
Framework for Synthesis of Virtual Pipelines �

Srinivasan Dasasathyan, Rajesh Radhakrishnan and Ranga Vemuri

Department of ECECS, ML0030
University of Cincinnati, Cincinnati, OH 45221.

E-mail: fsdasasat,rradhakr,rangag@ececs.uc.edu

Abstract

Virtual Pipelining allows designs of arbitrary size to ex-
ecute on finite sized FPGA devices. It allows pipelined de-
signs to be efficiently configured on a FPGA by overlapping
the reconfiguration time of a pipeline stage with the execu-
tion time of previous pipeline stages. This technique pro-
duces performance improvement up to an order of 5 versus
a non-pipelined execution of a design. We extend this prin-
ciple for handling large designs that were previously too
large to fit on an FPGA. This paper presents a framework
for automatically synthesizing virtual pipelines on an Virtex
FPGA. We also suggest criteria for extending our approach
to non-Virtex FPGAs.

1. Introduction

Researchers have proposed approaches to solve the im-
portant problem of increasing the throughput of a design
executing on FPGAs. An important factor in throughput
calculation for designs executing on FPGAs is the recon-
figuration time. Reconfiguration time can be decreased by
combining dynamic or run-time reconfiguration with par-
tial reconfiguration where a part of the whole chip is con-
figured while the remainder is still executing. Researchers
have proposed approaches to reduce the dynamic reconfigu-
ration time. Noteworthy among them is the Virtual Pipelin-
ing approach proposed by Goldstein et al. [4].

1.1 Virtual Pipelining

Virtual pipelining configures a pipelined design by con-
figuring the pipeline stage incrementally as the pipeline gets
filled. This is in contrast to other approaches where the en-
tire FPGA is configured with all the stages. Also recon-
figuration of a stage is overlapped with the execution of
stages that have already been configured. As the config-
uration of stages happens concurrently with the execution

�This research is supported in part by US Air Force, Wright Labs,
WPAFB, under contract number F33615-97-C-1043

of other stages, there is no loss in performance due to re-
configuration. The above feature is called incremental re-
configuration [6]. Another feature of virtual pipelining is
Hardware Virtualization, which allows design of any size to
be mapped efficiently on a single device. This is achieved
by swapping out the stage from the device that has executed
most number of cycles and configuring that portion of the
chip with the next stage that needs to be executed.

As no concrete implementation of virtual pipelining the-
ory exists, we show that the Virtex [7] architecture is suit-
able for implementing virtual pipelines and provide a de-
sign flow to execute the pipelined designs on a Virtex-based
boards.

The paper is organized as follows: The motivation for
choosing Virtex and its architecture is explained in Section
2. The framework to generate the partial bitstreams for the
individual pipeline stages is explained in Section 3. The
design flow used to test the framework and is explained in
Section 4. Section 5 and 6 present the results and conclu-
sions.

2 Motivation to Target Virtual Pipelines on
Virtex-Based FPGAs

To execute virtual pipelines on a FPGA, we can either
design a FPGA which has a PipeRench style architecture
[4] or look for FPGA that can satisfy the following require-
ments:

� Support partial reconfiguration and dynamic reconfig-
uration.

� Time taken to reconfigure a stage should be small.

� Provide enough memory and logic elements to imple-
ment pipeline registers and stages.

One such device which satisfies all the requirements is Xil-
inx’s Virtex-based FPGA [7]. The Virtex FPGA is divided
into a number of columns and each column can be inde-
pendently reconfigured without affecting the other. Each
column has number of Configurable Logic Blocks (CLB)

1

Left IOB

CLB

Stage 1 Stage 2 Stage 3

CLB column

..........

Right IOBColumn
Configured as
Logic

Configured as
Pipeline Registers

Figure 1. Pipelined Designs on Virtex

and has programmable logic and flip-flops. The logic inside
the CLB can be configured as stages of a pipeline and the
flip-flops as registers. A sample pipelined design using the
CLB columns in virtex as pipeline stages and flip-flops as
registers is shown in figure 1

To configure individual pipeline stages while executing
others, we need to generate a partial bitstream for the next
stage that configures.

3 Virtual Pipelining Framework (VPF)

In order to use the virtual pipelining technique to com-
mercial FPGAs, it is necessary to generate partial bitstreams
to configure the pipeline stages incrementally. Generat-
ing partial bitstreams allows to dynamically reconfigure the
FPGA, so that there is a overlap of reconfiguration and ex-
ecution time. We proposed a flow for generating partial
bitstreams by (1) partitioning the design in to combina-
tion of pipeline stages (called as partial designs) (2) per-
form guided placement and routing for these partial de-
signs based on the information from the previous partial de-
signs (3) generate partial bitstreams by taking the difference
of bitstreams between two successive partial designs. The
framework for generating partial bitstreams is explained in
Figure 2.

The flow consists of:

1. Partial Design Generation (PDG): Partial design is a
design constructed from the input design which reflect
the state of the FPGA device during every clock cy-
cle. The partial design changes every clock cycle. It
repeats after a interval which depends on number of

Full Bitstream for partial Design

Partial Bitstream for stage i

Design Generator
Partial

Logic Synthesis

Generation
Full Bitstream

JBits API

Guide FileGuided Placement
and Routing

Input Specification

(Placed and routed design

Yes

No
Done

V− Number of Stages

Partial Design

Netlist of Partial Design

Guided Partial Design

i++;
 i < V

 from iteration i−1)

Iteration i − 1
Full Bitstream from

i(iteration count) = 0

Figure 2. Framework for Virtual Pipelining

virtual stages (no of stages in the pipelined design) and
physical stages (no of stages that the FPGA can hold at
a time) present. A number of partial designs are gen-
erated from the input design. The PDG is discussed in
Section 4.4.

2. Guided Placement and Routing: The current partial
design is placed and routed using the information
from the previous partial design. Thus all the com-
mon stages between two successive partial designs are
placed and routed identically. The full bitstream for
the current partial design is generated.

3. Partial bitstream Generation: The partial bitstream of
a pipeline stage can be obtained by taking the differ-
ence between two successive partial designs. Using
the partial reconfiguration API [8] the difference bit-
stream to configure a particular pipeline stage alone
can be generated.

Steps 1 to 3 are repeated until all the partial bitstreams

2

VPF

Input Specification

Designs
Partial

JBits API

Route Software

Design Host

Data Flow Controller

Host Controller

SLAAC1V

Xilinx Place
and Route

Configure Pipeline Stages

Previous

Design
Partial (Guide File)

Current Partial

Configure X0
Bitstream to

Bitstreams to

Previous partial
design

and Controller

 Map , Place and

(Basic block)

Library
JHDL

 Generator

 PDG

Figure 3. Using VPF with the SLAAC-1V Board

for all partial designs are generated.

4 Design Flow for Synthesis and Execution of
Virtual Pipelines

We used SLAAC-1V board [2] to test our framework.
The overall design flow for synthesizing and executing vir-
tual pipelines on SLAAC-1V is shown in Figure 3. The in-
put design specified as basic blocks uses operations which
have corresponding implementations in JHDL [1], which is
target HDL to which the design is translated. The trans-
lator/partial design generator(PDG) takes this design and
splits it into a number of partial designs in JHDL. After the
simulation, each of the partial designs is synthesized to ob-
tain the net-list. The generated net-list is mapped, placed
and routed on the Virtex device using Xilinx M1 tools. The
translator also produces a pin constraint file which assigns
pin locations to the input and output ports of the partial de-
sign. After this point the partial bitstream generation flow
is used to obtain the partial bitstreams of pipeline stages.

The following components constitutes our design flow
on SLAAC-1V (1) the basic block input specification (2) the
intermediate HDL language JHDL (3) Partial design gener-
ator(PDG) (4) Data flow controller generation and (5) Host
controller generation.

4.1 Input Specification : Basic Block
We used a file format that specifies a design in terms of

basic blocks [5].

4.2 Intermediate HDL : JHDL
The input design specified using basic block is translated

into a JHDL for simulation and synthesis. JHDL [3] is a set
of FPGA CAD tools that allow the user to design the struc-
ture and layout of a circuit, debug the circuit in simulation,
net-list and interface with back-end tools for physical syn-
thesis, and so forth. JHDL not only provides structuring
and layout of circuits but also a simulation and synthesis
environment. The choice of JHDL was natural, because the
level of control required to place the logic in a way that
is suitable to our application was only provided by JHDL.
Also for guided routing to work, the nets in the two suc-
cessive partial design with common pipeline stages should
have same names. Most of the commercial synthesis tools
insert the net names randomly. Using JHDL it is possible to
give names to nets that user desires.

4.3 SLAAC-1V Board Architecture
SLAAC-1V, the virtex based board shown in Figure 4

was used to test the frame work. The board contains three
(X0, X1, X2) Virtex XCV1000-FG680 FPGA, the largest
in Virtex family. The board contains rich interconnect for
the interaction between all the three FPGAs. The intercon-
nects are fixed and programmable. The fixed interconnect
between the FPGAs are 72 bits wide, and form a ring (hence
called ring interconnect). The programmable interconnect
is a crossbar that is shared between the three FPGAs and is
72 bits wide. There are 10 36x256K ZBT SRAMs, out of
which 5 can be accessed by X1 (4 memories at a time), 5
can be accessed by X2, and X0 can access all 10 but only
2 memories at a time. On board switches swap one of X0’s
memories with that of X1, and the other with X2.

4.4 Partial Design Generator (PDG)
As mentioned previously, partial designs (PD) are iden-

tified in the i/p specification. Each PD can be constructed
using the component from the JHDL library. The JHDL
library was developed keeping in mind the most frequently
used components. The library is also characterized with size
of each components so that the PDG can use it to place the
design efficiently on the chip. As in virtex, the reconfigu-
ration time is proportional to the number of columns that
the design occupy, the placement of the components is done
column-wise in order to reduce the reconfiguration time.

4.5 Data Controller Generation
The data controller is required to control the flow of data

to and from the SLAAC-1V board. It reads the data from
the memory and provides inputs to the pipeline stages. The
controller reads the processed data from the pipeline stages
and writes it to memory. The controller has a state machine

3

72 7272

72 72

72

60

60

X0, X1, X2 - XCV1000FG680

RAM

PCI IF

FPGA(X0)

Crossbar

FPGA(X1) FPGA(X2)

Memory Interconnect
Fixed Interconnect

64/66 PCI

HostComputer

SLAAC-1V

PCI IF - PCI Interface To Host Computer

Figure 4. SLAAC-1V Architecture

and input data multiplexers. Input data multiplexer is re-
quired to select the correct input to pipeline stages. The data
is selected between the memory and the intermediate data.
Intermediate transfer occurs only when the pipeline folds.
Consider an example where there are 6 pipeline stages (vir-
tual stages) and the device can fit only 3 pipeline stages
(physical stages) at a time. When stage 4 is executing in the
first column of the device, its inputs are the outputs of stage
3. Hence, The intermediate data of stage 3 is given as one
of the inputs to the data multiplexer. The data multiplexer
selects between the two inputs depending on the select sig-
nal which is generated by the state machine. The data con-
troller is generated automatically in VHDL by the controller
generator. It is further simulated to verify its functionality,
synthesized, placed and routed. Finally, the bitstream for
the data controller is generated.
4.6 Host Controller Generation

Host controller dynamically reconfigures the pipeline
stages. The controller first initializes the input memory with
the input data, after which the pipeline stages are reconfig-
ured one after the other at every clock cycle. While recon-
figuring the pipeline stage a single clock step is given to the
FPGA so that the previously configured pipeline stages can
execute. The lower bound on clock period (which is the
throughput of the design) can be calculated by taking the
greater among the largest time taken to:

� execute any of the pipeline stages

� configure any of the pipeline stages

The host controller uses the APIs [2] provided by the
SLAAC board to reconfigure pipeline stages, issue clock

Design Physical Virtual Partial
Stages Designs Designs

FFT 2 2 2
FIR filter 4 4 4

Bubble Sorter 3 3 3
DCT 1D 7 7 7

Elliptic Filter 6 3 8

Table 1. Number of Physical Stages and Number of
Virtual Stages for Examples

Design Throughput Throughput Speed Up
with VP without VP

(outputs/sec) (output/sec)
FIR 47M 22.4M 2.098

Bubble 33M 18.653M 1.769
DCT 41M 32.8M 1.25

Elliptic 14.49 2.604 5.56

Table 2. Throughput Comparison Using Virtual
Pipelining (VP)

steps, initialize memories and read back from them. The
host controller is generated automatically by the controller
generator and the design is executed by executing the host
controller.

5 Results
Several designs were taken through the design flow and

were executed on the SLAAC-1V board to validate the
framework. In our framework every design is characterized
by the number of physical stages (pipeline stages present
in the design) and number of virtual stages (the number of
stages the device can fit at a time). The physical stages (p)
and virtual stages (v) for each design is given in Table 1.

Table 2 shows the gain in throughput due to virtual
pipelining. In the table ’M’ indicates that the throughput
is in the order of Mega output per second. From the table
it is inferred that the throughput is only dependent on exe-
cution time when the number of physical stages (p) is equal
to or more than number of virtual stages (v). When p is
less than v, pipeline folds, because of which throughput not
only depends on execution time of stages but also on recon-
figuration time (refer Section 4.6). For all the above exam-
ples except the elliptical filter, the number of physical stages
was greater than the number of virtual stages and hence the
throughput was entirely dependent on the execution time.
For the elliptical filter, reconfiguration was needed during
every clock cycle. Also, as reconfiguration time (in the or-
der of milli seconds) is much greater than the execution time

4

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

2 3 4 5 6 7 8

Th
ro

ug
hp

ut(
ou

tpu
ts/

se
c)

No Of Physical Stages

Virtex at 4Mhz
Virtex at 10Mhz
Virtex at 90Mhz
10 times Virtex

Figure 5. Throughput vs Number of Physical Stages
for Various Configuration time

for the elliptic filter, the throughput is very low.

5.1 Variation of Throughput

The number of physical stages was varied to study the
variation in throughput for various designs (with various v).
Study shows that throughput increases with the increasing
p until p becomes equal to v . When the number of physical
stages is less than the number of virtual stages, reconfigu-
ration occurs during every clock cycle. Thus throughput is
dependent on the reconfiguration time and the number of
physical stages. Once the number of physical stages be-
comes equal to or greater than the number of virtual stages,
there is no more reconfiguration needed, as all stages fit on
the device at the same time. Figure 8 shows this variation in
a semi-log plot with the number of physical stages on the x-
axis and the throughput on y-axis for various examples (or
virtual stages).

As throughput is dependent on reconfiguration time,
throughput can be increased by decreasing the reconfigu-
ration time. As the reconfiguration time is linearly depen-
dent on the configuration clock frequency, the throughput
increase linearly with the configuration clock frequency.
Figure 6 shows the variation of throughput with configu-
ration frequency for various examples. The increase in only
for the designs when p < v, as only theses case needs re-
configuration. For the case when p > v, the throughput is
independent of reconfiguration time.

The main bottleneck for the low throughput is due to
high reconfiguration time. The current technology offers
reconfiguration time of the order of milli seconds. With

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(o

u
tp

u
ts

/s
e
c
)

Configuration Clock (MHz)

Elliptical
Demo_2
Demo_3

Figure 6. Throughput vs Configuration Clock Fre-
quency

the technology changing rapidly, the reconfiguration time
is bound to decrease. The Figure 5 shows the variation of
throughput for a elliptical filter with 6 virtual stages. To
predict the behavior of throughput various reconfiguration
times were assumed. The plot shows that, when the recon-
figuration time decreases, the curve shifts higher but then
converges to the same constant value.

As discussed in Section 4.6 throughput is dependent
on (1) execution time and the (2) reconfiguration time
of pipeline stages. To study how these two factor ef-
fect the performance (throughput) we plotted the varia-
tion of throughput with design clock frequency (which is

1

executiontime
) for various reconfiguration times. The graph

in Figure 7 shows that, as the reconfiguration time de-
creases, the throughput becomes increasingly dependent on
the design clock frequency. The throughput is dependent
on the reconfiguration time until the reconfiguration time is
less than the execution time, later it is dependent only on
the execution time.

6 Conclusions
We have presented a framework and design flow to im-

prove throughput of designs using Virtual Pipelining. Tar-
geting pipelined designs on FPGAs, have the advantage of
parallelizing the operations present in each stage. But, it
suffers from the draw back of finite device size and high
reconfiguration time. Virtual Pipelining solves both of the
problems, by virtualizing hardware and by using partial re-
configuration instead of full reconfiguration. Using virtual
pipelining it is potentially possible to eliminate reconfigu-

5

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 100001000001e+06 1e+07

Th
ro

ug
hp

ut
(o

utp
uts

/se
c)

Design Clock Frequency(Hz)

Virtex at 4Mhz
Virtex at 10Mhz
Virtex at 90Mhz
10 times Virtex

Figure 7. Throughput vs Design Clock Frequency for
Various Configuration time

ration time (using devices with small reconfiguration time).
Central to the design flow is the partial design generator,

which takes input specification and splits the design into a
number of partial design in JHDL, that has features which
enables to structure the layout of the design. In order to aid
generation of partial bitstreams, the design is structured so
that the components in the design are placed column-wise
on the chip. A library of components in JHDL was devel-
oped to support a wide range of commonly used operations.
We also developed a design flow for Virtex based FPGA
board. The design flow was verified on SLAAC1-V board.
In order for the synchronization between the host and the
reconfigurable board, we presented a host controller that
dynamically reconfigures pipeline stages. Data controller
which controls the flow of data to and from the virtually
pipelined design was also discussed.

The increase in throughput with an increase in the num-
ber of physical stages is verified. Also because of exces-
sive reconfiguration time of the device, there is up-to a fac-
tor of 5 improvement in throughput using virtual pipelin-
ing. When there is no folding of pipeline, the throughput
is only dependent on the clock period. As the bottleneck
for the low throughput is due to high reconfiguration time,
we found that by reducing the reconfiguration time we can
greatly improve the throughput.

References

[1] Java hardware description language, release 0.2.
[2] P. Bellows. Slaac-1v reference manual, release 0.3.1, october

2000.

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

2 3 4 5 6 7 8

Th
ro

ug
hp

ut
(o

utp
uts

/se
c)

No Of Physical Stages

Elliptical
Fir

Demo

Figure 8. Throughput vs Number of Physical Stages
for Various Virtual Stages

[3] P. Bellows and B. Hutchings. Jhdl - an hdl for reconfigurable
systems. In IEEE Symposium on FPGAs for Custom Comput-
ing Machines, pages 175–184, 1998.

[4] S. Goldstein, H. Schmit, M. Moe, M. Bidiu, S. Cadambi,
R. Taylor, and R. Laufer. Piperench : A coprocessor for
streaming multimedia acceleration. In 26th Annual Interna-
tional Symposium on Computer Architecture, Atlanta, Geor-
gia, May 1999.

[5] S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, 1997.

[6] H. Schmidt. Incremental reconfiguration for pipelined appli-
cations. In IEEE Symposium on FPGA for Custom Computing
Machines, 1997.

[7] Xilinx. Virtex 2.5 field programmable gate arrays, reference
manual, 1999.

[8] Xilinx. Jbits reference manual, 2000.

6

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

