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Abstract 
 

 This paper shows that software pipelining can be an 
effective technique for code generation for coarse-grained 
reconfigurable instruction set processors.  The paper 
describes a technique, based on adding an operation 
assignment phase to software pipelining, that performs 
reconfigurable instruction generation and instruction 
scheduling on a combined algorithm.  Although typical 
compilers for reconfigurable processors perform these 
steps separately, results show that the combination enables 
a successful usage of the reconfigurable resources.  The 
assignment algorithm is the key for using software 
pipelining on the reconfigurable processor. 

The technique presented is also able to exploit spatial 
computation inside the reconfigurable functional unit by 
which the output of a processing element is directly 
connected to the input of another processing element 
without the need of an intermediate register.  Results show 
that it is possible to reduce the cycle count by using this 
spatial computation. 

1 Introduction 

VLIW cores are nowadays the processor of choice when 
implementing multimedia applications on low cost 
terminals [1].  Reconfigurable instruction set processors 
(RISP) [2] can potentially reduce the power consumption 
of high performance multimedia applications by fusing the 
concept of a reconfigurable array with a programmable 
processor.  By using reconfigurable hardware, it is possible 
to reduce the number of instructions executed when 
compared to a VLIW processor due to the fact that the 
instruction set is better adapted to the application.  A single 
reconfigurable instruction accounts for several normal 
instructions, thus the number of executed instructions 
decreases (and thus the corresponding power consumption 
from program memory accesses).   

An added benefit is that reconfigurable hardware allows 
for spatial computation [3], which can be used to improve 
performance even further.  Spatial computation allows 
outputs from one processing element of the reconfigurable 

array to be directly connected to the inputs of another 
processing element.  Typically, only temporal computation 
is used in standard processors (i.e. the output from a 
processing element is always stored in an intermediate 
register).  Temporal computation limits the performance of 
the processor by forcing all elements to use the same base 
clock cycle while spatial computation allows a better 
division of the time budget.   

Code generation for reconfigurable instruction set 
processors is extremely difficult due to the complexity of 
the hardware.  Not only the code has to be generated but 
also instructions have to be created and used within the 
generated code.  On multimedia applications, loops are 
typically the most processor intensive part of multimedia 
applications.  Optimization of inner loops is therefore of 
special relevance in the multimedia domain.   

The aim of this paper is to show that software pipelining 
[8], a technique typically used to optimize loops for VLIW 
(very long instruction word) and super scalar processors, 
can be an effective technique for instruction and code 
generation of coarse-grained reconfigurable processors, a 
class of reconfigurable processors of special importance in 
multimedia applications. In software pipelining, iterations 
are initiated at regular intervals and execute 
simultaneously but in different stages of the computation.  
This allows an increase in the amount of available 
parallelism that is exploited with the huge number of 
resources that reconfigurable processors have. Software 
pipelining has been tested on CRISP [7], which is a 
reconfigurable instruction set processor template designed 
for low power multimedia applications.   

Section 2 describes previous work.  Section 3 describes 
CRISP, the target processor of the code generation 
technique and section 4 presents the code generation 
method.  Finally, section 5 presents results followed by 
conclusions in section 0. 

2 Previous work 

The majority of current reconfigurable processors are 
based on fine-grained reconfigurable logic.  The coupling 



between the reconfigurable logic and the processor 
determines how the compiler will work.   

Compilers for tightly coupled processors usually work 
in a two-phase mode: first, new instructions are created, 
and then, they are scheduled with the rest of the code.  The 
most widely used technique [4], analyzes the data 
dependence graph for operation nodes that can be 
collapsed onto a single, more complex, node with multiple 
inputs and a single output (MISO).  The MISOs found are 
then scheduled with the rest of the code as if they were 
normal operations.  The drawback of this approach is that 
only a connected part of the data dependence graph can be 
mapped onto the reconfigurable unit.  It is not possible to 
map two or more non-connected graphs at the same time, 
which thereby limits the obtained performance.   

For less tightly couple reconfigurable logic, the usual 
approach is to map complete loops in the reconfigurable 
logic, like in [6].  The work in [5] combines the complete 
loop into a configuration of the reconfigurable processor.  
The loop is combined into a hyperblock in order to 
increase the parallelism available.  Unfortunately, the 
method only works if the loop fits in the reconfigurable 
array. 

3 The target processor 

CRISP (Configurable and Reconfigurable Instruction 
Set Processor) is an instruction set processor that is 
configurable at design time and reconfigurable at run time 
[7]. It is a VLIW processor composed of a number of fixed 
functional units (FFUs) and a reconfigurable functional 
unit (RFU).  An example instance can be seen on Figure 1.  
As all VLIW processors, the processor executes 
instructions that are composed of parallel operations.  
Operations are executed in the functional units (both fixed 
and reconfigurable). 
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Figure 1 Example CRISP instance 
 

The fixed functional units are the functional units found 
in typical VLIW processors, such as an integer unit, a 
multiplier or a load/store unit.  The reconfigurable 
functional unit externally looks like the other functional 
units but its behavior is reconfigurable.  It receives an 
opcode (operation code), which will determine the 
operation to be performed, and one or more operands from 
the register file.  As a result, it produces one or more 
results that are written to the register file.  Translation from 
opcode to the actual control lines driving the hardware is 
not done in the usual manner.  Instead of a hardwired 
decoder, the reconfigurable unit has a reconfigurable 
decoder.  This reconfigurable decoder is nothing more than 
a configuration memory addressed by the opcode.  The 
opcode determines which configuration is used in the 
reconfigurable array.  By modifying the contents of the 
configuration memory, it is possible to change the way in 
which the reconfigurable unit behaves.  The instruction set 
of the processor is thus modified.   

Seen from the inside, the reconfigurable functional unit 
is a reconfigurable array of coarse-grained processing 
elements (PEs).  Each processing element is a copy of one 
of the fixed functional units.  The usage of such complex 
units allows for an increase in the performance of the array 
while also drastically reducing the power consumption 
when compared to more traditional approaches such as 
look up tables (LUTs).  This is true because the application 
domain of CRISP (multimedia applications) and the 
hardware have similar granularities (data sizes). 

The processing elements are connected together through 
a full crossbar (not depicted on Figure 1). This crossbar 
can connect the output of any processing element to the 
input of any other processing element. It is also possible to 
connect a processing element to a register from the main 
register file through the RFU ports. In the example 
processor, each cycle two registers can be read from the 
register file and one register can be written (i.e. two input 
ports and one output port).  

Each processing element has a register at its output (see 
Figure 1) that can be optionally bypassed, just like in 
traditional FPGAs.  By combining this optional register 
and the crossbar, it is possible to perform spatial 
computation.  Elements in a data flow chain are connected 
together through the crossbar.  The processing element at 
the end of the chain is registered to combine temporal and 
spatial computation.   

Only the fixed functional units are needed in order to 
execute any program.  The reconfigurable array is used to 
increase performance and decrease power consumption.   

In the case of CRISP, reconfigurable instructions are 
basically expanded onto a set of VLIW instructions 
executed with the processing elements inside the RFU.  It 
is a way to increase the parallelism of the processor 
without the cost of reading an extremely long instruction 
from program memory.  The instructions are instead read 



from the configuration memory, which is a small local 
memory that has low power consumption.  As reloading 
the configuration memory takes time and power, it is 
important to minimize reconfiguration times. 

4 Loop optimization   

This section presents a modified version of software 
pipelining for coarse-grained reconfigurable instruction set 
processors that eliminates the drawbacks of the methods 
introduced in section 2.   

The starting point for any software pipelining algorithm 
is a data dependence graph (DDG) that can express normal 
and loop carried dependences.  Figure 2 is an example 
DDG that will be used to illustrate different steps in the 
algorithm.  The latency of each arc is the latency from 
Table 1.  The graph is composed of two non-connected sub 
graphs, one that performs computations and another one in 
charge of keeping track of the iteration count.  In the 
graph, loop carried dependences are shown with a dashed 
arrow. 

Table 1 Latencies used in the example 
 

 FFU RFU 
LD/ST 2 - 
AU 1 0.25 
LU 1 0.25 
B 1 - 
SHIFT 1 0.5 

 
In order to use software pipelining on the reconfigurable 

processor, it is necessary to realize that the processing 
elements in the reconfigurable array have a similar (or 
identical) complexity to the fixed functional units of the 
processor, and that the processing elements and functional 
units can all be used simultaneously.  With this in mind, 
the reconfigurable processor can be seen as a traditional 
VLIW processor with two datapath clusters: a main cluster 
(MC), composed of the fixed functional units, and a 
reconfigurable cluster (RC), composed of the processing 
elements of the reconfigurable array.  

 
Some operations in the reconfigurable processor can be 

performed in both clusters.  An operation assignment 
phase to decide in which cluster an operation is performed 
has been added before each scheduling attempt. This 
assignment phase will place each operation in one of the 
two clusters. 

The modified software pipelining algorithm is as 
follows (MII, minimum iteration interval and II, iteration 
interval): 
1. Calculate the MII and set II = MII. 
2. Perform operation assignment until a valid assignment 

is found.  If unsuccessful, increment II and go to 2. 

3. Do modulo scheduling on the loop with II and with 
the assignment found in step 2.  If failure, increment II 
and go to 2. 

The iteration interval (II) is the delay between the 
initiations of consecutive iterations in a software pipelined 
loop. It determines the average number of cycles that will 
be spent per iteration. The MII is the minimum iteration 
interval that the loop can have.  Once the MII is estimated, 
an attempt to assign and schedule the loop with the II set to 
MII is made.  If no solution is found to either step, the 
iteration interval is increased by one and a new assignment 
and scheduling attempts are made.  This process continues 
until a valid assignment and schedule are found or a 
maximum II is reached.  In the latter case, software 
pipelining cannot be applied to the loop and the loop is 
generated without software pipelining. 

 

AND 

LD LD 

SHR 

ADD SUB 

ADD SUB ADD SUB 

SHL 

OR 

ST 

SHL 

OR 

ST 

ADD 

BNEQ AND SHR 

ADD SUB 

 

Figure 2 Example data dependence graph. The 
coloring (see 4.1) represents the graph after initial 

assignment.  Grey nodes are in the main cluster.  White 
nodes are in the reconfigurable cluster. 

 
The MII is due to resource and dependence constraints.  

The final MII is the maximum of the MII imposed by each 
type of constraint.  For an explanation on how to calculate 
the MII due to dependence constraints, see [8]. 

The MII due to resource constraints on a resource R is 
calculated by dividing the number of uses of the resource 
R by the number of resources of type R.  The final MII is 
the maximum MII of all resource types.  Before 
assignment, this number is calculated adding together 
similar resources from the MC and the RC.  For example, 
the MII resource calculation can be seen on Table 2.  In 
this case the MII is 2. 

The assignment phase must assign, for a given iteration 
interval (II), the operations to either of the clusters, MC or 



RC, while ensuring that there are enough resources to 
allow a schedule.  Resources are the computation elements 
(processing elements and FFUs) as well as the RFU ports 
used to transfer data to and from the RFU. The RFU ports 
are modeled as a resource with zero latency during 
scheduling.  

Table 2 MIIresource calculation for the example  
 

Resources  
Main 

cluster 
Reconfigurable 

cluster Total 
Nodes MIIresource 

LD/ST 2 0 2 4 2 
AU 1 6 7 9 2 
LU 1 3 4 4 1 
B 1 0 1 1 1 
SHIFT 1 3 4 4 1 

 
The loop will then be scheduled using a loop scheduler. 

Scheduling has been implemented using modulo 
scheduling [9].  If a schedule is found, the process is 
finished.  If not, the II is incremented and a new 
assignment is performed. 

4.1 RFU assignment 

Once an iteration interval has been set, operations have 
to be assigned to a cluster.  The assignment process is as 
follows: 
1. Do initial assignment. 
2. Add cluster-to-cluster transfers. 
3. If assignment is valid, assignment successful. 
4. If there are no nodes to mode, fail. 
5. Move the best node from RC to MC and go to 2. 

The initial assignment assigns to the RFU all operations 
that can be executed there.  As the RFU contains more 
resources than the FFUs, this assignment is closer to the 
final solution than the opposite assignment.  Operations 
that cannot be performed in the reconfigurable array are 
assigned to the main cluster.  These operations are 
typically the branch operations, the floating-point 
operations and, when the reconfigurable unit does not have 
direct connection to the memory hierarchy, the memory 
access operations.  As mentioned in section 3, operations 
that can be performed in the reconfigurable array can 
always be performed in the main cluster. The coloring in 
Figure 2 shows the previous example after initial 
assignment has been performed on the processor of Figure 
1.   

The assignment is then annotated with inter cluster 
transfers.  These transfers are used to transfer data from the 
RFU to the FFUs or the other way round.  The transfers 
require the usage of the RFU ports, which is considered a 
scheduling resource, just like the processing elements or 
the FFUs.  Figure 3 shows the previous graph annotated 
with cluster-to-cluster transfers. 

An assignment is only valid if there are enough 
resources to schedule the loop in the specified II (i.e. the 
number of uses of a type resource must be smaller than the 
number of resources of that type times the iteration 
interval).  An assignment can be invalid, especially when 
the II is close to the MII, due to the following main 
reasons: 
• Not enough communication resources between 

clusters:  This happens when there are many data 
dependence chains going from one cluster to the other.  
The solution is to put complete chains in one of the 
clusters.  As initially everything is assigned to the RC, 
the solution involves moving operations from the RC 
to the MC. 

• Not enough resources in the reconfigurable cluster: 
All resources in the RFU are used while there are still 
some free on the main cluster.  This can happen when 
the II is very close to the minimum iteration interval.  
The solution is to move operations that do not have 
enough resources to the main cluster since there 
should be free resources there.   

• Not enough resources in the main cluster.  Due to the 
nature of the assignment process, (always from RC to 
MC) this means that assignment is not feasible and the 
II must be incremented. 
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Figure 3 Data dependence graph with intercluster 
transfers shown as a thick line. 

 
In order to see if the assignment is in one of the above 

cases, the MII is recalculated but this time including the 
data transfers between MC and RC and. 



If this assignment is not valid for the given II, a node is 
moved from the RC to the MC.  This process is repeated 
until a solution is found or there are no more nodes to be 
moved or if moving a node to the FFU causes a lack of 
resources in the MC.  

A heuristic is used to choose which node to move.  The 
heuristic calculates the modification the effect of the node 
movement on the MII of the assignment.  The node that 
will produce the best change will be moved from the 
reconfigurable cluster to the main cluster.  Any standard 
search algorithm can be used to find a solution.  If no 
solution is found, the iteration interval is incremented by 
one and the assignment phase starts again with the initial 
assignment.  If a solution is found, the graph is transferred 
to the software pipelining phase. 

Figure 3 presents the initial assignment graph annotated 
with cluster-to-cluster transfers.  Table 3 presents, for the 
previous example, the MII calculated for the inter cluster 
communication and Table 4 the MII calculated for the 
resources in each cluster.  From the tables it can be seen 
that the communication from the RC to the MC is limiting 
the MII to 3, instead of 2 as was previously calculated.  A 
search is done for a node to be moved from the RC to the 
MC.  The ADD node connected to the branch operation is 
found and moved to the main cluster.  This modification 
reduces the inter cluster communication by one.  After this 
modification, the highest MII is 2.  Modulo scheduling can 
now proceed. 

Table 3 MII due to cluster-to-cluster communication 
 

 Resources Nodes MII 
MC to RC 2 2 1 
RC to MC 1 3 3 

 

Table 4 MII due to resource constraints 
 

 Resources Nodes MII 
MC, LD/ST 2 4 2 
MC, AU 1 0 0 
MC, LU 1 0 0 
MC, B 1 1 1 
MC, SHIFT 1 0 0 
RC, AU 6 7 2 
RC, LU 3 4 2 
RC, SHIFT 3 4 2 

4.2 Spatial computation 

With the algorithm already described, it is possible to 
generate code for the reconfigurable processor but spatial 
computation is not exploited. Some modifications on the 
modulo scheduling algorithm need to be performed first. 
The main thing that has to be done is to exploit operations 
that have fractional latencies.  On standard software 
pipelining, operations must begin and end in a cycle 

boundary (i.e. the latencies are always an integer number), 
which is not the case if spatial connections are performed.  

In standard modulo scheduling, an operation can be 
scheduled at time T if: 
1. It meets the dependence constraints, and 
2. There are available resources for it to be scheduled 

Meeting the dependence constraints for a given 
operation normally means that the operations that it 
depends on have been scheduled and finish in a previous 
cycle and that the operations that depend on this one are 
scheduled after the given operation produces its results.  
This approach is valid for operations with a latency that is 
an integer number.   

In order to do spatial computation a modification to 
modulo scheduling has to be done.  An operation with a 
fractional latency can start in a non-integer time.  That is, 
the operation can begin at the end of an operation with 
fractional latency that started in the same cycle.  In this 
case, the combined latency must be smaller than one cycle.  
This ensures that all spatial computations are synchronized 
with the temporal computations. 
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Figure 4 Graph divided in cycles 
 
Taking this into account, an operation can be scheduled 

in the same cycle as operations that have dependences with 
it.  The dependences must be checked at a sub-cycle 



precision.  Continuing with the example, Figure 4 presents 
the graph after performing modulo scheduling.  As can be 
seen, spatial computation is exploited in cycles 3 and 4. 

Table 5 presents the complete schedule.  Cycles 1 to 4 
are the prolog of the pipelined loop.  Cycles 5 and 6 are the 
loop kernel.  Cycles 7 to 10 are the epilog of the loop.  The 
loop executes three iterations of the original loop at the 
same time. In Table 5, each color represents a different 
iteration.   

After successfully scheduling the loop, the set of 
operations scheduled in the processing elements of the 
RFU for a cycle represent a new reconfigurable 
instruction.  The number of instructions created will be 
equal to the iteration interval of the loop (i.e. two in the 
example, RFUOP1 at cycle 5 and RFUOP2 at cycle 6).  
The reconfigurable instruction can be seen as a compressed 
form of all the operations executed in the RFU. 

5 Results 

The algorithm presented here has been tested with the 
inner loop of an 8x8 DCT used in video and image 
compression.  Each iteration performs an 8-point DCT.  
The target processor had 8 load/store units and 4 integer 
units in order to remove the effects of data transfers.  The 
DDG of the inner loop has 102 nodes. 

In order to test the assignment algorithm, the II interval 
of three processors were compared: a VLIW processor 
without RFU but with extra FUs (labeled VLIW), a 
processor with 2 RFU inputs and 1 RFU output (labeled 
2,1) and a processor with 4 RFU inputs and 4 RFU outputs 
(labeled 4,4).  The number of processing elements (or extra 
FUs) ranged from 1 to 32.  Figure 5 shows the resulting 
data. Spatial computation was disabled in this experiment. 
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Figure 5 Assignment results 
 
The VLIW line presents the ideal assignment case 

where there are enough RFU ports to make all 
communication.  This is ideal since no VLIW processor 

would have that many functional units due to the size of 
the instruction word.  As can be seen from the graph, both 
RFU curves almost match this ideal case until a diverging 
point where the II stops decreasing even when more 
processing elements are added.  At this point, the 
communication resources impose a MII that cannot be 
decreased by adding more PEs.  As expected, the processor 
with more RFU ports attains a better II (i.e. 5). 

Figure 6 shows the total number of cycles spent on the 
loops of an H.263 decoder that can be software pipelined.  
As in the previous figure, adding more processing 
elements does not improve performance when there is a 
lack of communication resources. 

Each loop has been independently compiled.  During 
execution, every time a new loop is reenters, the RFU must 
be reconfigured.  This is, effectively, dynamic 
reconfiguration.  The time required for this reconfiguration 
has not been included in these results. 

Figure 7 shows the effects of adding spatial 
computation to the two reconfigurable processors used in 
the previous measurements.  From the figure we see that 
an improvement in execution speed of around 10%.  This 
decrease in speed is due to a reduction in the prolog and 
epilog size.  With higher number of iterations, the 
improvement would not be as good. The II remains the 
same since the MII is limited by resource constraints.   
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Figure 6 Cumulative assignment results on 
pipelinable loops of an H.263 decoder 

 

6 Conclusions and Future Work 

This paper has shown that software pipelining can be an 
effective technique for code generation for coarse-grained 
reconfigurable instruction set processors.  The basic 
software pipelining has been extended with an assignment 
phase used to divide the code between the RFU and the 
normal function units.  This has shown that a coarse-



grained reconfigurable instruction set processor is a viable 
alternative for very wide issue VLIW processors.   

Software pipelining has also been enhanced by adding 
support for spatial computation.  Spatial computation 
allows for a reduction in the number of execution cycles 
for loops with and without loop carried dependences, with 
the latter gaining the most benefit. 
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Figure 7 Spatial computation decreases cycle count 
 
The presented technique combines instruction 

generation and instruction scheduling in a single 
algorithm, in contrast with other approaches that performs 
the two tasks in different steps.  This fact allows the 
mapping of unconnected graphs onto the RFU, something 
not usually done. 

Future work will focus on the problem of register 
allocation inside the RFU and changing the full crossbar to 
a more power efficient interconnect structure. 
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Table 5 Final loop schedule and RFU instructions 
 

 LD LD AU LU B SH  AU AU AU AU AU AU LU LU LU SH SH SH 
1 LD  ADD                 
2  LD   BNEQ               
3 LD  ADD     ADD SUB ADD SUB   AND AND  SHR SHR  
4  LD   BNEQ   ADD SUB ADD AUB   OR   SHL SHL  
5 LD ST ADD     ADD SUB ADD SUB   AND AND OR SHR SHR  
6 ST LD   BNEQ   ADD SUB ADD SUB   OR   SHL SHL  
7  ST      ADD SUB ADD SUB   AND AND OR SHR SHR  
8 ST       ADD SUB ADD AUB   OR   SHL SHL  
9  ST              OR    
10 ST                   

 
RFUOP1 = ADD SUB ADD SUB   AND AND OR SHR SHR  
RFUOP2 = ADD SUB ADD SUB   OR   SHL SHL  
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