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Abstract� 
This paper addresses the problem of static and dynamic 

variable voltage scheduling of multi-rate periodic task graphs 
(i.e., tasks with precedence relationships) and aperiodic tasks in 
heterogeneous distributed real-time embedded systems. Such an 
embedded system may contain general-purpose processors, 
field-programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs). Variable voltage scheduling 
is performed only on general-purpose processors. The static 
scheduling algorithm constructs a variable voltage schedule via 
heuristics based on critical path analysis and task execution 
order refinement. The algorithm redistributes the slack in the 
initial schedule and refines task execution order in an efficient 
manner.  The variable voltage schedule guarantees all the hard 
deadlines and precedence relationships of periodic tasks.  The 
dynamic scheduling algorithm is also based on an initially valid 
static schedule. The objective of the on-line scheduling 
algorithm is to provide best-effort service to soft aperiodic tasks, 
as well as to reduce the system power consumption by 
determining clock frequencies (and correspondingly supply 
voltages) for different tasks at run-time, while still guaranteeing 
the deadlines and precedence relationships of hard real-time 
periodic tasks. 

 
1. Introduction 

This paper addresses the problem of static and dynamic 
variable voltage scheduling of hard and soft real-time tasks in 
heterogeneous distributed real-time embedded systems [1], in 
which processing elements (PEs) can be general-purpose 
processors, FPGAs or ASICs. The embedded system may have 
both periodic tasks with hard deadlines and precedence 
relationships and aperiodic tasks with soft deadlines. The goal 
of our scheduling algorithms is to provide good response times 
for soft aperiodic tasks and reduce the power consumption of 
the system, under the constraints that the deadlines of hard real-
time tasks and their precedence relationships are guaranteed. It 
is well-known that variable voltage scaling, which refers to 
varying the speed of a processor by changing the clock 
frequency along with the supply voltage, has a high potential for 
reducing both energy and power consumption. Hence, in this 
paper, we focus on developing a power-efficient variable 
voltage scheduling algorithm for heterogeneous distributed 
embedded systems.  

There have been extensive studies in the literature on 
scheduling of periodic tasks, aperiodic tasks, and their 
combinations. The algorithm given in [3] uses slack stealing, 
which serves aperiodic tasks by stealing all the processing time 
it can from the periodic tasks. The method in [2] studies 
resource reclaiming in shared-memory real-time multiprocessor 
systems, where resource reclaiming refers to exploiting a PE at 
run-time when the actual execution time of a task is less than its 
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specified worst-case execution time. Some other work 
addressing joint scheduling of hard periodic tasks and soft 
aperiodic tasks can be found in [10, 11].   

There is some work addressing variable voltage scheduling 
as well.  The work in [12] gives an off-line algorithm, which 
generates a minimum-energy preemptive schedule for a set of 
independent tasks. The work in [14] provides a heuristic for a 
similar problem as in [12] for fixed-priority static scheduling. 
The work in [5] proposes a heuristic scheduling algorithm for 
non-preemptive scheduling of a set of independent tasks with 
arbitrary arrival times and deadlines on a variable voltage 
processor, which is an NP-complete problem. The work in [13] 
uses an energy priority heuristic for non-preemptive scheduling. 
The work in [6] presents a power-conscious fixed-priority 
scheduling algorithm. Other works can be found in [7, 8, 18, 
19]. All the above approaches target only a single processor and 
are applicable to only independent tasks. 

In this paper, first, we address the issue of variable voltage 
static scheduling in a heterogeneous distributed embedded 
system for a set of periodic tasks with precedence relationships 
and hard deadlines. A valid power-efficient variable voltage 
schedule is constructed using heuristics based on critical path 
analysis and task execution order refinement.  Second, we 
address the issue of variable voltage joint scheduling of hard 
periodic tasks with precedence relationships along with soft 
aperiodic tasks. We take a combined static and dynamic 
approach. The static scheduling algorithm discussed above is 
used to construct a valid schedule for periodic tasks with 
precedence relationships. The static schedule is only partially 
fixed such that the on-line scheduler can schedule soft aperiodic 
tasks with best effort. The on-line scheduler also dynamically 
determines the speed-reduction ratios for scheduled events 
whenever there are no soft aperiodic tasks pending.  

The new contributions of our approach are as follows. (1) 
Although a lot of previous work has been done to optimize 
power consumption through variable voltage scheduling of 
independent real-time tasks, there is only very limited work 
addressing variable voltage scheduling for distributed real-time 
embedded systems, in which precedence relationships exist 
among tasks [15,16]. In this paper, we develop an efficient 
heuristic for this problem motivated by the fact that the 
processor power consumption is normally a convex function of 
the clock period. Our algorithm is optimal if the problem is 
reduced to non-preemptive static scheduling with fixed-priority 
assignment on a single processor. (2) For the on-line variable 
voltage scheduling algorithm, we develop a unified framework, 
which incorporates slack stealing and resource reclaiming to 
provide best effort service to soft aperiodic tasks. It performs 
run-time analysis of processor clock speeds and voltages 
assigned to statically scheduled periodic tasks, by considering 
dynamic execution time variations. 

 
2. Energy Consumption Model 

This section discusses the relationship between the total 
energy consumption for a set of hard real-time tasks with 
precedence relationships implemented on multiple processors 



  

and their processor execution speeds. Similar discussions can be 
found in [12] for independent tasks on a single processor.  

The periodic tasks are specified in the form of task graphs. 
A task graph is a directed acyclic graph in which each node is 
associated with a task and each edge is associated with the 
amount of data that must be transferred between the two 
connected tasks. The period associated with a task graph 
indicates the time interval after which it executes again. An 
arrival time (deadline), the time by which the task associated 
with the node can begin (must complete) its execution, exists for 
every source (sink) node. Deadlines may exist for some 
intermediate nodes as well.  Fig. 1 shows two task graphs, where 
for simplicity both are assumed to have the same period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The processor clock frequency, f, can be expressed in terms 

of the supply voltage, ddV , and threshold voltage, tV , as 
follows (k is a constant): 
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The processor power, p, can be expressed in terms of the 
frequency, f,  switched capacitance, N, and the supply 
voltage, ddV , as:  
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which can be proved to be a convex function of f. The 
techniques presented in this paper are still valid even if Equation 
(1) is not accurate enough, as long as p is still a convex function 
of f. 

Given the number of clock cycles, iη , for executing task i, 

its energy consumption, iE , under supply voltage iV  and clock 

frequency, if , is given by 

)(*)/( iiii fpfE η=     (4) 
On any PE or link, all the tasks or communication events 

should be executed in non-overlapping intervals. Assume task i 
starts at istart and ends at ifinish , and its execution intervals 

are [ ]11 , ii ba , [ ]22, ii ba , …, [ ]ikik ba , , where 

 iikikiiiii finishbababastart =≤≤≤≤≤= ...2211 .  
Assume for inter-PE communication edge j, the execution time 
is ],[ jj finishstart . Based on the traditional assumption in 

distributed computing, the execution of intra-PE communication 
is assumed to take zero time. The total energy consumption for a 
set of tasks on different processors is: 
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under the following constraints:  
)max,max( )( jirspredecessojii finisharrivalstart ∈≥                (6) 

)min,min( )( jisuccessorsjii startdeadlinefinish ∈≤   (7) 

for task or communication edge i. 
Also, 

ikik) to ik kk fab η=−∑ ∈ *)(1(    (8) 

for task i. 
In the above equations, predecessors(i) (successors(i)) refers 

to all the predecessors (successors) of task or communication 
edge i in the task graphs, and iarrival  ( ideadline ) is its arrival 
time (deadline) specified in the task graphs.  If unspecified, 

)(max )( jirspredecessoji arrivalarrival ∈= ,  

and 
 )(min )( jisuccessorsji deadlinedeadline ∈= .   

The objective of variable voltage scheduling is to assign 
different clock frequencies kf  and supply voltages kV  to 

different execution intervals [ ]kk ba , on the processors which 
are voltage scalable, in order to reduce the system power 
consumption.  

 
3. Static Variable Voltage Scheduling for Multi-

rate Periodic Task Graphs 
This section presents a variable voltage static scheduling 

algorithm for multi-rate periodic tasks in an embedded system 
consisting of a network of multiple heterogeneous PEs connected 
by communication links. An embedded system is a multi-rate 
system if it contains multiple task graphs with different periods.  
Given an embedded system specification, a hardware-software 
co-synthesis system [1] determines the number and type of 
PEs/communication links (i.e., allocation), and the 
assignment/scheduling of tasks/communications on different 
PEs/links.  

Allocation/assignment and scheduling are each NP-complete 
for distributed systems [1]. To reduce the problem complexity, 
assume we start with a valid PE/link allocation and 
task/communication assignment, as well as a valid static schedule 
under maximum supply voltage and processor frequency maxf . 

In this paper, the static schedule is generated based on a list-
scheduling algorithm using the inverse of slack time as the task 
priority [20].  The static schedule consists of a set of scheduled 
events, which can be a task, a communication event, or a 
preemption event. First, we discuss the critical path analysis 
algorithm, which redistributes the slack time in the initial valid 
schedule. Second, we discuss a task execution order refinement 
algorithm, which refines the execution order imposed by the 
slack-based priority assignment in the initial schedule. We want 
to construct a new valid variable voltage schedule in which a 
processor’s clock frequency can be varied along with the supply 
voltage for different time intervals. The new schedule still 
guarantees all the hard deadlines and precedence relationships. It 
is well known that there exists a feasible schedule for the periodic 
task graphs if and only if there exists a feasible schedule for the 
hyperperiod, which is the least common multiple of all the task 
graph periods in a multi-rate system specification [9]. Hence, the 
validity of the schedule can be determined along one hyperperiod. 

 
3.1 The critical path analysis algorithm 

In this section, we present the critical path analysis 
algorithm for variable voltage scheduling based on an initially 
valid schedule. In the generated variable voltage schedule, all 
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the scheduled events on a PE or a link maintain the same 
execution order as in the initial schedule (the execution order is 
modified later). 

We first create a directed graph ),( EVG , where V is the set 
of vertices, containing all the scheduled events in the initial 
schedule, and E is the set of directed edges between vertices. An 
edge is inserted from one event to another if one is a direct 
predecessor of another in the task graphs, or if one is scheduled 
just ahead of another on the same PE or link. Therefore, these 
edges can represent all the precedence relationships in the 
original task graphs as well as execution ordering information in 
the initial schedule. Every event i can be associated with a start 
constraint ir  or a finish constraint id , which is initialized as 

iarrival  or ideadline , respectively, as defined in Section 2. 
Each node is associated with a weight, which equals its worst-
case execution time. The creation of ),( EVG  can be illustrated 
through Example 1. 
Example 1: Consider the embedded system specification given 
in the form of two task graphs in Fig. 1. Fig. 2 shows the 
corresponding directed ),( EVG  derived for the feasible 
schedule shown in Fig. 3.  The distributed system consists of 
two PEs, PE1 and PE2, connected by a link. The schedule is 
based on the worst-case execution times of tasks and 
communication times, assuming a supply voltage of 3.3V. We 
assume both PE1 and PE2 have communication buffers.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The variable voltage schedule is constructed by determining 

the processor speed reduction ratio for every scheduled event on 
processors, with ratio initialized to one. The algorithm is 
presented as Algorithm 1 in Fig. 4. The algorithm evaluates all 
the paths in graph ),( EVG  and locates the most critical one that 
minimizes the ratio of the total slack time on that path to the 
total worst-case execution time on that path. For a path j, assume 
that it begins with node source and ends with node destination. 
Then the scaling factor of path j, jscale , is defined as 

∑−=
i
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where iexecwst _ is the worst-case execution time of scheduled 
event i on path j. The critical path is the one that minimizes the 
scaling factor. 

The scaling factor of path j for tasks on processors, 

jscaletask _ , is defined as  
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jscaletask _  is the scaling factor by which the execution 

time of  all the tasks scheduled on variable voltage processors 
can be extended without violating the start constraint and finish 
constraint of path j.  jscaletask _  is normally larger 

than jscale . 

For an event scheduled on a processor, we have 
)//(_ max iii ratiofexecwst η= , where iη is the worst-case 

execution cycle count of task i.  
The critical path can be located in the following way. First, 

we locate the longest path, evaluated using the total worst-case 
execution times, between any source and destination pair. Then 
we pick the path that has the smallest scaling factor. Next, we 
multiply the speed reduction ratio for all the events scheduled 
on processors by a multiplying ratio, which can be set to be 
equal to jscale  of critical path j.  The speed reduction ratio for 

communication events and tasks implemented on FPGAs or 
ASICs remains unchanged (as they are assumed to be not 
variable voltage scalable).  When jscale is below a threshold, 

we delete all the vertices on critical path j as well as their 
incoming and outgoing edges in ),( EVG , and update all the 
start and finish constraints of other vertices in a manner 
restricted by the execution length of the critical path, evaluated 
under new clock frequencies. In Algorithm 1, threshold is a 
value which is near or equal to 1.0 and is defined in a way so as 
to control the convergence rate with which the critical path 
approaches the state of being deleted, as well as to reduce the 
overhead of unnecessarily extending the execution time (with a 
ratio threshold≤ ) of tasks allocated to hardware and 
communication events.  The above process is repeated until 

),( EVG is empty. For an acyclic graph, the algorithm to locate 
the single-source longest paths has a complexity of 

|)||(| EVO + , and the overall algorithm has a complexity of 
|))||(|||*( EVVkO + , where k is the number of times the above 

process is repeated until ),( EVG  is empty. k is normally much 
smaller than ||V .  Since the speed reduction ratios need to be 
multiplied by multiplying ratio for events scheduled on 
processors only, we can store scaling factors for a set of critical 
paths 

 }_,...,_,_{ 21 npathcriticalpathcriticalpathcritical , 

where ipathcritical _ refers to the i-th most critical path. Let   
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 In the case of scheduling on a single processor, ),( EVG  is 
a set of vertices with an edge between any two adjacently 
scheduled events. We can compute the longest path length 
between any pair of vertices in the beginning. The threshold 

should be set to 1.0. The overall complexity is )|(| 2VO .  
The rationale behind Algorithm 1 includes: 
1. For each critical path, distributing the free slack time 

evenly is optimal due to the fact that power 
consumption is a convex function of processor speed, 
as discussed in Section 1.  

2. For the overall algorithm, guaranteeing an equal speed 
reduction ratio on the most critical path first is a step 
in the right direction for reducing the power 

Fig. 3: Initial valid schedule 
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consumption because it guarantees that all the other 
events can achieve a speed reduction ratio at least as 
high as on the most critical path. This is helpful in 
reducing the variance of the speed reduction ratios for 
various time intervals on other paths, therefore, 
reducing power consumption as well, again due to 
characteristics of the convex function. 
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The overall algorithm is not optimal, however, because the 

updated start and finish constraints of other events are dependent 
on how the slack times are distributed on the critical path, when 
the critical path is deleted. However, if we reduce the problem to 
a non-preemptive scheduling algorithm on a single processor 
with fixed-priority assignment, since the execution order of all 
the jobs can be determined, Algorithm 1, which resembles the 
approach in [12], can be shown to be optimal for minimizing the 
power consumption. For the sake of brevity, we omit the proof. 
For the general case as well, Algorithm 1 performs very well, as 
evidenced by experimental results later.  
  
3.2 Task execution order refinement 

The scheduling priority assignment based on the inverse of 
slack may be a good heuristic for constructing a valid schedule 
to guarantee deadlines [20], but it may not be very efficient for 
fully exploiting the slack time for variable voltage scheduling. 
Therefore, we refine the task execution ordering based on the 
new variable voltage schedule, in which the execution time of 

every scheduled event is multiplied by its corresponding speed 
reduction ratio. The algorithm is shown in Fig. 5. In Algorithm 
2, jsched  is the list of scheduled events on processor j in the 

order of their execution. Two adjacent events are 
interchangeable if interchanging their execution order will not 
violate any timing and precedence relationships in the new 
variable voltage schedule. In Algorithm 2, ),( jieinterchang  
interchanges the order of i and j in the list and returns a value 
that points to the second event after interchanging. 
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The new task execution order generated in this way can still 

guarantee schedule validity and has the potential to achieve 
larger power reduction because more flexibility is introduced in 
the schedule.  Then we can apply Algorithm 1 based on the new 
execution order. Task execution order refinement can be 
repeated until the power reduction ratio between two iterations 
is less than some pre-specified threshold. 

 
3.3 Illustrative example 

Example 2 is used to illustrate the critical path analysis 
algorithm. 
Example 2: We compare three different schemes. In Scheme 1, 
we apply Algorithm 1 to the directed graph in Fig. 2, assuming 
threshold in Algorithm 1 is defined as one. In Fig. 2, the first 
critical path is (t1→e1→t2), with a scaling factor of 19/15 
calculated by Equation (9), and a task-scaling factor of 

12/161)12/)1519(( =+− , calculated by Equation (10). The 
second critical path is (t1→e1→e2→t5), with a scaling factor of 
22/16. We take the minimum of 16/12 and 22/16, which is 
16/12. Then all task execution times in the schedule are 
extended by a ratio of 16/12, as shown in Fig. 6. In the next step, 
t1, e1 and t2 are deleted from ),( EVG , the start constraint of 
e2 and finish constraint of t4 are both updated to 11. Next, 
(t3→t4) is identified as the critical path, and all undeleted task 
execution times are extended by a ratio of 11/8, as shown in Fig. 
7. Finally, the execution time of t5 is extended by a ratio of 
7/5.5, as shown in Fig. 8.  

In Scheme 2, instead of starting from the critical path, we 
first distribute the slack time equally on path (t3→t4→t2), 
which is the path with the second smallest task-scaling factor. 
The corresponding variable voltage schedule is shown in Fig. 9.  
In Scheme 3, we compute the optimal speed reduction ratios for 
this small example, assuming the power consumption is 
computed based on Equation (3) and that tV  is 0.8V. The power 
consumption during idle time on processors is assumed to be 
zero.  The speed reduction ratios for different tasks and the 
overall power consumption on processors are compared in Table 
1. The power number is normalized to the power consumption 
under maximum supply voltage (3.3V).  The deviation of the 
power consumption of Scheme 1 from the optimal solution is 

Fig. 4: Algorithm for determining speed reduction ratios 
for scheduled events on variable voltage processors 

Fig. 5: Algorithm for task execution order refinement 



  

Fig. 8: Task execution times multiplied by a ratio of 7/5.5 
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only 0.1%, while for scheme 2 it is 5.8%. For larger examples, 
as shown in Section 5, our scheme has a greater impact. 

  
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  On-line Variable voltage Scheduling Algorithm 
To maintain the simplicity and performance of the on-line 

scheduling algorithm, we use a combined static and dynamic 
approach. We start from an initially valid static schedule. The 
static schedule can be generated from critical path analysis and 
task execution order optimization techniques presented in the 
last section. This helps determine the task execution order and 

position the communication events such that the slack time is 
distributed more efficiently in a global manner for better variable 
voltage scheduling. However, processor clock frequencies as 
well as corresponding supply voltages are determined on-line in 
order to accommodate run-time execution time variations. The 
static schedule is partially fixed to guide the on-line scheduler in 
the following way: 
(1) The schedule of all the communication events is kept fixed. 
This helps localize any dynamic decisions to each processor. 
Hence, no global re-scheduling is required at run-time. Also, the 
order of all the events scheduled on every processor and link is 
kept fixed. This helps maintain the precedence constraint among 
the tasks assigned to the same processor. 
(2) A table generated off-line provides the earliest start and 
latest finish times for each scheduled event. This guides the on-
line scheduler in providing best-effort service to soft aperiodic 
tasks without violating the timing constraints of statically 
scheduled events. 
(3) We also determine an off-line variable voltage schedule for 
each processor using Algorithms 1 and 2. In applying these 
algorithms, the vertices in ),( EVG  are all the scheduled events 

on a processor in one hyperperiod. The start constraint ir  or 

finish constraint id of a vertex is initialized as its earliest start 
time or its latest finish time, respectively.  Recall that Algorithm 
1 is optimal in the case of scheduling on a single processor with 
a fixed execution order of events. The off-line table also stores 
the start time and the speed reduction ratio of every scheduled 
event in the off-line variable voltage schedule. 

The earliest start time is the earliest time by which an event 
can begin its execution without violating its arrival time and 
precedence relationships. The latest finish time is the latest time 
by which an event must complete its execution without violating 
the deadline and precedence relationships of itself as well as any 
other subsequent event scheduled on the same processor. They 
are computed in the following way. For the last event on a 
processor, we have 

),min(
__

_

_
dhyperperiodeadline

timefinishlatest

eventlast

eventlast =
                   (11) 

For any other event i on a PE, the latest finish time is 
calculated by 
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where out_edges(i) refers to all the inter-PE out-going 
communication edges of i, next is the event scheduled just after i 
on the same processor, and η  is the worst-case execution cycle 
count of an event. 
For event i on a PE, the earliest start time is calculated by 

)_max,max(
__

)(_ jiedgesinji
i

timefinisharrival
timestartearliest

∈

=
     (13) 

where in_edges(i) refers to all the inter-PE in-coming 
communication edges of i.  
 

 
Table 1: Comparison of power consumption of processors for different schemes 

Speed reduction ratio of statically scheduled tasks  

t1 t2 t3 t4 t5 

 Normalized power 
consumption  

Scheme 1 8/6 8/6 5.5/3 5.5/3 7/3 0.5856 
Scheme 2 6.5/6 9.5/6 4.75/3 4.75/3 8.5/3 0.6190 
Scheme 3 7.751/6 8.249/6 11.249/6 11.249/6 6.751/3 0.5849 

 
 

 
 

Fig. 6: Task execution times multiplied by a ratio of 16/12 
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4.1 On-line dispatching of soft aperiodic tasks 
Soft aperiodic tasks are served in first-in-first-out (FIFO) 

order. In order to provide best effort service to aperiodic tasks, 
the on-line scheduler on each PE dispatches tasks and 
communication events in the following way. Whenever there are 
soft aperiodic tasks pending, and the latest start time (derived 
from the latest finish time) of the current statically scheduled 
event has not been reached, the scheduler dispatches the 
aperiodic task under maximum speed. If there are no aperiodic 
tasks pending, and the earliest start time of the current event has 
been reached, the scheduler dispatches the current event and 
determines the clock frequency and supply voltage for it at run-
time.  If the current event is running and an aperiodic task 
arrives, the scheduler detects whether or not servicing the 
aperiodic task will violate the latest finish time of the current 
event. If not, the current event gets preempted and the incoming 
aperiodic task gets dispatched under maximum speed.  

 
 
4.2 Variable voltage scheduling 

Run-time variations can come from remaining execution 
times reclaimed on-line, or from servicing soft aperiodic tasks. 
This makes off-line analysis of the optimal speed reduction ratio 
for each statically scheduled event on every processor no longer 
valid. If there are no soft aperiodic tasks pending, the speed 
reduction ratio for the current statically scheduled event can be 
computed on-line by applying Algorithm 3 in Fig. 10 for a 
sequence of adjacent events (from current to end), including the 
current event and all subsequent events scheduled on the same 
processor in the hyperperiod. In Algorithm 3, the start constraint 

ir  or finish constraint id of an event i is initialized as its 
earliest start time or its latest finish time, respectively. For the 
current event being dispatched, its start constraint r is initialized 
as the current time.  First, the critical path is located for the set 
of adjacent events from current to end. Then the end event is 
updated as the event scheduled just ahead of the source node of 
the critical path. The finish constraint endd  of event end is 

updated as well. The algorithm repeats until the source node of 
the critical path becomes the current event.  The overall 

computation complexity of the algorithm is )( 2mO , where m is 
the number of events the algorithm needs to look at.  

 

5. Experimental Results 
This section presents experimental results to verify the 

efficacy of the proposed methods.  The experiment is performed 
on five different embedded systems. Their characteristics are 
shown in Table 2. Task graphs in Tests 1 to 4 are generated 
using TGFF [4], which is a randomized task graph generator. 
The task graphs in Test 5 are based on a digital signal processing 
example taken from [17]. All the PEs in these systems are 
processors. However, our approach is general enough to be 
applied to embedded systems containing ASICs and FPGAs as 
well.  

We first compare four different static scheduling algorithms 
in Fig. 11. A lower bound of power consumption with the given 
task/communication assignment is computed by evenly 
extending the execution length of every scheduled event on a 
processor to make utilization of each processor 1.0, under the 
assumption that no deadlines and precedence relationships exist.  
The list-scheduling algorithm just uses the initial valid schedule 
generated based on slack-based list scheduling. The execution 
length of every scheduled event is extended locally by reducing 
its voltage and clock frequency without violating its timing 
constraints. The schedule-shifting algorithm tries to evenly 
extend the execution length of every scheduled event on a 
processor by using global schedule slot shifting [15].  The 
critical-path-analysis algorithm uses Algorithm 1 to generate 
the speed reduction ratios for all the statically scheduled events. 
The critical-path-analysis + execution-order-refinement 
algorithm uses Algorithm 2 along with Algorithm 1 to refine the 
execution order of scheduled events. Since only processors are 
voltage scalable, all the different algorithms have the same 
power consumption on communication links. Hence, we only 
compare the power consumption on processors. The voltage can 
be varied from 3.3V to 1.4V. The power consumption is 
calculated based on Equation (2), where tV  equals 0.8V, and is 
normalized to the power consumption under maximum supply 
voltage. The critical-path-analysis algorithm reduces processor 
power consumption by an average (maximum) of 30% (44%) 
over the list-scheduling algorithm, and by an average 
(maximum) of 9% (14%) over the schedule-shifting algorithm. 
The critical-path-analysis + execution-order-refinement 
algorithm further reduces processor power consumption by an 
average (maximum) of 7% (15%) over the critical-path-analysis 
algorithm. In all the test cases, the average (minimum) deviation 
of the critical-path-analysis + execution-order-refinement 
algorithm from the lower bound power consumption is 11% 
(5%). The average (minimum) deviation of the schedule-shifting 
algorithm from the lower bound power consumption is 32% 
(9%).  Note that the lower bound is a loose one since it is based 
on assumptions that are not valid (e.g., no precedence 
relationships and deadlines exist). The CPU times (933Mhz 
Pentium III with 258MB memory) for the five tests are 2.2s, 5s, 
2s, 35s and 0.4s, respectively, for the critical-path-analysis 
algorithm, and 11s, 30s, 8s, 211s and 0.4s, respectively, for the 
critical-path-analysis + execution-order-refinement algorithm. 

Table 2: Characteristics of different systems 
Test 1 2 3 4 5 

No. tasks 177 455 204 380 120 
No. inter-PE edges 173 229 157 434 65 
No. PEs/ No. links 3/3 4/4 3/3 5/4 3/2 

Utilization factor for each processor (0.48,0.57,0.56) (0.40,0.41,0.69,0.78) (0.31,0.51,0.57) (0.42,0.44,0.45,0.64,0.62) (0.81,0.8,0.8) 

Fig. 10:  Determining the on-line speed reduction ratio for 
the current statically scheduled event 
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Table 3: Characteristics of soft aperiodic tasks 

Test 1 2 3 4 5 
Average arrival rate (No. arrivals/ms) 0.047 0.047 0.047 0.047 0.01 

Average execution time (ms) 7 13 5 4 11.6 
Total no. of soft tasks simulated 921 943 957 956 359 

 
For on-line variable voltage scheme scheduling, in Fig. 12 

we also compare four different scheduling algorithms, which are 
based on four different initial static schedules, optimized by 
scheduling algorithms list-scheduling, schedule-shifting, 
critical-path-analysis and critical-path-analysis + execution-
order-refinement, respectively. All the four on-line algorithms 
re-compute the speed reduction ratio at run-time for the adjacent 
set of events, as discussed in Section 4.2. The aperiodic task 
arrivals are modeled as a Poisson process. The actual execution 
cycle counts of statically scheduled events are uniformly 
distributed in the range of 60% to 100% of their worst-case 
execution cycle counts. The characteristics of soft aperiodic 
tasks are shown in Table 3. Figs. 12(a) and (b) show the results 
for average response time of all soft aperiodic tasks and 
processor power consumption, respectively. The critical-path-
analysis + execution-order-refinement algorithm performs the 
best in terms of both average power consumption and average 
response time for soft aperiodic tasks.  It reduces processor 
power consumption (average response time of soft tasks) by an 
average of 28% (37%) over the list-scheduling algorithm, and by 
an average of 12% (13%) over the schedule-shifting algorithm. 
This indicates that the heuristics based on critical path analysis 
and task execution order refinement not only improve the 
efficiency of variable voltage scaling, but also improve the slack 
time distribution so that soft aperiodic tasks can get served more 
efficiently without violating the timing constraints of statically 
scheduled events. 
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Fig. 13 compares three different on-line schemes, all of 

which based on the static schedule generated by the critical-
path-analysis + execution-order-refinement algorithm. For 
every statically scheduled event, on-line Scheme 1 (latest-finish-
time) calculates the speed reduction ratio for the currently 

dispatched event by extending its execution length to its latest 
finish time. On-line Scheme 2 (finish-time) calculates the speed 
reduction ratio by extending its execution length to its finish 
time in the off-line variable voltage schedule on each processor. 
On-line Scheme 3 (re-compute) re-computes the scaling ratio at 
run-time as discussed in Algorithm 3. We can see that Schemes 
latest-finish-time and finish-time both achieve a very close 
power consumption reduction to Scheme re-compute, while 
sacrificing the response times of soft aperiodic tasks. Scheme re-
compute achieves the best trade-off between processor power 
consumption and response times of soft aperiodic tasks. 
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6. Conclusions 
This paper discussed efficient static and on-line variable 

voltage scheduling algorithms for distributed real-time 
embedded systems. The static scheduling algorithm is based on 

Fig. 12: Comparison of on-line algorithms based on four 
different static schedules  

(a) 

Fig. 11: Average processor power consumption  
for different static scheduling algorithms 

(b) 



  

critical path analysis and task execution order refinement, 
motivated by the fact that power consumption is normally a 
convex function of processor clock frequency. The algorithm 
efficiently reduces power consumption of processors. The on-
line algorithm utilizes a combined static and dynamic approach, 
with an objective of providing best-effort service to soft 
aperiodic tasks and reducing the system power consumption, 
under the constraint that hard deadline and precedence 
relationships of statically scheduled events are guaranteed. The 
static schedule optimized through critical path analysis and task 
execution order refinement, which the on-line algorithm is based 
on, also helps improve the slack distribution in the static 
schedule and results in a better service of soft aperiodic tasks. 
The on-line analysis of clock frequencies and supply voltages, 
incorporating both run-time variations and static hints, can 
achieve a better trade-off between average response time of soft 
aperiodic tasks and system power consumption.  
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(a)

Fig. 13: Comparison of three on-line schemes based on the 
same static schedule generated by the critical-path-

analysis+ execution-order-refinement algorithm  

(b) 
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