
Software Pipelining for
Coarse-Grained Reconfigurable Instruction Set Processors

Francisco Barat, Murali Jayapala, Pieter Op de Beeck and Geert Deconinck

K.U.Leuven, Belgium.
{f-barat, j4murali}@ieee.org, { Pieter.OpdeBeeck, Geert.Deconinck}@esat.kuleuven.ac.be

Abstract

 This paper shows that software pipelining can be an
effective technique for code generation for coarse-grained
reconfigurable instruction set processors. The paper
describes a technique, based on adding an operation
assignment phase to software pipelining, that performs
reconfigurable instruction generation and instruction
scheduling on a combined algorithm. Although typical
compilers for reconfigurable processors perform these
steps separately, results show that the combination enables
a successful usage of the reconfigurable resources. The
assignment algorithm is the key for using software
pipelining on the reconfigurable processor.

The technique presented is also able to exploit spatial
computation inside the reconfigurable functional unit by
which the output of a processing element is directly
connected to the input of another processing element
without the need of an intermediate register. Results show
that it is possible to reduce the cycle count by using this
spatial computation.

1 Introduction

VLIW cores are nowadays the processor of choice when
implementing multimedia applications on low cost
terminals [1]. Reconfigurable instruction set processors
(RISP) [2] can potentially reduce the power consumption
of high performance multimedia applications by fusing the
concept of a reconfigurable array with a programmable
processor. By using reconfigurable hardware, it is possible
to reduce the number of instructions executed when
compared to a VLIW processor due to the fact that the
instruction set is better adapted to the application. A single
reconfigurable instruction accounts for several normal
instructions, thus the number of executed instructions
decreases (and thus the corresponding power consumption
from program memory accesses).

An added benefit is that reconfigurable hardware allows
for spatial computation [3], which can be used to improve
performance even further. Spatial computation allows
outputs from one processing element of the reconfigurable

array to be directly connected to the inputs of another
processing element. Typically, only temporal computation
is used in standard processors (i.e. the output from a
processing element is always stored in an intermediate
register). Temporal computation limits the performance of
the processor by forcing all elements to use the same base
clock cycle while spatial computation allows a better
division of the time budget.

Code generation for reconfigurable instruction set
processors is extremely difficult due to the complexity of
the hardware. Not only the code has to be generated but
also instructions have to be created and used within the
generated code. On multimedia applications, loops are
typically the most processor intensive part of multimedia
applications. Optimization of inner loops is therefore of
special relevance in the multimedia domain.

The aim of this paper is to show that software pipelining
[8], a technique typically used to optimize loops for VLIW
(very long instruction word) and super scalar processors,
can be an effective technique for instruction and code
generation of coarse-grained reconfigurable processors, a
class of reconfigurable processors of special importance in
multimedia applications. In software pipelining, iterations
are initiated at regular intervals and execute
simultaneously but in different stages of the computation.
This allows an increase in the amount of available
parallelism that is exploited with the huge number of
resources that reconfigurable processors have. Software
pipelining has been tested on CRISP [7], which is a
reconfigurable instruction set processor template designed
for low power multimedia applications.

Section 2 describes previous work. Section 3 describes
CRISP, the target processor of the code generation
technique and section 4 presents the code generation
method. Finally, section 5 presents results followed by
conclusions in section 0.

2 Previous work

The majority of current reconfigurable processors are
based on fine-grained reconfigurable logic. The coupling

between the reconfigurable logic and the processor
determines how the compiler will work.

Compilers for tightly coupled processors usually work
in a two-phase mode: first, new instructions are created,
and then, they are scheduled with the rest of the code. The
most widely used technique [4], analyzes the data
dependence graph for operation nodes that can be
collapsed onto a single, more complex, node with multiple
inputs and a single output (MISO). The MISOs found are
then scheduled with the rest of the code as if they were
normal operations. The drawback of this approach is that
only a connected part of the data dependence graph can be
mapped onto the reconfigurable unit. It is not possible to
map two or more non-connected graphs at the same time,
which thereby limits the obtained performance.

For less tightly couple reconfigurable logic, the usual
approach is to map complete loops in the reconfigurable
logic, like in [6]. The work in [5] combines the complete
loop into a configuration of the reconfigurable processor.
The loop is combined into a hyperblock in order to
increase the parallelism available. Unfortunately, the
method only works if the loop fits in the reconfigurable
array.

3 The target processor

CRISP (Configurable and Reconfigurable Instruction
Set Processor) is an instruction set processor that is
configurable at design time and reconfigurable at run time
[7]. It is a VLIW processor composed of a number of fixed
functional units (FFUs) and a reconfigurable functional
unit (RFU). An example instance can be seen on Figure 1.
As all VLIW processors, the processor executes
instructions that are composed of parallel operations.
Operations are executed in the functional units (both fixed
and reconfigurable).

R
FU

Fe
tc

h
L

og
ic

In
st

ru
ct

io
n

D
ec

od
e

Is
su

e
L

og
ic

L
1

I-
C

ac
he

L1
D-Cache

L2
U-Cache

Main Memory

N
or

m
al

 V
L

IW

F
U

…

FU

FU

…

…

…

…

small
configuration

memory

P
E

R

eg
 F

ile

P
E

R

eg
 F

ile

P
E

R

eg
 F

ile

PE

R
eg

 F
ile

R
eg

is
te

r
F

ile

Figure 1 Example CRISP instance

The fixed functional units are the functional units found
in typical VLIW processors, such as an integer unit, a
multiplier or a load/store unit. The reconfigurable
functional unit externally looks like the other functional
units but its behavior is reconfigurable. It receives an
opcode (operation code), which will determine the
operation to be performed, and one or more operands from
the register file. As a result, it produces one or more
results that are written to the register file. Translation from
opcode to the actual control lines driving the hardware is
not done in the usual manner. Instead of a hardwired
decoder, the reconfigurable unit has a reconfigurable
decoder. This reconfigurable decoder is nothing more than
a configuration memory addressed by the opcode. The
opcode determines which configuration is used in the
reconfigurable array. By modifying the contents of the
configuration memory, it is possible to change the way in
which the reconfigurable unit behaves. The instruction set
of the processor is thus modified.

Seen from the inside, the reconfigurable functional unit
is a reconfigurable array of coarse-grained processing
elements (PEs). Each processing element is a copy of one
of the fixed functional units. The usage of such complex
units allows for an increase in the performance of the array
while also drastically reducing the power consumption
when compared to more traditional approaches such as
look up tables (LUTs). This is true because the application
domain of CRISP (multimedia applications) and the
hardware have similar granularities (data sizes).

The processing elements are connected together through
a full crossbar (not depicted on Figure 1). This crossbar
can connect the output of any processing element to the
input of any other processing element. It is also possible to
connect a processing element to a register from the main
register file through the RFU ports. In the example
processor, each cycle two registers can be read from the
register file and one register can be written (i.e. two input
ports and one output port).

Each processing element has a register at its output (see
Figure 1) that can be optionally bypassed, just like in
traditional FPGAs. By combining this optional register
and the crossbar, it is possible to perform spatial
computation. Elements in a data flow chain are connected
together through the crossbar. The processing element at
the end of the chain is registered to combine temporal and
spatial computation.

Only the fixed functional units are needed in order to
execute any program. The reconfigurable array is used to
increase performance and decrease power consumption.

In the case of CRISP, reconfigurable instructions are
basically expanded onto a set of VLIW instructions
executed with the processing elements inside the RFU. It
is a way to increase the parallelism of the processor
without the cost of reading an extremely long instruction
from program memory. The instructions are instead read

from the configuration memory, which is a small local
memory that has low power consumption. As reloading
the configuration memory takes time and power, it is
important to minimize reconfiguration times.

4 Loop optimization

This section presents a modified version of software
pipelining for coarse-grained reconfigurable instruction set
processors that eliminates the drawbacks of the methods
introduced in section 2.

The starting point for any software pipelining algorithm
is a data dependence graph (DDG) that can express normal
and loop carried dependences. Figure 2 is an example
DDG that will be used to illustrate different steps in the
algorithm. The latency of each arc is the latency from
Table 1. The graph is composed of two non-connected sub
graphs, one that performs computations and another one in
charge of keeping track of the iteration count. In the
graph, loop carried dependences are shown with a dashed
arrow.

Table 1 Latencies used in the example

 FFU RFU
LD/ST 2 -
AU 1 0.25
LU 1 0.25
B 1 -
SHIFT 1 0.5

In order to use software pipelining on the reconfigurable

processor, it is necessary to realize that the processing
elements in the reconfigurable array have a similar (or
identical) complexity to the fixed functional units of the
processor, and that the processing elements and functional
units can all be used simultaneously. With this in mind,
the reconfigurable processor can be seen as a traditional
VLIW processor with two datapath clusters: a main cluster
(MC), composed of the fixed functional units, and a
reconfigurable cluster (RC), composed of the processing
elements of the reconfigurable array.

Some operations in the reconfigurable processor can be

performed in both clusters. An operation assignment
phase to decide in which cluster an operation is performed
has been added before each scheduling attempt. This
assignment phase will place each operation in one of the
two clusters.

The modified software pipelining algorithm is as
follows (MII, minimum iteration interval and II, iteration
interval):
1. Calculate the MII and set II = MII.
2. Perform operation assignment until a valid assignment

is found. If unsuccessful, increment II and go to 2.

3. Do modulo scheduling on the loop with II and with
the assignment found in step 2. If failure, increment II
and go to 2.

The iteration interval (II) is the delay between the
initiations of consecutive iterations in a software pipelined
loop. It determines the average number of cycles that will
be spent per iteration. The MII is the minimum iteration
interval that the loop can have. Once the MII is estimated,
an attempt to assign and schedule the loop with the II set to
MII is made. If no solution is found to either step, the
iteration interval is increased by one and a new assignment
and scheduling attempts are made. This process continues
until a valid assignment and schedule are found or a
maximum II is reached. In the latter case, software
pipelining cannot be applied to the loop and the loop is
generated without software pipelining.

AND

LD LD

SHR

ADD SUB

ADD SUB ADD SUB

SHL

OR

ST

SHL

OR

ST

ADD

BNEQ AND SHR

ADD SUB

Figure 2 Example data dependence graph. The
coloring (see 4.1) represents the graph after initial

assignment. Grey nodes are in the main cluster. White
nodes are in the reconfigurable cluster.

The MII is due to resource and dependence constraints.

The final MII is the maximum of the MII imposed by each
type of constraint. For an explanation on how to calculate
the MII due to dependence constraints, see [8].

The MII due to resource constraints on a resource R is
calculated by dividing the number of uses of the resource
R by the number of resources of type R. The final MII is
the maximum MII of all resource types. Before
assignment, this number is calculated adding together
similar resources from the MC and the RC. For example,
the MII resource calculation can be seen on Table 2. In
this case the MII is 2.

The assignment phase must assign, for a given iteration
interval (II), the operations to either of the clusters, MC or

RC, while ensuring that there are enough resources to
allow a schedule. Resources are the computation elements
(processing elements and FFUs) as well as the RFU ports
used to transfer data to and from the RFU. The RFU ports
are modeled as a resource with zero latency during
scheduling.

Table 2 MIIresource calculation for the example

Resources
Main

cluster
Reconfigurable

cluster Total
Nodes MIIresource

LD/ST 2 0 2 4 2
AU 1 6 7 9 2
LU 1 3 4 4 1
B 1 0 1 1 1
SHIFT 1 3 4 4 1

The loop will then be scheduled using a loop scheduler.

Scheduling has been implemented using modulo
scheduling [9]. If a schedule is found, the process is
finished. If not, the II is incremented and a new
assignment is performed.

4.1 RFU assignment

Once an iteration interval has been set, operations have
to be assigned to a cluster. The assignment process is as
follows:
1. Do initial assignment.
2. Add cluster-to-cluster transfers.
3. If assignment is valid, assignment successful.
4. If there are no nodes to mode, fail.
5. Move the best node from RC to MC and go to 2.

The initial assignment assigns to the RFU all operations
that can be executed there. As the RFU contains more
resources than the FFUs, this assignment is closer to the
final solution than the opposite assignment. Operations
that cannot be performed in the reconfigurable array are
assigned to the main cluster. These operations are
typically the branch operations, the floating-point
operations and, when the reconfigurable unit does not have
direct connection to the memory hierarchy, the memory
access operations. As mentioned in section 3, operations
that can be performed in the reconfigurable array can
always be performed in the main cluster. The coloring in
Figure 2 shows the previous example after initial
assignment has been performed on the processor of Figure
1.

The assignment is then annotated with inter cluster
transfers. These transfers are used to transfer data from the
RFU to the FFUs or the other way round. The transfers
require the usage of the RFU ports, which is considered a
scheduling resource, just like the processing elements or
the FFUs. Figure 3 shows the previous graph annotated
with cluster-to-cluster transfers.

An assignment is only valid if there are enough
resources to schedule the loop in the specified II (i.e. the
number of uses of a type resource must be smaller than the
number of resources of that type times the iteration
interval). An assignment can be invalid, especially when
the II is close to the MII, due to the following main
reasons:
• Not enough communication resources between

clusters: This happens when there are many data
dependence chains going from one cluster to the other.
The solution is to put complete chains in one of the
clusters. As initially everything is assigned to the RC,
the solution involves moving operations from the RC
to the MC.

• Not enough resources in the reconfigurable cluster:
All resources in the RFU are used while there are still
some free on the main cluster. This can happen when
the II is very close to the minimum iteration interval.
The solution is to move operations that do not have
enough resources to the main cluster since there
should be free resources there.

• Not enough resources in the main cluster. Due to the
nature of the assignment process, (always from RC to
MC) this means that assignment is not feasible and the
II must be incremented.

AND

LD LD

SHR AND SHR

ADD SUB ADD SUB

ADD SUB ADD SUB

SHL

OR

ST

SHL

OR

ST

ADD

BNEQ

Figure 3 Data dependence graph with intercluster
transfers shown as a thick line.

In order to see if the assignment is in one of the above

cases, the MII is recalculated but this time including the
data transfers between MC and RC and.

If this assignment is not valid for the given II, a node is
moved from the RC to the MC. This process is repeated
until a solution is found or there are no more nodes to be
moved or if moving a node to the FFU causes a lack of
resources in the MC.

A heuristic is used to choose which node to move. The
heuristic calculates the modification the effect of the node
movement on the MII of the assignment. The node that
will produce the best change will be moved from the
reconfigurable cluster to the main cluster. Any standard
search algorithm can be used to find a solution. If no
solution is found, the iteration interval is incremented by
one and the assignment phase starts again with the initial
assignment. If a solution is found, the graph is transferred
to the software pipelining phase.

Figure 3 presents the initial assignment graph annotated
with cluster-to-cluster transfers. Table 3 presents, for the
previous example, the MII calculated for the inter cluster
communication and Table 4 the MII calculated for the
resources in each cluster. From the tables it can be seen
that the communication from the RC to the MC is limiting
the MII to 3, instead of 2 as was previously calculated. A
search is done for a node to be moved from the RC to the
MC. The ADD node connected to the branch operation is
found and moved to the main cluster. This modification
reduces the inter cluster communication by one. After this
modification, the highest MII is 2. Modulo scheduling can
now proceed.

Table 3 MII due to cluster-to-cluster communication

 Resources Nodes MII
MC to RC 2 2 1
RC to MC 1 3 3

Table 4 MII due to resource constraints

 Resources Nodes MII
MC, LD/ST 2 4 2
MC, AU 1 0 0
MC, LU 1 0 0
MC, B 1 1 1
MC, SHIFT 1 0 0
RC, AU 6 7 2
RC, LU 3 4 2
RC, SHIFT 3 4 2

4.2 Spatial computation

With the algorithm already described, it is possible to
generate code for the reconfigurable processor but spatial
computation is not exploited. Some modifications on the
modulo scheduling algorithm need to be performed first.
The main thing that has to be done is to exploit operations
that have fractional latencies. On standard software
pipelining, operations must begin and end in a cycle

boundary (i.e. the latencies are always an integer number),
which is not the case if spatial connections are performed.

In standard modulo scheduling, an operation can be
scheduled at time T if:
1. It meets the dependence constraints, and
2. There are available resources for it to be scheduled

Meeting the dependence constraints for a given
operation normally means that the operations that it
depends on have been scheduled and finish in a previous
cycle and that the operations that depend on this one are
scheduled after the given operation produces its results.
This approach is valid for operations with a latency that is
an integer number.

In order to do spatial computation a modification to
modulo scheduling has to be done. An operation with a
fractional latency can start in a non-integer time. That is,
the operation can begin at the end of an operation with
fractional latency that started in the same cycle. In this
case, the combined latency must be smaller than one cycle.
This ensures that all spatial computations are synchronized
with the temporal computations.

AND

LD

LD

SHR

AND SHR

ADD SUB ADD SUB

ADD SUB ADD SUB

SHL

OR

ST

SHL

OR

ST

ADD

BNEQ

Figure 4 Graph divided in cycles

Taking this into account, an operation can be scheduled

in the same cycle as operations that have dependences with
it. The dependences must be checked at a sub-cycle

precision. Continuing with the example, Figure 4 presents
the graph after performing modulo scheduling. As can be
seen, spatial computation is exploited in cycles 3 and 4.

Table 5 presents the complete schedule. Cycles 1 to 4
are the prolog of the pipelined loop. Cycles 5 and 6 are the
loop kernel. Cycles 7 to 10 are the epilog of the loop. The
loop executes three iterations of the original loop at the
same time. In Table 5, each color represents a different
iteration.

After successfully scheduling the loop, the set of
operations scheduled in the processing elements of the
RFU for a cycle represent a new reconfigurable
instruction. The number of instructions created will be
equal to the iteration interval of the loop (i.e. two in the
example, RFUOP1 at cycle 5 and RFUOP2 at cycle 6).
The reconfigurable instruction can be seen as a compressed
form of all the operations executed in the RFU.

5 Results

The algorithm presented here has been tested with the
inner loop of an 8x8 DCT used in video and image
compression. Each iteration performs an 8-point DCT.
The target processor had 8 load/store units and 4 integer
units in order to remove the effects of data transfers. The
DDG of the inner loop has 102 nodes.

In order to test the assignment algorithm, the II interval
of three processors were compared: a VLIW processor
without RFU but with extra FUs (labeled VLIW), a
processor with 2 RFU inputs and 1 RFU output (labeled
2,1) and a processor with 4 RFU inputs and 4 RFU outputs
(labeled 4,4). The number of processing elements (or extra
FUs) ranged from 1 to 32. Figure 5 shows the resulting
data. Spatial computation was disabled in this experiment.

0

2

4

6

8

10

12

14

16

18

1 6 11 16 21 26 31

Processing Elements

It
er

at
io

n
 In

te
rv

al

VLIW
2.1
4.4

Figure 5 Assignment results

The VLIW line presents the ideal assignment case

where there are enough RFU ports to make all
communication. This is ideal since no VLIW processor

would have that many functional units due to the size of
the instruction word. As can be seen from the graph, both
RFU curves almost match this ideal case until a diverging
point where the II stops decreasing even when more
processing elements are added. At this point, the
communication resources impose a MII that cannot be
decreased by adding more PEs. As expected, the processor
with more RFU ports attains a better II (i.e. 5).

Figure 6 shows the total number of cycles spent on the
loops of an H.263 decoder that can be software pipelined.
As in the previous figure, adding more processing
elements does not improve performance when there is a
lack of communication resources.

Each loop has been independently compiled. During
execution, every time a new loop is reenters, the RFU must
be reconfigured. This is, effectively, dynamic
reconfiguration. The time required for this reconfiguration
has not been included in these results.

Figure 7 shows the effects of adding spatial
computation to the two reconfigurable processors used in
the previous measurements. From the figure we see that
an improvement in execution speed of around 10%. This
decrease in speed is due to a reduction in the prolog and
epilog size. With higher number of iterations, the
improvement would not be as good. The II remains the
same since the MII is limited by resource constraints.

0

100000

200000

300000

400000

500000

600000

700000

1 6 11 16 21 26 31

Processing Elements

E
xe

cu
ti

o
n

 c
yc

le
s

CRISP
VLIW

Figure 6 Cumulative assignment results on
pipelinable loops of an H.263 decoder

6 Conclusions and Future Work

This paper has shown that software pipelining can be an
effective technique for code generation for coarse-grained
reconfigurable instruction set processors. The basic
software pipelining has been extended with an assignment
phase used to divide the code between the RFU and the
normal function units. This has shown that a coarse-

grained reconfigurable instruction set processor is a viable
alternative for very wide issue VLIW processors.

Software pipelining has also been enhanced by adding
support for spatial computation. Spatial computation
allows for a reduction in the number of execution cycles
for loops with and without loop carried dependences, with
the latter gaining the most benefit.

0

20

40

60

80

100

120

140

160

180

1 6 11 16 21 26 31

Processing Elements

E
xe

cu
ti

o
n

 C
yc

le
s

2.1
4.4
2,1 spatial
4,4 spatial

Figure 7 Spatial computation decreases cycle count

The presented technique combines instruction

generation and instruction scheduling in a single
algorithm, in contrast with other approaches that performs
the two tasks in different steps. This fact allows the
mapping of unconnected graphs onto the RFU, something
not usually done.

Future work will focus on the problem of register
allocation inside the RFU and changing the full crossbar to
a more power efficient interconnect structure.

References

[1] M.F. Jacome and G. de Veciana, “Design Challenges
for New Application-Specific Processors” IEEE

Design & Test Computers, Vol. 17, No. 2, april 2000,
pp. 40-50.

[2] F. Barat and R. Lauwereins, “Reconfigurable
Instruction Set Processors: A survey”, Proceedings.
11th International Workshop on Rapid System
Prototyping, 2000.

[3] André DeHon, “The Density Advantage of
Configurable Computing”, IEEE Computer, Vol.33,
No. 4, April 2000

[4] C. Alippi, W. Fornaciari, L. Pozzi and M. Sami, “A
DAG-Based Design Approach for Reconfigurable
VLIW Processors”, Proc. Of the IEEE Design and
Test Conference in Europe, Munich, March 1999.

[5] T.J. Callahan and J. Wawrzynek, “Instruction Level
Parallelism for Reconfigurable Computing”, Field-
Programmable Logic and Applications, 8th
International Workshop, September 1998.

[6] M. Budiu and S. Goldstein. “Fast compilation for
pipelined reconfigurable fabrics”, Proceedings of the
1999 ACM/SIGDA FPGA '99, Monterey, CA, Feb.
1999, pp. 195-205.

[7] P. Op de Beeck, F. Barat, M. Jayapala, R. Lauwereins,
"CRISP: A Template for Reconfigurable Instruction
Set Architectures", Proceeding of Field Programmable
Logic 2001.

[8] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and
Stephen J. Allan ,“Software pipelining,” ACM
Computing Surveys, Vol. 27 No. 3, September 1995.

[9] Rau, B.R., “Iterative Modulo Scheduling: An
Algorithm For Software Pipelining Loops”, MICRO-
27. Proceedings of the 27th Annual International
Symposium on Microarchitecture, 1994. Page(s): 63 –
74

Table 5 Final loop schedule and RFU instructions

 LD LD AU LU B SH AU AU AU AU AU AU LU LU LU SH SH SH
1 LD ADD
2 LD BNEQ
3 LD ADD ADD SUB ADD SUB AND AND SHR SHR
4 LD BNEQ ADD SUB ADD AUB OR SHL SHL
5 LD ST ADD ADD SUB ADD SUB AND AND OR SHR SHR
6 ST LD BNEQ ADD SUB ADD SUB OR SHL SHL
7 ST ADD SUB ADD SUB AND AND OR SHR SHR
8 ST ADD SUB ADD AUB OR SHL SHL
9 ST OR
10 ST

RFUOP1 = ADD SUB ADD SUB AND AND OR SHR SHR
RFUOP2 = ADD SUB ADD SUB OR SHL SHL

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

