisharrivalstart ∈≥ (6)

)min,min()(jisuccessorsjii startdeadlinefinish ∈≤ (7)

for task or communication edge i.
Also,

ikik) to ik kk fab η=−∑ ∈ *)(1((8)

for task i.
In the above equations, predecessors(i) (successors(i)) refers

to all the predecessors (successors) of task or communication
edge i in the task graphs, and iarrival (ideadline) is its arrival
time (deadline) specified in the task graphs. If unspecified,

)(max)(jirspredecessoji arrivalarrival ∈= ,

and
)(min)(jisuccessorsji deadlinedeadline ∈= .

The objective of variable voltage scheduling is to assign
different clock frequencies kf and supply voltages kV to

different execution intervals []kk ba , on the processors which
are voltage scalable, in order to reduce the system power
consumption.

3. Static Variable Voltage Scheduling for Multi-

rate Periodic Task Graphs
This section presents a variable voltage static scheduling

algorithm for multi-rate periodic tasks in an embedded system
consisting of a network of multiple heterogeneous PEs connected
by communication links. An embedded system is a multi-rate
system if it contains multiple task graphs with different periods.
Given an embedded system specification, a hardware-software
co-synthesis system [1] determines the number and type of
PEs/communication links (i.e., allocation), and the
assignment/scheduling of tasks/communications on different
PEs/links.

Allocation/assignment and scheduling are each NP-complete
for distributed systems [1]. To reduce the problem complexity,
assume we start with a valid PE/link allocation and
task/communication assignment, as well as a valid static schedule
under maximum supply voltage and processor frequency maxf .

In this paper, the static schedule is generated based on a list-
scheduling algorithm using the inverse of slack time as the task
priority [20]. The static schedule consists of a set of scheduled
events, which can be a task, a communication event, or a
preemption event. First, we discuss the critical path analysis
algorithm, which redistributes the slack time in the initial valid
schedule. Second, we discuss a task execution order refinement
algorithm, which refines the execution order imposed by the
slack-based priority assignment in the initial schedule. We want
to construct a new valid variable voltage schedule in which a
processor’s clock frequency can be varied along with the supply
voltage for different time intervals. The new schedule still
guarantees all the hard deadlines and precedence relationships. It
is well known that there exists a feasible schedule for the periodic
task graphs if and only if there exists a feasible schedule for the
hyperperiod, which is the least common multiple of all the task
graph periods in a multi-rate system specification [9]. Hence, the
validity of the schedule can be determined along one hyperperiod.

3.1 The critical path analysis algorithm

In this section, we present the critical path analysis
algorithm for variable voltage scheduling based on an initially
valid schedule. In the generated variable voltage schedule, all

t1

t2

t3

t4

t5

e1

e2

e3

deadline: 19

period: 22
deadline: 22

Fig. 1: Task graphs

arrival time: 0 arrival time: 0

the scheduled events on a PE or a link maintain the same
execution order as in the initial schedule (the execution order is
modified later).

We first create a directed graph),(EVG , where V is the set
of vertices, containing all the scheduled events in the initial
schedule, and E is the set of directed edges between vertices. An
edge is inserted from one event to another if one is a direct
predecessor of another in the task graphs, or if one is scheduled
just ahead of another on the same PE or link. Therefore, these
edges can represent all the precedence relationships in the
original task graphs as well as execution ordering information in
the initial schedule. Every event i can be associated with a start
constraint ir or a finish constraint id , which is initialized as

iarrival or ideadline , respectively, as defined in Section 2.
Each node is associated with a weight, which equals its worst-
case execution time. The creation of),(EVG can be illustrated
through Example 1.
Example 1: Consider the embedded system specification given
in the form of two task graphs in Fig. 1. Fig. 2 shows the
corresponding directed),(EVG derived for the feasible
schedule shown in Fig. 3. The distributed system consists of
two PEs, PE1 and PE2, connected by a link. The schedule is
based on the worst-case execution times of tasks and
communication times, assuming a supply voltage of 3.3V. We
assume both PE1 and PE2 have communication buffers.

The variable voltage schedule is constructed by determining

the processor speed reduction ratio for every scheduled event on
processors, with ratio initialized to one. The algorithm is
presented as Algorithm 1 in Fig. 4. The algorithm evaluates all
the paths in graph),(EVG and locates the most critical one that
minimizes the ratio of the total slack time on that path to the
total worst-case execution time on that path. For a path j, assume
that it begins with node source and ends with node destination.
Then the scaling factor of path j, jscale , is defined as

∑−=
i

isourcendestinatioj execwstrdscale _/)((9)

where iexecwst _ is the worst-case execution time of scheduled
event i on path j. The critical path is the one that minimizes the
scaling factor.

The scaling factor of path j for tasks on processors,

jscaletask _ , is defined as

1)_

/)_((_

+

−−=

∑
∑

processor on i i
i

isourcendestinatioj

execwst

execwstrdscaletask
 (10)

jscaletask _ is the scaling factor by which the execution

time of all the tasks scheduled on variable voltage processors
can be extended without violating the start constraint and finish
constraint of path j. jscaletask _ is normally larger

than jscale .

For an event scheduled on a processor, we have
)//(_ max iii ratiofexecwst η= , where iη is the worst-case

execution cycle count of task i.
The critical path can be located in the following way. First,

we locate the longest path, evaluated using the total worst-case
execution times, between any source and destination pair. Then
we pick the path that has the smallest scaling factor. Next, we
multiply the speed reduction ratio for all the events scheduled
on processors by a multiplying ratio, which can be set to be
equal to jscale of critical path j. The speed reduction ratio for

communication events and tasks implemented on FPGAs or
ASICs remains unchanged (as they are assumed to be not
variable voltage scalable). When jscale is below a threshold,

we delete all the vertices on critical path j as well as their
incoming and outgoing edges in),(EVG , and update all the
start and finish constraints of other vertices in a manner
restricted by the execution length of the critical path, evaluated
under new clock frequencies. In Algorithm 1, threshold is a
value which is near or equal to 1.0 and is defined in a way so as
to control the convergence rate with which the critical path
approaches the state of being deleted, as well as to reduce the
overhead of unnecessarily extending the execution time (with a
ratio threshold≤) of tasks allocated to hardware and
communication events. The above process is repeated until

),(EVG is empty. For an acyclic graph, the algorithm to locate
the single-source longest paths has a complexity of

|)||(| EVO + , and the overall algorithm has a complexity of
|))||(|||*(EVVkO + , where k is the number of times the above

process is repeated until),(EVG is empty. k is normally much
smaller than ||V . Since the speed reduction ratios need to be
multiplied by multiplying ratio for events scheduled on
processors only, we can store scaling factors for a set of critical
paths

 }_,...,_,_{ 21 npathcriticalpathcriticalpathcritical ,

where ipathcritical _ refers to the i-th most critical path. Let

).
,_min(min_

_

_1

n

i

pathcritical

pathcriticaln to i
scale

scaletaskratiogmultiplyin ==

 In the case of scheduling on a single processor,),(EVG is
a set of vertices with an edge between any two adjacently
scheduled events. We can compute the longest path length
between any pair of vertices in the beginning. The threshold

should be set to 1.0. The overall complexity is)|(| 2VO .
The rationale behind Algorithm 1 includes:
1. For each critical path, distributing the free slack time

evenly is optimal due to the fact that power
consumption is a convex function of processor speed,
as discussed in Section 1.

2. For the overall algorithm, guaranteeing an equal speed
reduction ratio on the most critical path first is a step
in the right direction for reducing the power

Fig. 3: Initial valid schedule

0 2 4 6 8 10 12 14 16 18 20 22

 t1

e1

t3 t4

e2

t2

t5

dt5

dt2

PE1:

Link:

PE2:

Fig. 2: Directed graph),(EVG

t1

e1

t2

t3

t4

e2

t5

01 =tr 03 =tr

192 =td

225 =td

consumption because it guarantees that all the other
events can achieve a speed reduction ratio at least as
high as on the most critical path. This is helpful in
reducing the variance of the speed reduction ratios for
various time intervals on other paths, therefore,
reducing power consumption as well, again due to
characteristics of the convex function.

}
);___(

;__
}

}
;

;
){_(

;)(
)(_

{
;_

)){,((__
}

}
}

}
);(

);(

);min(
_

);max(
_

;_
_

{_
;
){_(

);_
,_()(

;_*
)(

))((__
)_,_,_(

{||
)){((

 ratiogmultiplyin path,criticalscale,minreturn
scaleminratiogmultiplyin

scalemin_scale
 lathcritical_p

scaleminscaleif

wst_exec/rdle sca
;ji,pathlongestl

Vji,
infinityscale min

EVGpathcriticalfind

idelete
edelete

 i g edges ofor outgoin incoming e for all
,rdd

pathriticalnode on c m
drs of i anpredecesso directm for all

,drr
pathriticalnode on c n

 of i andsuccessors directn for all
dtime release

;execwstmerelease_tid
pathln criticatination orce to desi from sou or allf

 rme release_ti
thresholdscaleminif

pathcritical
pathcriticalndestinatiosource,

ratiogmultiplyinratioratio
processor voltage variable a is ipe and V i all orf

;V,EGpathcriticalfind
ratiogmultiplyinpathcriticalscalemin

ro is not zeVwhile
EV,G_ratio_reductionfind_speed :1 Algorithm

l

l
l on k

kijl

imm

inn

i
ii

source

ndestinatio
source

ii

=

=
=

<

∑−=
=
∈∀

=

∈
=

∉
∈

=
∉
∈

=
+=

=
≤

=
=
∈

=

∀

The overall algorithm is not optimal, however, because the

updated start and finish constraints of other events are dependent
on how the slack times are distributed on the critical path, when
the critical path is deleted. However, if we reduce the problem to
a non-preemptive scheduling algorithm on a single processor
with fixed-priority assignment, since the execution order of all
the jobs can be determined, Algorithm 1, which resembles the
approach in [12], can be shown to be optimal for minimizing the
power consumption. For the sake of brevity, we omit the proof.
For the general case as well, Algorithm 1 performs very well, as
evidenced by experimental results later.

3.2 Task execution order refinement

The scheduling priority assignment based on the inverse of
slack may be a good heuristic for constructing a valid schedule
to guarantee deadlines [20], but it may not be very efficient for
fully exploiting the slack time for variable voltage scheduling.
Therefore, we refine the task execution ordering based on the
new variable voltage schedule, in which the execution time of

every scheduled event is multiplied by its corresponding speed
reduction ratio. The algorithm is shown in Fig. 5. In Algorithm
2, jsched is the list of scheduled events on processor j in the

order of their execution. Two adjacent events are
interchangeable if interchanging their execution order will not
violate any timing and precedence relationships in the new
variable voltage schedule. In Algorithm 2,),(jieinterchang
interchanges the order of i and j in the list and returns a value
that points to the second event after interchanging.

}
}

;
)(

;
}

);,(
){,((

;
{

{

return;

else
next_nodeprev current

 schedof node end previf
currentprev

currentpreveinterchang current

currentprevableinterchangif
next_node;prevcurrent

 schedof node beginprev
j processor

nementorder_refiexecution_:2 Algorithm

j

j

→=
≠

=

=

→=
=

∀

The new task execution order generated in this way can still

guarantee schedule validity and has the potential to achieve
larger power reduction because more flexibility is introduced in
the schedule. Then we can apply Algorithm 1 based on the new
execution order. Task execution order refinement can be
repeated until the power reduction ratio between two iterations
is less than some pre-specified threshold.

3.3 Illustrative example

Example 2 is used to illustrate the critical path analysis
algorithm.
Example 2: We compare three different schemes. In Scheme 1,
we apply Algorithm 1 to the directed graph in Fig. 2, assuming
threshold in Algorithm 1 is defined as one. In Fig. 2, the first
critical path is (t1→e1→t2), with a scaling factor of 19/15
calculated by Equation (9), and a task-scaling factor of

12/161)12/)1519((=+− , calculated by Equation (10). The
second critical path is (t1→e1→e2→t5), with a scaling factor of
22/16. We take the minimum of 16/12 and 22/16, which is
16/12. Then all task execution times in the schedule are
extended by a ratio of 16/12, as shown in Fig. 6. In the next step,
t1, e1 and t2 are deleted from),(EVG , the start constraint of
e2 and finish constraint of t4 are both updated to 11. Next,
(t3→t4) is identified as the critical path, and all undeleted task
execution times are extended by a ratio of 11/8, as shown in Fig.
7. Finally, the execution time of t5 is extended by a ratio of
7/5.5, as shown in Fig. 8.

In Scheme 2, instead of starting from the critical path, we
first distribute the slack time equally on path (t3→t4→t2),
which is the path with the second smallest task-scaling factor.
The corresponding variable voltage schedule is shown in Fig. 9.
In Scheme 3, we compute the optimal speed reduction ratios for
this small example, assuming the power consumption is
computed based on Equation (3) and that tV is 0.8V. The power
consumption during idle time on processors is assumed to be
zero. The speed reduction ratios for different tasks and the
overall power consumption on processors are compared in Table
1. The power number is normalized to the power consumption
under maximum supply voltage (3.3V). The deviation of the
power consumption of Scheme 1 from the optimal solution is

Fig. 4: Algorithm for determining speed reduction ratios
for scheduled events on variable voltage processors

Fig. 5: Algorithm for task execution order refinement

Fig. 8: Task execution times multiplied by a ratio of 7/5.5

PE1:

Link:

PE2:

0 2 4 6 8 10 12 14 16 18 20 22

dt5

 t1

e1

t3 t4

e2

t2

t5 re2

only 0.1%, while for scheme 2 it is 5.8%. For larger examples,
as shown in Section 5, our scheme has a greater impact.

4. On-line Variable voltage Scheduling Algorithm
To maintain the simplicity and performance of the on-line

scheduling algorithm, we use a combined static and dynamic
approach. We start from an initially valid static schedule. The
static schedule can be generated from critical path analysis and
task execution order optimization techniques presented in the
last section. This helps determine the task execution order and

position the communication events such that the slack time is
distributed more efficiently in a global manner for better variable
voltage scheduling. However, processor clock frequencies as
well as corresponding supply voltages are determined on-line in
order to accommodate run-time execution time variations. The
static schedule is partially fixed to guide the on-line scheduler in
the following way:
(1) The schedule of all the communication events is kept fixed.
This helps localize any dynamic decisions to each processor.
Hence, no global re-scheduling is required at run-time. Also, the
order of all the events scheduled on every processor and link is
kept fixed. This helps maintain the precedence constraint among
the tasks assigned to the same processor.
(2) A table generated off-line provides the earliest start and
latest finish times for each scheduled event. This guides the on-
line scheduler in providing best-effort service to soft aperiodic
tasks without violating the timing constraints of statically
scheduled events.
(3) We also determine an off-line variable voltage schedule for
each processor using Algorithms 1 and 2. In applying these
algorithms, the vertices in),(EVG are all the scheduled events

on a processor in one hyperperiod. The start constraint ir or

finish constraint id of a vertex is initialized as its earliest start
time or its latest finish time, respectively. Recall that Algorithm
1 is optimal in the case of scheduling on a single processor with
a fixed execution order of events. The off-line table also stores
the start time and the speed reduction ratio of every scheduled
event in the off-line variable voltage schedule.

The earliest start time is the earliest time by which an event
can begin its execution without violating its arrival time and
precedence relationships. The latest finish time is the latest time
by which an event must complete its execution without violating
the deadline and precedence relationships of itself as well as any
other subsequent event scheduled on the same processor. They
are computed in the following way. For the last event on a
processor, we have

),min(
__

_

_
dhyperperiodeadline

timefinishlatest

eventlast

eventlast =
 (11)

For any other event i on a PE, the latest finish time is
calculated by

)_min
)),/(__(

,min(__

)(_
max

jiedgesoutj
nextinexti

ii

timestart
ftimefinishlatest

deadlinetimefinishlatest

∈
→→ −

=
η (12)

where out_edges(i) refers to all the inter-PE out-going
communication edges of i, next is the event scheduled just after i
on the same processor, and η is the worst-case execution cycle
count of an event.
For event i on a PE, the earliest start time is calculated by

)_max,max(
__

)(_ jiedgesinji
i

timefinisharrival
timestartearliest

∈

=
 (13)

where in_edges(i) refers to all the inter-PE in-coming
communication edges of i.

Table 1: Comparison of power consumption of processors for different schemes

Speed reduction ratio of statically scheduled tasks

t1 t2 t3 t4 t5

 Normalized power
consumption

Scheme 1 8/6 8/6 5.5/3 5.5/3 7/3 0.5856
Scheme 2 6.5/6 9.5/6 4.75/3 4.75/3 8.5/3 0.6190
Scheme 3 7.751/6 8.249/6 11.249/6 11.249/6 6.751/3 0.5849

Fig. 6: Task execution times multiplied by a ratio of 16/12

 t1

e1

t3 t4

e2

t2

t5

dt5

PE1:

Link:

PE2:

0 2 4 6 8 10 12 14 16 18 20 22

rt3 dt2

rt1

Fig. 9: Variable voltage schedule for Scheme 2

 t1

e1

t3 t4

e2

t2

t5 PE1:

Link:

PE2:

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 7: Task execution times multiplied by a ratio of 11/8
 (lightly shaded regions represent deleted events)

 t1

e1 e2

t2

dt4

dt5
re2

PE1:

Link:

PE2:

0 2 4 6 8 10 12 14 16 18 20 22

rt3

t3 t4

 t5

4.1 On-line dispatching of soft aperiodic tasks
Soft aperiodic tasks are served in first-in-first-out (FIFO)

order. In order to provide best effort service to aperiodic tasks,
the on-line scheduler on each PE dispatches tasks and
communication events in the following way. Whenever there are
soft aperiodic tasks pending, and the latest start time (derived
from the latest finish time) of the current statically scheduled
event has not been reached, the scheduler dispatches the
aperiodic task under maximum speed. If there are no aperiodic
tasks pending, and the earliest start time of the current event has
been reached, the scheduler dispatches the current event and
determines the clock frequency and supply voltage for it at run-
time. If the current event is running and an aperiodic task
arrives, the scheduler detects whether or not servicing the
aperiodic task will violate the latest finish time of the current
event. If not, the current event gets preempted and the incoming
aperiodic task gets dispatched under maximum speed.

4.2 Variable voltage scheduling

Run-time variations can come from remaining execution
times reclaimed on-line, or from servicing soft aperiodic tasks.
This makes off-line analysis of the optimal speed reduction ratio
for each statically scheduled event on every processor no longer
valid. If there are no soft aperiodic tasks pending, the speed
reduction ratio for the current statically scheduled event can be
computed on-line by applying Algorithm 3 in Fig. 10 for a
sequence of adjacent events (from current to end), including the
current event and all subsequent events scheduled on the same
processor in the hyperperiod. In Algorithm 3, the start constraint

ir or finish constraint id of an event i is initialized as its
earliest start time or its latest finish time, respectively. For the
current event being dispatched, its start constraint r is initialized
as the current time. First, the critical path is located for the set
of adjacent events from current to end. Then the end event is
updated as the event scheduled just ahead of the source node of
the critical path. The finish constraint endd of event end is

updated as well. The algorithm repeats until the source node of
the critical path becomes the current event. The overall

computation complexity of the algorithm is)(2mO , where m is
the number of events the algorithm needs to look at.

5. Experimental Results
This section presents experimental results to verify the

efficacy of the proposed methods. The experiment is performed
on five different embedded systems. Their characteristics are
shown in Table 2. Task graphs in Tests 1 to 4 are generated
using TGFF [4], which is a randomized task graph generator.
The task graphs in Test 5 are based on a digital signal processing
example taken from [17]. All the PEs in these systems are
processors. However, our approach is general enough to be
applied to embedded systems containing ASICs and FPGAs as
well.

We first compare four different static scheduling algorithms
in Fig. 11. A lower bound of power consumption with the given
task/communication assignment is computed by evenly
extending the execution length of every scheduled event on a
processor to make utilization of each processor 1.0, under the
assumption that no deadlines and precedence relationships exist.
The list-scheduling algorithm just uses the initial valid schedule
generated based on slack-based list scheduling. The execution
length of every scheduled event is extended locally by reducing
its voltage and clock frequency without violating its timing
constraints. The schedule-shifting algorithm tries to evenly
extend the execution length of every scheduled event on a
processor by using global schedule slot shifting [15]. The
critical-path-analysis algorithm uses Algorithm 1 to generate
the speed reduction ratios for all the statically scheduled events.
The critical-path-analysis + execution-order-refinement
algorithm uses Algorithm 2 along with Algorithm 1 to refine the
execution order of scheduled events. Since only processors are
voltage scalable, all the different algorithms have the same
power consumption on communication links. Hence, we only
compare the power consumption on processors. The voltage can
be varied from 3.3V to 1.4V. The power consumption is
calculated based on Equation (2), where tV equals 0.8V, and is
normalized to the power consumption under maximum supply
voltage. The critical-path-analysis algorithm reduces processor
power consumption by an average (maximum) of 30% (44%)
over the list-scheduling algorithm, and by an average
(maximum) of 9% (14%) over the schedule-shifting algorithm.
The critical-path-analysis + execution-order-refinement
algorithm further reduces processor power consumption by an
average (maximum) of 7% (15%) over the critical-path-analysis
algorithm. In all the test cases, the average (minimum) deviation
of the critical-path-analysis + execution-order-refinement
algorithm from the lower bound power consumption is 11%
(5%). The average (minimum) deviation of the schedule-shifting
algorithm from the lower bound power consumption is 32%
(9%). Note that the lower bound is a loose one since it is based
on assumptions that are not valid (e.g., no precedence
relationships and deadlines exist). The CPU times (933Mhz
Pentium III with 258MB memory) for the five tests are 2.2s, 5s,
2s, 35s and 0.4s, respectively, for the critical-path-analysis
algorithm, and 11s, 30s, 8s, 211s and 0.4s, respectively, for the
critical-path-analysis + execution-order-refinement algorithm.

Table 2: Characteristics of different systems
Test 1 2 3 4 5

No. tasks 177 455 204 380 120
No. inter-PE edges 173 229 157 434 65
No. PEs/ No. links 3/3 4/4 3/3 5/4 3/2

Utilization factor for each processor (0.48,0.57,0.56) (0.40,0.41,0.69,0.78) (0.31,0.51,0.57) (0.42,0.44,0.45,0.64,0.62) (0.81,0.8,0.8)

Fig. 10: Determining the on-line speed reduction ratio for
the current statically scheduled event

}
}

;)_(
;_

)_(
}

}
}

;_
;_

){_(
;_/)(

{
{

;_
){1(

}
}

;__
;/__

{
;0_

{
){,(__:3

;

max

 rd

prevpathcriticalend
ratiomin return

currentpathcriticalif

ipathcritical
ratioratiomin

ratiominratioif
lengthpathrdratio

end to i from j for
end to current from i for

infinityratiomin
while

lengthpathlengthpath
flengthpathlengthpath

end to i from j for
lengthpath

end to current from i for
endcurrentratioonlinefind Algorithm

sourceathcritical_pend
source

source

source

jiij

ji

jji

=
→=

==

=
=

<
−=

=

=
+=

=

→

→
→ η

Table 3: Characteristics of soft aperiodic tasks

Test 1 2 3 4 5
Average arrival rate (No. arrivals/ms) 0.047 0.047 0.047 0.047 0.01

Average execution time (ms) 7 13 5 4 11.6
Total no. of soft tasks simulated 921 943 957 956 359

For on-line variable voltage scheme scheduling, in Fig. 12

we also compare four different scheduling algorithms, which are
based on four different initial static schedules, optimized by
scheduling algorithms list-scheduling, schedule-shifting,
critical-path-analysis and critical-path-analysis + execution-
order-refinement, respectively. All the four on-line algorithms
re-compute the speed reduction ratio at run-time for the adjacent
set of events, as discussed in Section 4.2. The aperiodic task
arrivals are modeled as a Poisson process. The actual execution
cycle counts of statically scheduled events are uniformly
distributed in the range of 60% to 100% of their worst-case
execution cycle counts. The characteristics of soft aperiodic
tasks are shown in Table 3. Figs. 12(a) and (b) show the results
for average response time of all soft aperiodic tasks and
processor power consumption, respectively. The critical-path-
analysis + execution-order-refinement algorithm performs the
best in terms of both average power consumption and average
response time for soft aperiodic tasks. It reduces processor
power consumption (average response time of soft tasks) by an
average of 28% (37%) over the list-scheduling algorithm, and by
an average of 12% (13%) over the schedule-shifting algorithm.
This indicates that the heuristics based on critical path analysis
and task execution order refinement not only improve the
efficiency of variable voltage scaling, but also improve the slack
time distribution so that soft aperiodic tasks can get served more
efficiently without violating the timing constraints of statically
scheduled events.

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 p
ro

ce
ss

o
r

p
o

w
er

co

n
su

m
p

ti
o

n

Test 1 Test 2 Test 3 Test 4 Test 5
List-scheduling
Schedule-shifting
Critical-path-analysis
Critical-path-analysis+Execution-order-refinement
Lower-bound

Fig. 13 compares three different on-line schemes, all of

which based on the static schedule generated by the critical-
path-analysis + execution-order-refinement algorithm. For
every statically scheduled event, on-line Scheme 1 (latest-finish-
time) calculates the speed reduction ratio for the currently

dispatched event by extending its execution length to its latest
finish time. On-line Scheme 2 (finish-time) calculates the speed
reduction ratio by extending its execution length to its finish
time in the off-line variable voltage schedule on each processor.
On-line Scheme 3 (re-compute) re-computes the scaling ratio at
run-time as discussed in Algorithm 3. We can see that Schemes
latest-finish-time and finish-time both achieve a very close
power consumption reduction to Scheme re-compute, while
sacrificing the response times of soft aperiodic tasks. Scheme re-
compute achieves the best trade-off between processor power
consumption and response times of soft aperiodic tasks.

0

5

10

15

20

25

A
ve

ar
g

e
re

sp
o

n
se

 t
im

e
o

f
so

ft
 a

p
er

io
d

ic
 t

as
ks

 (
m

s)

Test 1 Test 2 Test 3 Test 4 Test 5

On-line list-scheduling
On-line schedule-shifting
On-line critical-path-analysis
On-line critical-path-analysis + execution-order-refinement

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 p
ro

ce
ss

o
r

p
o

w
er

 c
o

n
su

m
p

ti
o

n

Test 1 Test 2 Test 3 Test 4 Test 5
On-line lis t-s cheduling
On-line s chedule-s hifting
On-line critical-path-analys is
On-line critical-path-analys is + execution-order-refinement

6. Conclusions
This paper discussed efficient static and on-line variable

voltage scheduling algorithms for distributed real-time
embedded systems. The static scheduling algorithm is based on

Fig. 12: Comparison of on-line algorithms based on four
different static schedules

(a)

Fig. 11: Average processor power consumption
for different static scheduling algorithms

(b)

critical path analysis and task execution order refinement,
motivated by the fact that power consumption is normally a
convex function of processor clock frequency. The algorithm
efficiently reduces power consumption of processors. The on-
line algorithm utilizes a combined static and dynamic approach,
with an objective of providing best-effort service to soft
aperiodic tasks and reducing the system power consumption,
under the constraint that hard deadline and precedence
relationships of statically scheduled events are guaranteed. The
static schedule optimized through critical path analysis and task
execution order refinement, which the on-line algorithm is based
on, also helps improve the slack distribution in the static
schedule and results in a better service of soft aperiodic tasks.
The on-line analysis of clock frequencies and supply voltages,
incorporating both run-time variations and static hints, can
achieve a better trade-off between average response time of soft
aperiodic tasks and system power consumption.

0

10

20

30

40

50

60

70

A
ve

ar
g

e
re

sp
o

n
se

 t
im

e
o

f
so

ft

ap
er

io
d

ic
 t

as
ks

 (
m

s)

Test 1 Test 2 Test 3 Test 4 Test 5

Latest-finish-time Finish-time Re-compute

0

0.5

1

1.5

2

N
o

rm
al

iz
ed

 p
ro

ce
ss

o
r

p
o

w
er

 c
o

n
su

m
p

ti
o

n

Test 1 Test 2 Test 3 Test 4 Test 5
Latest-finish-time Finish-time Re-compute

References

[1] W. H. Wolf, “Hardware-software co-design of embedded
systems,” Proc. IEEE, vol. 82, pp. 967-989, July 1994.

[2] C. Shen and K. Ramamritham, “Resource reclaiming in
multiprocessor real-time systems,” IEEE Trans. Parallel &
Distributed Systems, vol. 4, no. 4, pp. 382-397, Apr. 1993.
[3] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm
for scheduling soft-aperiodic tasks in fixed-priority preemptive
systems,” in Proc. Real-time Systems Symp., pp. 110-123, Dec.
1992.
[4] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs
for free,” in Proc. Int. Workshop Hardware/Software Codesign,
pp. 97-101, Mar. 1998.
[5] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava, “Power optimization of variable-voltage core-based
systems,” IEEE Trans. Computer-Aided Design, vol. 18, no. 12,
pp. 1702-1714, Dec. 1999.
[6] Y. Shin and K. Choi, “Power conscious fixed priority
scheduling for hard real-time systems,” in Proc. Design
Automation Conf., pp. 134-139, June 1999.
[7] T. Pering, T. Burd, and R. Brodersen, “The simulation and
evaluation of dynamic voltage scaling algorithms,” in Proc. Int.
Symp. Low Power Electronics and Design, pp. 76-81, Aug.
1998.
[8] A. Manzak and C. Chakrabarti. “Variable voltage task
scheduling algorithms for minimizing energy,” in Proc. Int.
Symp. Low Power Electronics and Design, Aug. 2001.
[9] E. L. Lawler and C. U. Martel, “Scheduling periodically
occurring tasks on multiple processors,” Information Processing
Letters, vol. 7, pp. 9-12, Feb. 1981.
[10] G. Fohler, “Joint scheduling of distributed complex
periodic and hard aperiodic tasks in statically scheduled
systems,” in Proc. Real-time Systems Symp., pp. 152-161, Dec.
1995.
[11] S. Choi and A. K. Agrawala, “Scheduling aperiodic and
sporadic tasks in hard real-time systems,” Tech. Rep. CS-TR-
3794, University of Maryland, College Park, Dept. of Computer
Science, May 1997.
[12] F. Yao, A. Demers, and S. Shenker, “A scheduling model
for reduced CPU energy,” in Symp. Foundations of Computer
Science, pp. 374-382, Oct. 1995.
[13] J. Pouwelse, K. Langendoen, and H. Sips, “Energy priority
scheduling for variable voltage processors,” in Proc. Int. Symp.
Low-Power Electronics and Design, Aug. 2001.
[14] G. Quan and X. Hu, “Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors,” in Proc. Design Automation Conf., pp. 828-833,
June 2001.
[15] J. Luo and N. K. Jha, “Power-conscious joint scheduling of
periodic task graphs and aperiodic tasks in distributed real-time
embedded systems,” in Proc. Int. Conf. Computer-Aided Design,
pp. 357-364, Nov. 2000.
[16] J. Luo and N. K. Jha, “Battery-aware static scheduling for
distributed real-time embedded systems,” in Proc. Design
Automation Conf., pp. 444-449, June 2001.
[17] C. M. Woodside and G. G. Monforton, “Fast allocation of
processes in distributed and parallel systems,” IEEE Trans.
Parallel & Distr. Syst., vol. 4, no. 2, pp. 164-174, Feb. 1993.
[18] C.M. Krishna and L.-H. Lee, “Voltage-clock-scaling
adaptive scheduling techniques for low power in hard real-time
Systems,” in Proc. Real Time Technology and Applications
Symp., May 2000.
[19] T. Ishihara and H. Yasuura, “Voltage scheduling problem
for dynamically variable voltage processors,” in Proc. Int. Symp.
Low Power Electronics and Design, pp.197-202, Aug. 1998.
[20] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective core-
based single-chip system synthesis,” in Proc. Design
Automation & Test in Europe Conf., pp. 263-270, Mar. 1999.

(a)

Fig. 13: Comparison of three on-line schemes based on the
same static schedule generated by the critical-path-

analysis+ execution-order-refinement algorithm

(b)

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

