

Buffered Routing Tree Construction Under Buffer Placement Blockages*

 Wei Chen and Massoud Pedram Premal Buch
University of Southern California Magma Design Automation

Los Angeles, CA 90089 Cupertino, CA 95035

Abstract

Interconnect delay has become a critical factor in determining
the performance of integrated circuits. Routing and buffering
are powerful approaches to improve circuit speed and correct
timing violations after global placement. This paper presents a
dynamic- programming based algorithm for performing net
topology construction and buffer insertion and sizing
simultaneously under the given buffer-placement blockages. The
differences from some previous works are that (1) the buffer
locations are not pre-determined, (2) the multi-pin nets are
easily handled, and (3) a line-search routing algorithm is
implemented to speed up the process. Heuristics are used to
reduce the problem complexity, which include limiting number
of intermediate solutions, using a continuous buffer sizing
model, and restricting the buffer locations along the Hanan
graph. The resulting algorithm, named BRBP, was applied to a
number of industrial designs and achieved an average of 7.9%
delay improvement compared to a conventional design flow.

1. Introduction
With the rapid decrease in device sizes, resistance per unit
length of interconnects has risen. Meanwhile, chip sizes
and global wire lengths continue to grow rapidly. These
factors make interconnect delay play an increasingly
important role in circuit performance. Many optimization
techniques have been developed to reduce interconnect
delays. Among them, global routing and buffer sizing
have a significant effect on interconnect delay.

Conventional design flow proceeds as follows. First, net
topology is determined by constructing a Steiner tree or a
shortest path routing tree, next buffers are inserted into
this topology and sized. In [1], a dynamic-programming
based algorithm to insert and size buffers for a given net
topology is proposed. The objective is to maximize the
required arrival time at the driver pin of the net. This
technique has proven quite effective when the inserted
buffers can be placed anywhere on the chip. However, in
reality there are many placement blockages in the circuit
that restrict the areas on the chip where the buffers can be

 * This work is supported in part by grant number MIP-9988441
from the National Science Foundation. Wei Chen is with
Synopsys, Inc. at the present time.

placed. Since they do not block routing, wires can go
through these blockages (though they may not use all
possible layers). The algorithm of [1] does not perform
well in such a situation, and hence a new algorithm must be
developed that performs net topology design and buffer
insertion simultaneously; otherwise, the existence of a
fixed, a priori topology that may go through placement
blockages will greatly limit the effectiveness of the
subsequent buffer insertion step.

BlockageSink Source

(a) (b) (c)

Figure 1. An example of wire buffering with placement
blockages

A small example is given in Figure 1(a). Based on a
conventional flow tool, the global router, which can route
through the placement blockages, constructs a Steiner tree
as shown in Figure 1(b). The subsequent wire-buffering
tool cannot insert buffers for this net because it is blocked
almost completely. Another choice is to specify that the
placement blockages are also routing blockages. The global
router can go around all the blockages, and the subsequent
wire buffering process can insert buffers on the net, as
shown in Figure 1(c). However, for the left sink, a net,
which goes through the vertical blockage and connects the
sink to the source, is actually a better solution.

The authors of [2] presented a shortest-path based
algorithm to perform routing and buffer insertion
simultaneously with restrictions on the buffer locations.
The authors attempted to find the shortest Elmore delay
path between a source pin and a sink pin. They used maze
routing to expand the solution from the sink to the source.
At every node of the grid, a buffer can be inserted to
improve the timing. However, due to the nature of shortest-
path algorithm, this method only works for two-pin nets. A
dynamic-programming based algorithm that handles multi-
pin nets was given in [4]. This method does not perform
buffer sizing, which can be very effective and useful in
optimizing circuit timing. In addition, reference [4]
depends on the assumption that the possible buffer
locations are pre-defined. It works well in design flows

 2

with buffer stations. However, in practice, for design
flows without buffer stations, the possible buffer locations
are very difficult to determine a priori because the buffers
can be placed anywhere outside the blockages, and the
buffer locations influence the wire topology to a great
extent. Reference [3] addressed a similar problem.

In this paper, a dynamic programming based algorithm is
proposed that performs global routing and buffer/inverter
insertion and sizing for the design flow without buffer
stations. It can also handle multi-pin nets. We assume that
placement blockages for the buffers are given. Areas other
than these blockages are available for inserting buffers.
Net topology is generated concurrently with the
determination of buffer locations and size. Instead of
maze routing, a line-search routing algorithm is used.
Buffers are inserted not only at the nodes of the graph but
also on the long edges of the graph.

The remainder of the paper is organized as follows. The
problem definition and the delay model are introduced in
Section 2. The dynamic-programming based algorithm is
presented in Section 3. Experimental results and
conclusions are given in Sections 4 and 5, respectively.

2. Preliminaries
We define the Buffered Routing with Placement Blockage
(BRBP) problem as follows. Given (1) a set of placement
blockages where routing is allowed but no buffers can be
placed and (2) locations of the source pin and the sink
pins of all the nets, simultaneously build the net
topologies and insert sized buffers/inverters at places
where they are allowed to improve the circuit timing.

To calculate the delay of the buffer/inverter, the logical-
effort based delay model [5] is adopted. This model is a
reformulation of the conventional RC model of CMOS
gate delay. The delay of a buffer d=τ (p+gh). τ is a
scaling parameter that characterizes the semiconductor
process being used. It converts the unit-less quantity
(p+gh) to d, which has time units. Without loss of
generality, we drop τ from now on. p is the parasitic delay
of the gate. g is called the logical effort of the gate, which
depends on the topology of the gate. h is the electrical
effort (or gain), which is defined as Cl/cin, while cin is the
input pin capacitance, and Cl is the capacitance load. p
and g are independent of the gate size, so when h is fixed,
the delay is also fixed.

To account for the interconnect delay, the Elmore delay
model [6] is used in this paper. If the unit length wire
resistance and capacitance are denoted by r0 and c0,
respectively, and the wire length is denoted by lw, the
resistance and capacitance of the wire are: rw=r0⋅lw and
cw=c0⋅lw. The wire delay is calculated as follows:

1

2w w wd r (c C)= ⋅ + , where C is the load driven by the wire.

 0.5cw 0.5cw

rw

Figure 2. Elmore delay model

3. BRBP Algorithm
This paper presents a dynamic-programming based
algorithm for solving the Buffered Routing problem in the
presence of Placement Blockages (named the BRBP
algorithm). First, a Hanan graph is created from the
locations of the source, sinks, and blockages. For each sink
pin, base solutions are generated, and a line search
technique is adopted to propagate the solutions. Starting
with low-level solutions, the existing solutions are merged
to obtain a new higher-level solution. Buffers/inverters are
not inserted only at the nodes of the Hanan graph. Long
edges in the graph are divided into small segments, and
buffer/inverter insertion is attempted for endpoints of each
segment. This process is repeated until the topology of the
complete net is achieved.

3.1 Hanan graph
Hanan proved that there always exists a Rectilinear Steiner
Minimum Tree for a terminal set where all Steiner points
are placed on the Hanan grid, which is the set of points
formed by the intersection of horizontal and vertical lines
through the terminals [7]. In the BRBP algorithm, the
Hanan grid of a given net is created first and subsequent
operations are performed on this graph. Considering the
importance of the placement blockages, corners of the
blockages are treated as sink pins. The Hanan graph of the
example in Figure 1 is shown in Figure 3. The small solid
round dots represent the valid corners of the blockages.
Notice that the two corners on the left side of the horizontal
blockage are dropped. The reason is that they are both
covered by the other blockage. In general, if a corner is
blocked, there is no chance to insert a buffer around the
corner. Furthermore, the fewer the number of Hanan
points, the smaller the time complexity and memory
requirement. Therefore, only the unblocked corners are
used to construct the Hanan graph.

Figure 3. The Hanan graph of the example in Figure 1

 3

Another question with respect to the Hanan graph is how
to set its boundary. In previous works, the boundary is the
minimum bounding box of the source pin and the sink
pins of the net. In this problem, the option to go around all
the blockages should always remain. Consequently, the
previous choice is not adequate. The algorithm in Figure 4
shows a method for creating the Hanan graph for a net n
and blockage set B.

Algorithm Hanan_graph(n, B)

1. initialize the Hanan graph H as the minimum-bounding
box for the source and sinks;

2. while there is a blockage b∈B that is cut by H, do
3. enlarge H to cover b completely;
4. return H;

Figure 4. Algorithm Hanan_graph

Hanan_graph begins with H as a traditional minimum
bounding box for the entire source and sink pins. It then
iteratively enlarges the boundary of H to hold all the
blockages cut by H until the boundary does not intersect
any blockage. In Figure 3, the smaller solid rectangle
represents the boundary of the Hanan graph of that net.

3.2 Data structure and base solutions
In the algorithm presented here, each solution sol has a
quintuple labeling (root, cap, req, reachable_set,
repeater). These labels are defined as follows.

• root - a pointer to the node in the Hanan grid, which is
root of the node tree formed by the current solution sol

• cap - the capacitive load of sol as seen from root
• req - the required arrival time for sol at root
• reachable_set - a set of pointers to the nodes that are

reachable from root (the node tree formed by sol)
• repeater - repeater of type (i.e., buffer, inverter, or null)

and size inserted at root.

A continuous buffer-sizing model is adopted to perform
the buffer sizing. The reasons for this are as follows. (1)
In today’s ASIC design library, the number of available
sizes for the buffer/inserter is so large that the error in
rounding the continuous buffer size to a discrete buffer
size is negligible. (2) In order to perform buffer sizing
with a discrete sizing model, each available size has to be
tried whenever a new buffer is inserted. Moreover, many
of the sizing solutions have to be stored for later use
during dynamic programming. This results in a very long
computation time and large memory usage. (3) With the
gain-based delay model [5], delay is a function of only the
gain. As a result, a number of small buffers driven by the
same source with the same gain h can be merged to a
large buffer with the same gain h [8].

For each point in the Hanan graph, the lowest level
solutions, i.e. base solutions are generated:

1. For a sink pin point p, there is one base solution sol(p,
cap, req, {p}, 0}. cap and req are the capacitive load
and required arrival time of this sink.

2. For a source pin point or Hanan point p:
a. If point p cannot admit a buffer, then there is only

one base solution sol(p, 0, +∞, {p}, 0}.
b. If point p can be used to insert a buffer/inverter,

there are three base solutions associated with this
point. They are (1) sol1(p, 0, +∞, {p}, 0}, (2) sol2(p,
0, +∞, {p}, {buffer,0}}, (3) sol3(p, 0, +∞, {p},
{inverter,0}}. In sol2 and sol3, a continuous size
buffer and inverter of size 0 are inserted at point p.

To generate the net topology, a priority queue priority_sols
is maintained, which returns solution with the largest req.
This means high priority is given to expand less critical
sinks (or partial solutions). All of the base solutions rooted
at the sink pins are initially pushed into the priority_sols.

3.3 Solution propagation
Once a blockage appears, the solutions cannot grow toward
the source node in a greedy, shortest-route manner. All
directions for expansion should be tried. A simple method
used to try the four directions is maze routing. Each time a
solution is popped out from the priority_sols, it grows to its
neighboring nodes in a wave propagation manner. The
maze-routing based method is used in [2] and [4].
However, it is possible for the Hanan grid to be too large
for maze routing. As a result, the expansion should stop at
some carefully selected nodes, which are called escape
nodes, instead of simply the neighboring nodes. Line
search is an effective and well-known technique used to
speed up the maze routing process. Hightower’s algorithm
[9] is used to find the escape node for each expansion step.
Figure 5 shows the algorithm to find the escape nodes
during solution tree propagation. Assume that sol is the
solution popped from priority_sols.

Definition - A point is covered by a blockage when a
horizontal or a vertical escape line drawn from the point
intersects the blockage.

Algorithm escape_nodes(sol)
1. root = sol->root;
2. hor and ver are the horizontal and vertical escape lines

that are drawn from the root;
3. node list escapes=Φ;
4. for up and down direction (left and right direction) of the

two escape lines, find a escape node that is
a. a source or sink node; or
b. a Hanan point formed by two lines passing the

source or a sink node; or
c. a Hanan point that is not covered by any blockage

that covers root; or
d. the first unblocked Hanan point after the escape

line passes a blockage boundary;
insert the escape node to escapes;

5. return escapes;

Figure 5. Algorithm escape_nodes

 4

The Hanan graph in Figure 3 is redrawn in Figure 6 with
coordinates. Assume that the sink pin s1 at (a, 4) has a
larger required arrival time than that of the sink pin s2 at
(e, 2). The base solution sol for s1 is popped. Since s1 is on
the boundary, it grows in only three directions: up, down,
and right to nodes (a, 5), (a, 3), and (d, 4), following rules
3.c, 3.c, and 3.b, respectively. For the base solution rooted
at node s2, it grows to nodes (e, 4), (e, 1), (b, 2), and (f, 2),
following rules 3.b, 3.c, 3.d, and 3.c, respectively.

3
4

1
2

5

6

7

a b c d e f
Figure 6. Hanan graph with coordinates

When a solution u expands to an escape node, it is merged
with solutions that are rooted there and whose
reachable_set does not overlap with that of u. This check
is necessary because it avoids (1) creating a cycle in the
routing tree by connecting a sink pin multiple times and
(2) going back to a node that is already in the reachable
set, which lead to re-convergence. Suppose a solution
u(rootu, capu, requ, reachable_setu, repeateru) merges with
solution v(rootv, capv, reqv, reachable_setv, repeaterv).
The new higher-level solution w is:

1. when no repeater is inserted at the rootv:
rootw = rootv;
capw = capu+cw

u,v+capv; /* where cw
u,v is capacitance

of the wire edge between rootu and rootv */
reqw = Min(requ - dw

u,v, reqv); /* where dw
u,v is the

delay of the wire edge between rootu and rootv */
reachable_setw = reachable_setu ∪ reachable_setv ∪

{nodes on the path from rootu to rootv};
repeaterw = 0;

2. when a repeater is inserted at the rootv:
rootw = rootv;
capw = (capu+ cw

u,v)/β + capv; /* where β is the fixed
gain of the repeater */

reqw = Min(requ - dw
u,v - drepeater, reqv); /* where

drepeater is the fixed delay of the buffer/inverter */
reachable_setw = reachable_setu ∪ reachable_setv ∪

{nodes on the path from rootu to rootv};
repeaterw = { buffer/inverter, calculated by capw and β

};

Since we use a gain-based, continuous sizing model, the
delay of the buffer/inverter can be fixed no matter how
great a capacitive load it will drive. The above two cases
may happen at the same node, depending on whether or
not the buffers/inverters are inserted there.

All of the new higher-level solutions are pushed to
priority_sols. After a popped-out solution expands to all
the nodes identified by the algorithm escape_nodes and
merges with all the non-overlapping solutions, another
solution is popped. This process is repeated until the
priority_sols queue is empty. This stopping criterion
guarantees the optimal solution is achievable. To speed up
the optimization, however, the search can be stopped as
soon as a solution that reaches all the sinks is found. This
may not be the optimal solution.

3.4 Edge buffering
The length of an edge between two nodes in a Hanan grid
may be very large. This makes buffering only at the Hanan
grid inadequate. During expansion from a popped solution
to an escape node, if the edge between these two nodes is
not blocked and very long, inserting buffers/inverters on
the edge should be considered. For a given library, the
maximum length L that no repeater is needed is easily
determined [10]. As a result, if the length of an edge is
longer than L, we divide the edge into several small
segments. At end of each segment, new solutions for (1) no
repeater, (2) buffer, and (3) inverter are constructed.
Obviously cases (2) and (3) occur only if the point in
question can admit a buffer/inverter. Suppose a solution
u(rootu, capu, requ, reachable_setu, repeateru) has been
generated at some stage of the process. Solutions v at end
point nodeend of the edge segment are calculated as follows:

1. If nodeend does not admit a buffer:
rootv = nodeend;
capv = capu+csegment; //where csegment is the capacitance

of the wire segment of length L
reqv = requ - d

w
u,end; //where dw

u,end is the delay of the
wire segment between rootu and nodeend

reachable_setv = reachable_setu;
repeaterv =0;

2. If nodeend admits a buffer:
rootv = nodeend;
capv = (capu+ csegment)/β;
reqv = requ - d

w
u,end - drepeater;

reachable_setv = reachable_setu;
repeaterv={buffer/inverter, calculated by capv and β};

3.5 Pruning
Pruning is common in dynamic-programming based
algorithms. The goal of pruning is to reduce the problem
complexity and computing time.

Definition - Consider a set of solutions with the same root
and driving the same sink pin set. For every u(root, capu,
requ, reachable_setu, repeateru) and v(root, capv, reqv,
reachable _setv, repeaterv), if capu> capv and requ≤ reqv,
then u is dominated by v. Similarly, if capv> capu and
reqv≤ requ, then v is dominated by u.

If u is dominated by v, u is dropped from the solution
queue. Notice here that all the solutions that are rooted at
the same node and drive the same sink pin set (not the same

 5

reachable set) form a solution set. This pruning does not
affect the optimality of the algorithm. In this algorithm,
pruning is performed in two cases. The first case is when
a solution merges with the solutions rooted at its escape
node. The other case is edge buffering. In this case, all the
solutions that are rooted at the same segment end point
drive the same sink pin set. The number of points kept in
the (cap, req) curve of a solution set during pruning is
restricted. Although dropping some non-dominated points
may compromise optimality, the problem size becomes
much smaller and the algorithm speed improves greatly. A
dynamic bucket-sorting technique is used to ensure that
solutions for various ranges of cap and req are kept.

3.6 Algorithm flow
The flow of this algorithm is presented in Figure 7.

1. topologically sort the net list of circuit in the order from
primary output to primary input;

2. for each net net from the above list {
3. {
4. H=Hanan_graph(net, B); //B: blockages
5. initialize base solutions and priority_sols;
6. while (priority_sols≠Φ)
7. {
8. sol = solution popped from the priority_sols;
9. node list escape_list= escape_nodes(sol);
10. for each node escape in escape_list
11. {
12. expand sol to escape; /*if needed, do

edge buffering and pruning */
13. merge sol with the solutions rooted at

escape; /*if edge is internally
buffered, replace sol with a list of
solutions rooted at the end point of the
last edge segment before escape */

14. prune solutions rooted at escape with
the same sink pin set;

15. if (new solutions are not dominated by
other solutions)

16. insert new solutions to the
priority_sols;

17. if (escape==source pin)
18. delete from the priority_sols all

solutions that drive the same sink
pin set as sol;

19. }
20. }
21. best_sol is the best solution rooted at the source

pin and driving all the sinks;
22. implement best_sol and map buffers/inverters to

real gates in the library;
23. update timing;
24. }
25. return;

Figure 7. Algorithm
Wire_buffering_with_placement_blockage

Lines 17 and 18 are necessary because they can greatly
shorten the algorithm run time. Figure 8 shows the

buffered routing solution generated by the algorithm for the
example in Figure 3. The solid lines represent the routing.
Buffers and inverters are inserted. Suppose the required
time of sink (a,4) is much larger than that of sink (e,2). If
lines 17 and 18 did not exist, sink (e,2) would not be
connected to the source directly until all of the solutions
originating from sink (a,4) had been popped out. This
would significantly increase the runtime.

3
4

1
2

5

6

7

a b c d e f
Figure 8. Routing and buffering result of the BRBP

algorithm for the example in Figure 1

3.7 Complexity Analysis
Suppose we have an N⋅M Hanan grid. Assume that at most
K solutions are kept after each pruning. At any time, there
are up to 2n⋅K solutions rooted at any node, where n is the
number of the sink nodes and 2n is the number of all
possible sink node combinations. During the internal edge
buffering, it is possible to create many solutions. However,
pruning on these new solutions is performed immediately,
and at most K new solutions are kept after the pruning.
After the K solutions combine with the solutions rooted at
their escape node, the next round of pruning takes place. In
addition, edge buffering does not increase the space
complexity. Consequently, the worst-case space
complexity of this algorithm is O(N⋅M⋅2n⋅K).

The time complexity depends on the number of the
solutions popped from the priority_sols queue. There is a
great difference between the number of the solutions
pushed into the priority_sols queue and the number of valid
solutions popped from the priority_sols queue because a
large number of solutions are pruned later. At most
O(N⋅M⋅2n⋅K) non-dominated solutions are saved. To
construct a solution w from solutions u and v, no edge that
is already covered by u or v is taken because this would
cause overlap between the reachable sets. A solution will
traverse at most O(N⋅M) edges in the Hanan grid to connect
the source pin to a node under the condition of waveform
propagation-based maze routing. Consequently, the number
of valid solutions is O(N2⋅M2⋅2n⋅K). Because the line-search
algorithm can greatly decrease the number of steps, the
above analysis is pessimistic. When a solution u is
propagated to an escape node, the most time consuming
part is the merge operation. Suppose u connects m sink
pins; it needs at most 2(n-m)⋅K solutions in order to merge.
Thus the time complexity is O(N2⋅M2⋅2(2n-m)⋅K2).

 6

The BRBP algorithm is developed for post global
placement. At this stage, fanout optimization [11] has
already been performed during the logic synthesis. As a
result, any source pin drives a relatively small number of
sinks. For example, if fanout optimization is performed so
as to limit the maximum fanout count of any source pin to
be p, then 2p is fixed. Under this assumption the worst
case space and time complexities of the BRBP algorithm
are O(N⋅M) and O(N2⋅M2). N and M are usually not large
numbers if the number of sinks is small. Note that K is
also fixed and is hence dropped out of the “O” notation.

4. Experimental results
Table 1. Experimental results

#Inverters Inserted #Buffers Inserted

Cell

Number Conv. B+R Conv. B+R

ex1 8087 945 900 1349 1240

ex2 38127 5503 5380 7032 6534

ex3 62187 2634 2615 9623 9282

ex4 767982 64384 62830 71238 68204

Longest Path
Delay

Median port
Slack

Improvement
(%)

Conv. BRBP Conv. BRBP Delay Slack

ex1 2537 2412 495 504 5.2 1.9

ex2 18153 16793 6784 6933 8.1 2.2

ex3 24672 22718 5204 5345 8.6 2.7

ex4 17948 16391 1420 1452 9.5 2.3

This algorithm for Buffered Routing with Placement
Blockages (BRBP algorithm) was implemented and run
on several industrial designs. The experimental results are
compared with a conventional flow proposed in [1], which
first determines the net topology by global routing and
then buffers the net. The comparison is made with respect
to two metrics. The first is the longest path delay. The
second is the median slack time of all the output ports in
the designs. The slack of a port is defined as the required
arrival time minus the real arrival time of the port.
Because[2] is limited to a two-pin net, [4] used some pre-
defined buffer locations, and the choice of these locations
strongly influences the final results we do not make
comparisons with them.

In Table 1, BRBP column denotes the results of the BRBP
algorithm. Compared to the conventional flow in [1], nets
may go around blockages or go through them. Thus there
are fewer buffers and inverters inserted. The results were
generated on a distributed computing environment. Hence
detailed runtime cannot be collected. The largest circuit
was completed in eight hours of CPU time.The same
circuit requires nearly 4 hours CPU time for the

conventional flow. The reason for this is that much of the
CPU time is spent on timing update. Furthermore, our
pruning process and speed-up heuristics are quite effective
in controlling the time and space complexity. In these
experiments, only two solutions are kept after each
pruning. One is the solution with the least capacitive load.
The other is the one with the latest required arrival time. In
the experiments, the number of sinks is no more than 10.

5. Conclusions
In this paper, a dynamic-programming based algorithm to
perform buffered wire routing in the presence of placement
blockage was presented. The algorithm does not rely on the
specification of fixed placement buffer stations. The
proposed algorithm was implemented in an industrial
design environment and run on several large benchmarks.
Experimental results show that this algorithm achieves, on
average, a 7.9% improvement on the longest path delay and
a 2.3% improvement on the median port slack when
compared to the standard industry tool flows.

References

[1] L.P.P.P Van Ginneken, “Buffer Placement in Distributed
RC-Tree Networks for Minimal Elmore Delay,” in Proc.
IEEE International Symposium on Circuits and Systems,
1990, pp. 865-868.

[2] H. Zhou. D. F. Wong, I. Liu, and A. Aziz, “Simultaneous
Routing and Buffer Insertion with Restriction on Buffer
Location,” in Proc. Design Automation Conference, 1999,
pp. 96-99.

[3] C. J. Alpert, “A Steiner Tree Construction for Buffers,
Blockages, and Bays,” IEEE Trans. On CAD of Integrated
Circuits and Systems, pp. 556-562, Apr. 2001.

[4] J. Cong and X. Yuan, “Routing Tree Construction Under
Fixed Buffer Location,” in Proc. Design Automation
Conference, 2000, pp. 379-384.

[5] I. Sutherland and R. Sproul, “The Theory of Logical Effort:
Designing for Speed on the Back of an Envelope,”
Advanced Research in VLSI, Santa Cruz, 1991.

[6] W. C. Elmore, “The Transient Response of Damped Linear
Networks with Particular Regard to Wide-band Amplifiers,”
Journal of Applied Physics, pp.55-63, 1948.

[7] M. Hanan, “On Steiner’s Problem with Rectilinear
Distance,” SIAM Journal of Applied Mathematics, pp. 255-
265, 1966.

[8] D. Kung, “A Fast Fanout Optimization Algorithm for Near-
Continuous Buffer Libraries,” in Proc. Design Automation
Conference, 1998, pp. 352-355.

[9] D. W. Hightower, “A Solution to Line-routing Problem on
the Continuous Plane,” in Proc. Design Automation
Workshop, 1969, pp. 1-24.

[10] D. Sylvester, C. Hu, O. S. Nakagawa, and S-Y. Oh,
“Interconnect Scaling: Signal Integrity and Performance in
Future High-speed CMOS Designs,” in Proc. of VLSI
symposium on Technology, 1998, pp.42-43.

[11] H. Touati, “Performance-oriented Technology Mapping,”
Ph.D. thesis, University of California, Berkeley, Technical
Report UCB.ERL M90/109, Nov. 1990.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

