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Abstract 

Interconnect delay has become a critical factor in determining 
the performance of integrated circuits. Routing and buffering 
are powerful approaches to improve circuit speed and correct 
timing violations after global placement. This paper presents a 
dynamic- programming based algorithm for performing net 
topology construction and buffer insertion and sizing 
simultaneously under the given buffer-placement blockages. The 
differences from some previous works are that (1) the buffer 
locations are not pre-determined, (2) the multi-pin nets are 
easily handled, and (3) a line-search routing algorithm is 
implemented to speed up the process. Heuristics are used to 
reduce the problem complexity, which include limiting number 
of intermediate solutions, using a continuous buffer sizing 
model, and restricting the buffer locations along the Hanan 
graph. The resulting algorithm, named BRBP, was applied to a 
number of industrial designs and achieved an average of 7.9% 
delay improvement compared to a conventional design flow. 

1. Introduction  
With the rapid decrease in device sizes, resistance per unit 
length of interconnects has risen. Meanwhile, chip sizes 
and global wire lengths continue to grow rapidly. These 
factors make interconnect delay play an increasingly 
important role in circuit performance. Many optimization 
techniques have been developed to reduce interconnect 
delays. Among them, global routing and buffer sizing 
have a significant effect on interconnect delay.  

Conventional design flow proceeds as follows. First, net 
topology is determined by constructing a Steiner tree or a 
shortest path routing tree, next buffers are inserted into 
this topology and sized. In [1], a dynamic-programming 
based algorithm to insert and size buffers for a given net 
topology is proposed. The objective is to maximize the 
required arrival time at the driver pin of the net. This 
technique has proven quite effective when the inserted 
buffers can be placed anywhere on the chip. However, in 
reality there are many placement blockages in the circuit 
that restrict the areas on the chip where the buffers can be 
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placed. Since they do not block routing, wires can go 
through these blockages (though they may not use all 
possible layers). The algorithm of [1] does not perform 
well in such a situation, and hence a new algorithm must be 
developed that performs net topology design and buffer 
insertion simultaneously; otherwise, the existence of a 
fixed, a priori topology that may go through placement 
blockages will greatly limit the effectiveness of the 
subsequent buffer insertion step.   

BlockageSink Source

(a) (b) (c)

Figure 1. An example of wire buffering with placement 
blockages 

A small example is given in Figure 1(a). Based on a 
conventional flow tool, the global router, which can route 
through the placement blockages, constructs a Steiner tree 
as shown in Figure 1(b). The subsequent wire-buffering 
tool cannot insert buffers for this net because it is blocked 
almost completely. Another choice is to specify that the 
placement blockages are also routing blockages. The global 
router can go around all the blockages, and the subsequent 
wire buffering process can insert buffers on the net, as 
shown in Figure 1(c). However, for the left sink, a net, 
which goes through the vertical blockage and connects the 
sink to the source, is actually a better solution.   

The authors of [2] presented a shortest-path based 
algorithm to perform routing and buffer insertion 
simultaneously with restrictions on the buffer locations. 
The authors attempted to find the shortest Elmore delay 
path between a source pin and a sink pin. They used maze 
routing to expand the solution from the sink to the source. 
At every node of the grid, a buffer can be inserted to 
improve the timing. However, due to the nature of shortest-
path algorithm, this method only works for two-pin nets. A 
dynamic-programming based algorithm that handles multi-
pin nets was given in [4]. This method does not perform 
buffer sizing, which can be very effective and useful in 
optimizing circuit timing. In addition, reference [4] 
depends on the assumption that the possible buffer 
locations are pre-defined. It works well in design flows 
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with buffer stations. However, in practice, for design 
flows without buffer stations, the possible buffer locations 
are very difficult to determine a priori because the buffers 
can be placed anywhere outside the blockages, and the 
buffer locations influence the wire topology to a great 
extent. Reference [3] addressed a similar problem. 

In this paper, a dynamic programming based algorithm is 
proposed that performs global routing and buffer/inverter 
insertion and sizing for the design flow without buffer 
stations. It can also handle multi-pin nets. We assume that 
placement blockages for the buffers are given. Areas other 
than these blockages are available for inserting buffers. 
Net topology is generated concurrently with the 
determination of buffer locations and size. Instead of 
maze routing, a line-search routing algorithm is used. 
Buffers are inserted not only at the nodes of the graph but 
also on the long edges of the graph.  

The remainder of the paper is organized as follows. The 
problem definition and the delay model are introduced in 
Section 2. The dynamic-programming based algorithm is 
presented in Section 3. Experimental results and 
conclusions are given in Sections 4 and 5, respectively. 

2. Preliminaries 
We define the Buffered Routing with Placement Blockage 
(BRBP) problem as follows. Given (1) a set of placement 
blockages where routing is allowed but no buffers can be 
placed and (2) locations of the source pin and the sink 
pins of all the nets, simultaneously build the net 
topologies and insert sized buffers/inverters at places 
where they are allowed to improve the circuit timing. 

To calculate the delay of the buffer/inverter, the logical-
effort based delay model [5] is adopted. This model is a 
reformulation of the conventional RC model of CMOS 
gate delay. The delay of a buffer d=τ (p+gh). τ is a 
scaling parameter that characterizes the semiconductor 
process being used. It converts the unit-less quantity 
(p+gh) to d, which has time units. Without loss of 
generality, we drop τ from now on. p is the parasitic delay 
of the gate. g is called the logical effort of the gate, which 
depends on the topology of the gate. h is the electrical 
effort (or gain), which is defined as Cl/cin, while cin is the 
input pin capacitance, and Cl is the capacitance load. p 
and g are independent of the gate size, so when h is fixed, 
the delay is also fixed.  

To account for the interconnect delay, the Elmore delay 
model [6] is used in this paper. If the unit length wire 
resistance and capacitance are denoted by r0 and c0, 
respectively, and the wire length is denoted by lw, the 
resistance and capacitance of the wire are: rw=r0⋅lw and 
cw=c0⋅lw. The wire delay is calculated as follows: 

1

2w w wd r ( c C )= ⋅ + , where C is the load driven by the wire.  

 0.5cw 0.5cw

rw

 
Figure 2. Elmore delay model 

3. BRBP Algorithm  
This paper presents a dynamic-programming based 
algorithm for solving the Buffered Routing problem in the 
presence of Placement Blockages (named the BRBP 
algorithm). First, a Hanan graph is created from the 
locations of the source, sinks, and blockages. For each sink 
pin, base solutions are generated, and a line search 
technique is adopted to propagate the solutions. Starting 
with low-level solutions, the existing solutions are merged 
to obtain a new higher-level solution. Buffers/inverters are 
not inserted only at the nodes of the Hanan graph. Long 
edges in the graph are divided into small segments, and 
buffer/inverter insertion is attempted for endpoints of each 
segment. This process is repeated until the topology of the 
complete net is achieved.  

3.1 Hanan graph 
Hanan proved that there always exists a Rectilinear Steiner 
Minimum Tree for a terminal set where all Steiner points 
are placed on the Hanan grid, which is the set of points 
formed by the intersection of horizontal and vertical lines 
through the terminals [7]. In the BRBP algorithm, the 
Hanan grid of a given net is created first and subsequent 
operations are performed on this graph. Considering the 
importance of the placement blockages, corners of the 
blockages are treated as sink pins. The Hanan graph of the 
example in Figure 1 is shown in Figure 3. The small solid 
round dots represent the valid corners of the blockages. 
Notice that the two corners on the left side of the horizontal 
blockage are dropped. The reason is that they are both 
covered by the other blockage. In general, if a corner is 
blocked, there is no chance to insert a buffer around the 
corner. Furthermore, the fewer the number of Hanan 
points, the smaller the time complexity and memory 
requirement. Therefore, only the unblocked corners are 
used to construct the Hanan graph.  

 
Figure 3. The Hanan graph of the example in Figure 1 
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Another question with respect to the Hanan graph is how 
to set its boundary. In previous works, the boundary is the 
minimum bounding box of the source pin and the sink 
pins of the net. In this problem, the option to go around all 
the blockages should always remain. Consequently, the 
previous choice is not adequate. The algorithm in Figure 4 
shows a method for creating the Hanan graph for a net n 
and blockage set B.  

Algorithm Hanan_graph(n, B) 

1. initialize the Hanan graph H as the minimum-bounding 
box for the source and sinks; 

2. while there is a blockage b∈B that is cut by H, do 
3. enlarge H to cover b completely; 
4. return H; 

Figure 4. Algorithm Hanan_graph  

Hanan_graph begins with H as a traditional minimum 
bounding box for the entire source and sink pins. It then 
iteratively enlarges the boundary of H to hold all the 
blockages cut by H until the boundary does not intersect 
any blockage. In Figure 3, the smaller solid rectangle 
represents the boundary of the Hanan graph of that net. 

3.2 Data structure and base solutions 
In the algorithm presented here, each solution sol has a 
quintuple labeling (root, cap, req, reachable_set, 
repeater). These labels are defined as follows. 

• root - a pointer to the node in the Hanan grid, which is 
root of the node tree formed by the current solution sol 

• cap - the capacitive load of  sol as seen from root 
• req - the required arrival time for sol at root 
• reachable_set - a set of pointers to the nodes that are 

reachable from root (the node tree formed by sol) 
• repeater - repeater of type (i.e., buffer, inverter, or null) 

and size inserted at root. 

A continuous buffer-sizing model is adopted to perform 
the buffer sizing. The reasons for this are as follows. (1) 
In today’s ASIC design library, the number of available 
sizes for the buffer/inserter is so large that the error in 
rounding the continuous buffer size to a discrete buffer 
size is negligible. (2) In order to perform buffer sizing 
with a discrete sizing model, each available size has to be 
tried whenever a new buffer is inserted. Moreover, many 
of the sizing solutions have to be stored for later use 
during dynamic programming. This results in a very long 
computation time and large memory usage.  (3) With the 
gain-based delay model [5], delay is a function of only the 
gain. As a result, a number of small buffers driven by the 
same source with the same gain h can be merged to a 
large buffer with the same gain h [8].  

For each point in the Hanan graph, the lowest level 
solutions, i.e. base solutions are generated: 

1. For a sink pin point p, there is one base solution sol(p, 
cap, req, {p}, 0}. cap and req are the capacitive load 
and required arrival time of this sink. 

2. For a source pin point or Hanan point p: 
a. If point p cannot admit a buffer, then there is only 

one base solution sol(p, 0, +∞, {p}, 0}. 
b. If point p can be used to insert a buffer/inverter, 

there are three base solutions associated with this 
point. They are (1) sol1(p, 0, +∞, {p}, 0}, (2) sol2(p, 
0, +∞, {p}, {buffer,0}}, (3) sol3(p, 0, +∞, {p}, 
{inverter,0}}. In sol2 and sol3, a continuous size 
buffer and inverter of size 0 are inserted at point p. 

To generate the net topology, a priority queue priority_sols 
is maintained, which returns solution with the largest req. 
This means high priority is given to expand less critical 
sinks (or partial solutions). All of the base solutions rooted 
at the sink pins are initially pushed into the priority_sols. 

3.3 Solution propagation 
Once a blockage appears, the solutions cannot grow toward 
the source node in a greedy, shortest-route manner. All 
directions for expansion should be tried. A simple method 
used to try the four directions is maze routing. Each time a 
solution is popped out from the priority_sols, it grows to its 
neighboring nodes in a wave propagation manner. The 
maze-routing based method is used in [2] and [4]. 
However, it is possible for the Hanan grid to be too large 
for maze routing. As a result, the expansion should stop at 
some carefully selected nodes, which are called escape 
nodes, instead of simply the neighboring nodes. Line 
search is an effective and well-known technique used to 
speed up the maze routing process. Hightower’s algorithm 
[9] is used to find the escape node for each expansion step. 
Figure 5 shows the algorithm to find the escape nodes 
during solution tree propagation. Assume that sol is the 
solution popped from priority_sols. 

Definition - A point is covered by a blockage when a 
horizontal or a vertical escape line drawn from the point 
intersects the blockage. 

Algorithm escape_nodes(sol) 
1. root = sol->root; 
2. hor and ver are the horizontal and vertical escape lines 

that are drawn from the root;  
3. node list escapes=Φ; 
4. for up and down direction (left and right direction) of the 

two escape lines, find a escape node that is  
a. a source or sink node; or 
b. a Hanan point formed by two lines passing the 

source or a sink node; or 
c. a Hanan point that is not covered by any blockage 

that  covers root; or 
d. the first unblocked Hanan point after the escape 

line passes a blockage boundary; 
insert the escape node to escapes; 

5. return escapes; 

Figure 5. Algorithm escape_nodes  
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The Hanan graph in Figure 3 is redrawn in Figure 6 with 
coordinates. Assume that the sink pin s1 at (a, 4) has a 
larger required arrival time than that of the sink pin s2 at 
(e, 2). The base solution sol for s1 is popped. Since s1 is on 
the boundary, it grows in only three directions: up, down, 
and right to nodes (a, 5), (a, 3), and (d, 4), following rules 
3.c, 3.c, and 3.b, respectively. For the base solution rooted 
at node s2, it grows to nodes (e, 4), (e, 1), (b, 2), and (f, 2), 
following rules 3.b, 3.c, 3.d, and 3.c, respectively.  

3
4

1
2

5

6

7

a b c d e f  
Figure 6. Hanan graph with coordinates 

When a solution u expands to an escape node, it is merged 
with solutions that are rooted there and whose 
reachable_set does not overlap with that of u. This check 
is necessary because it avoids (1) creating a cycle in the 
routing tree by connecting a sink pin multiple times and 
(2) going back to a node that is already in the reachable 
set, which lead to re-convergence. Suppose a solution 
u(rootu, capu, requ, reachable_setu, repeateru) merges with 
solution v(rootv, capv, reqv, reachable_setv, repeaterv). 
The new higher-level solution w is: 

1. when no repeater is inserted at the rootv: 
rootw = rootv; 
capw = capu+cw

u,v+capv; /* where cw
u,v is capacitance 

of the wire edge between rootu and rootv */ 
reqw = Min(requ - dw

u,v, reqv);  /* where dw
u,v is the 

delay of the wire edge between rootu and rootv  */ 
reachable_setw = reachable_setu ∪ reachable_setv ∪ 

{nodes on the path from rootu  to rootv}; 
repeaterw = 0; 

2. when a repeater is inserted at the rootv: 
rootw = rootv; 
capw = (capu+ cw

u,v)/β + capv;  /* where β is the fixed 
gain of the repeater */ 

reqw = Min(requ - dw
u,v - drepeater, reqv);   /* where 

drepeater is the fixed delay of the buffer/inverter */ 
reachable_setw = reachable_setu ∪ reachable_setv ∪ 

{nodes on the path from rootu  to rootv}; 
repeaterw = { buffer/inverter, calculated by capw and β 

}; 

Since we use a gain-based, continuous sizing model, the 
delay of the buffer/inverter can be fixed no matter how 
great a capacitive load it will drive. The above two cases 
may happen at the same node, depending on whether or 
not the buffers/inverters are inserted there. 

All of the new higher-level solutions are pushed to 
priority_sols. After a popped-out solution expands to all 
the nodes identified by the algorithm escape_nodes and 
merges with all the non-overlapping solutions, another 
solution is popped. This process is repeated until the 
priority_sols queue is empty. This stopping criterion 
guarantees the optimal solution is achievable. To speed up 
the optimization, however, the search can be stopped as 
soon as a solution that reaches all the sinks is found. This 
may not be the optimal solution. 

3.4 Edge buffering 
The length of an edge between two nodes in a Hanan grid 
may be very large. This makes buffering only at the Hanan 
grid inadequate. During expansion from a popped solution 
to an escape node, if the edge between these two nodes is 
not blocked and very long, inserting buffers/inverters on 
the edge should be considered. For a given library, the 
maximum length L that no repeater is needed is easily 
determined [10]. As a result, if the length of an edge is 
longer than L, we divide the edge into several small 
segments. At end of each segment, new solutions for (1) no 
repeater, (2) buffer, and (3) inverter are constructed. 
Obviously cases (2) and (3) occur only if the point in 
question can admit a buffer/inverter. Suppose a solution 
u(rootu, capu, requ, reachable_setu, repeateru) has been 
generated at some stage of the process. Solutions v at end 
point nodeend of the edge segment are calculated as follows: 

1. If nodeend does not admit a buffer: 
rootv = nodeend; 
capv = capu+csegment; //where csegment is the capacitance 

of the wire segment of length L 
reqv = requ - d

w
u,end; //where dw

u,end is the delay of the 
wire segment between rootu and nodeend 

reachable_setv = reachable_setu; 
repeaterv =0; 

2. If nodeend admits a buffer: 
rootv = nodeend; 
capv = (capu+ csegment)/β;  
reqv = requ - d

w
u,end - drepeater;  

reachable_setv = reachable_setu; 
repeaterv={buffer/inverter, calculated by capv and β}; 

3.5 Pruning 
Pruning is common in dynamic-programming based 
algorithms. The goal of pruning is to reduce the problem 
complexity and computing time.  

Definition - Consider a set of solutions with the same root 
and driving the same sink pin set. For every u(root, capu, 
requ, reachable_setu, repeateru) and v(root, capv, reqv, 
reachable _setv, repeaterv), if capu> capv and requ≤ reqv, 
then u is dominated by v.  Similarly, if capv> capu and 
reqv≤ requ, then v is dominated by u. 

If u is dominated by v, u is dropped from the solution 
queue. Notice here that all the solutions that are rooted at 
the same node and drive the same sink pin set (not the same 
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reachable set) form a solution set. This pruning does not 
affect the optimality of the algorithm. In this algorithm, 
pruning is performed in two cases. The first case is when 
a solution merges with the solutions rooted at its escape 
node. The other case is edge buffering. In this case, all the 
solutions that are rooted at the same segment end point 
drive the same sink pin set. The number of points kept in 
the (cap, req) curve of a solution set during pruning is 
restricted. Although dropping some non-dominated points 
may compromise optimality, the problem size becomes 
much smaller and the algorithm speed improves greatly. A 
dynamic bucket-sorting technique is used to ensure that 
solutions for various ranges of cap and req are kept.  

3.6 Algorithm flow 
The flow of this algorithm is presented in Figure 7. 

1. topologically sort the net list of circuit in the order from 
primary output to primary input; 

2. for each net net from the above list { 
3. { 
4. H=Hanan_graph(net, B); //B: blockages 
5. initialize base solutions and priority_sols; 
6. while (priority_sols≠Φ) 
7. { 
8. sol = solution popped from the priority_sols; 
9. node list escape_list= escape_nodes(sol); 
10. for each node escape in escape_list 
11. { 
12. expand sol to escape; /*if needed, do 

edge buffering and pruning */ 
13. merge sol  with the solutions rooted at 

escape;  /*if edge is internally 
buffered, replace sol with a list of  
solutions rooted at the end point of the 
last edge segment before escape */ 

14. prune solutions rooted at escape with 
the same sink pin set; 

15. if (new solutions are not dominated by 
other solutions) 

16. insert new solutions to the  
priority_sols; 

17. if (escape==source pin) 
18. delete from the priority_sols all 

solutions that drive the same sink 
pin set as sol;  

19. } 
20. } 
21. best_sol is the best solution rooted at the source 

pin and driving all the sinks; 
22. implement best_sol and map buffers/inverters to 

real gates in the library; 
23. update timing; 
24. } 
25. return; 

Figure 7. Algorithm 
Wire_buffering_with_placement_blockage  

Lines 17 and 18 are necessary because they can greatly 
shorten the algorithm run time. Figure 8 shows the 

buffered routing solution generated by the algorithm for the 
example in Figure 3. The solid lines represent the routing. 
Buffers and inverters are inserted. Suppose the required 
time of sink (a,4)  is much larger than that of sink (e,2). If 
lines 17 and 18 did not exist, sink (e,2) would not be 
connected to the source directly until all of the solutions 
originating from sink (a,4) had been popped out. This 
would significantly increase the runtime.  
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a b c d e f  
Figure 8. Routing and buffering result of the BRBP 

algorithm for the example in Figure 1  

3.7 Complexity Analysis 
Suppose we have an N⋅M Hanan grid. Assume that at most 
K solutions are kept after each pruning.  At any time, there 
are up to 2n⋅K solutions rooted at any node, where n is the 
number of the sink nodes and 2n is the number of all 
possible sink node combinations. During the internal edge 
buffering, it is possible to create many solutions. However, 
pruning on these new solutions is performed immediately, 
and at most K new solutions are kept after the pruning. 
After the K solutions combine with the solutions rooted at 
their escape node, the next round of pruning takes place. In 
addition, edge buffering does not increase the space 
complexity. Consequently, the worst-case space 
complexity of this algorithm is O(N⋅M⋅2n⋅K).  

The time complexity depends on the number of the 
solutions popped from the priority_sols queue. There is a 
great difference between the number of the solutions 
pushed into the priority_sols queue and the number of valid 
solutions popped from the priority_sols queue because a 
large number of solutions are pruned later. At most 
O(N⋅M⋅2n⋅K) non-dominated solutions are saved. To 
construct a solution w from solutions u and v, no edge that 
is already covered by u or v is taken because this would 
cause overlap between the reachable sets. A solution will 
traverse at most O(N⋅M) edges in the Hanan grid to connect 
the source pin to a node under the condition of waveform 
propagation-based maze routing. Consequently, the number 
of valid solutions is O(N2⋅M2⋅2n⋅K). Because the line-search 
algorithm can greatly decrease the number of steps, the 
above analysis is pessimistic. When a solution u is 
propagated to an escape node, the most time consuming 
part is the merge operation.  Suppose u connects m sink 
pins; it needs at most 2(n-m)⋅K solutions in order to merge. 
Thus the time complexity is O(N2⋅M2⋅2(2n-m)⋅K2).  
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The BRBP algorithm is developed for post global 
placement. At this stage, fanout optimization [11] has 
already been performed during the logic synthesis. As a 
result, any source pin drives a relatively small number of 
sinks. For example, if fanout optimization is performed so 
as to limit the maximum fanout count of any source pin to 
be p, then 2p is fixed. Under this assumption the worst 
case space and time complexities of the BRBP algorithm 
are O(N⋅M) and O(N2⋅M2). N and M are usually not large 
numbers if the number of sinks is small. Note that K is 
also fixed and is hence dropped out of the “O” notation.  

4. Experimental results 
Table 1. Experimental results 

#Inverters Inserted #Buffers Inserted 
 

Cell  

Number Conv. B+R Conv. B+R 

ex1 8087 945 900 1349 1240 

ex2 38127 5503 5380 7032 6534 

ex3 62187 2634 2615 9623 9282 

ex4 767982 64384 62830 71238 68204 

 

Longest Path 
Delay  

Median port 
Slack  

Improvement 
(%)  

Conv. BRBP Conv. BRBP Delay Slack 

ex1 2537 2412 495 504 5.2 1.9 

ex2 18153 16793 6784 6933 8.1 2.2 

ex3 24672 22718 5204 5345 8.6 2.7 

ex4 17948 16391 1420 1452 9.5 2.3 

 
This algorithm for Buffered Routing with Placement 
Blockages (BRBP algorithm) was implemented and run 
on several industrial designs. The experimental results are 
compared with a conventional flow proposed in [1], which 
first determines the net topology by global routing and 
then buffers the net. The comparison is made with respect 
to two metrics. The first is the longest path delay. The 
second is the median slack time of all the output ports in 
the designs. The slack of a port is defined as the required 
arrival time minus the real arrival time of the port. 
Because[2] is limited to a two-pin net, [4] used some pre-
defined buffer locations, and the choice of these locations 
strongly influences the final results we do not make 
comparisons with them. 

In Table 1, BRBP column denotes the results of the BRBP 
algorithm. Compared to the conventional flow in [1], nets 
may go around blockages or go through them. Thus there 
are fewer buffers and inverters inserted. The results were 
generated on a distributed computing environment. Hence 
detailed runtime cannot be collected. The largest circuit 
was completed in eight hours of CPU time.The same 
circuit requires nearly 4 hours CPU time for the 

conventional flow. The reason for this is that much of the 
CPU time is spent on timing update. Furthermore, our 
pruning process and speed-up heuristics are quite effective 
in controlling the time and space complexity. In these 
experiments, only two solutions are kept after each 
pruning. One is the solution with the least capacitive load. 
The other is the one with the latest required arrival time. In 
the experiments, the number of sinks is no more than 10. 

5. Conclusions 
In this paper, a dynamic-programming based algorithm to 
perform buffered wire routing in the presence of placement 
blockage was presented. The algorithm does not rely on the 
specification of fixed placement buffer stations. The 
proposed algorithm was implemented in an industrial 
design environment and run on several large benchmarks. 
Experimental results show that this algorithm achieves, on 
average, a 7.9% improvement on the longest path delay and 
a 2.3% improvement on the median port slack when 
compared to the standard industry tool flows. 
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