
Accelerating Boolean Satisfiability through Application
Specific Processing

Ying Zhao, Sharad Malik,

Department of Electrical Engineering,
Princeton University, NJ

Matthew Moskewicz
Department of Electrical Engineering and

Computer Science, University of
California at Berkeley, CA

Conor Madigan
Department of Electrical Engineering and

Computer Science, MIT, MA

Abstract
This paper presents our work in developing an application specific
multiprocessor system for SAT, utilizing the most recent results
such as the development of highly efficient sequential SAT
algorithms, the emergence of commercial configurable processor
cores and the rapid progress in IC manufacturing techniques.
Based on an analysis of the basic SAT search algorithm, we
propose a new parallel SAT algorithm that utilizes fine grain
parallelism. This is then used to design a multiprocessor
architecture in which each processing node consists of a processor
and a communication assist node that deals with message
processing. Each processor is an application specific processor
built from a commercial configurable processor core. All the
system configurations are determined based on the characteristics
of SAT algorithms, and are supported by simulation results. While
this hardware accelerator system does not change the inherent
intractability of the SAT problems, it achieves a 30-60x speedup
over and above the fastest known SAT solver -- Chaff. We believe
that this system can be used to expand the practical applicability
of SAT in all its application areas.

Keywords
Boolean satisfiability, Application specific, Multiprocessor,
Configurable processor core

1. Introduction
SAT serves as the canonical NP-complete problem, and thus has
received significant attention in the theoretical computer science
community. It is also a practical problem encountered in several
application domains, especially in Electronic Design Automation
(EDA) and Artificial Intelligence. In the EDA domain, SAT is
embedded in many areas of design synthesis and validation [1,2,3]
- some of these being test pattern generation, combinatorial and
sequential logic verification, logic synthesis, functional timing
analysis, and routing. Any acceleration in solutions to this
problem will have direct benefit for many applications in these
areas.

Since the basic Davis-Putnam search algorithm [4] was proposed
forty years ago, significant effort [5,6,7,8] has been spent in

determining efficient heuristics that accelerate solutions for
problem instances encountered in practice. Recently, we have
seen the development of Chaff [8], a highly efficient algorithm
that demonstrates 10-100x speedup compared to all previous
software solutions. This has enhanced the scope of problem
instances for which we can now find solutions in reasonable
compute time using SAT software packages running on general-
purpose processors.

Recently the development of high-density programmable logic
has led to the development of a class of SAT accelerators by
several research groups [9,10]. These accelerators exploit the fact
that programmable logic enables a hardware accelerator to be
synthesized specific to each instance of the SAT problem. These
works have been able to demonstrate several orders of magnitude
speedup for many problem instances. However, the hardwiring of
the algorithms greatly compromises the ability to support complex
control and dynamic data structures. Thus, these solutions cannot
utilize the advanced features in the algorithms, which have been
shown to bring orders of magnitude in speedup. In fact, these
accelerators cannot tackle the really difficult problem instances
that they were expected to deal with. Besides, the circuit
compilation cost has in many cases become the dominant
component of the solution time. It is exactly these limitations that
we hope to overcome by using a programmable solution, but by
using specially matched architectures rather than general-purpose
processing. Such processors are referred to Application Specific
Processors (ASPs) and are seeing increasing use in various
application domains. Recently, some commercial offerings [11] of
configurable processor cores have cut the development cost for
ASPs significantly.

Developing parallel solutions [12,13] to deal with computationally
intensive problems like SAT is not a new idea. However, all the
current parallel SAT algorithms target general -purpose
multiprocessor architectures and their associated operating system
support, which have a very high communication overhead.
Consequently, they are all based on the partitioning of the search
space and utilize the coarse parallelism among searches in
different subspaces, to avoid the high communication cost. Until
now, the speedup and scalability of these algorithms have not
been very encouraging, because they are likely to cause
significant load-imbalance due to unpredictable workloads in the
separate sub-spaces.

The multiprocessor system presented in this paper is built with
specialized processing nodes and communication network. Each
processing node consists of an ASP built from a commercial
configurable processor core and a communication assist hardware
unit for message passing. Through this system, we hope to

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/00010…$5.00.

244

achieve significant speedup over current general purpose
processing.

The rest of this paper is organized as follows. The SAT algorithms
are introduced in next section. Section 3 presents the system
prototype. The simulation environment is described in Section 4.
Details of the performance evaluation of the system are presented
in Section 5.

2. SAT Algorithms
Given a Boolean formula that is typically expressed in
conjunctive normal form (CNF), the goal of SAT is to either find
an assignment to the variables so that the formula evaluates to 1,
or determine that no such assignment exists.

Although there are several different types of SAT algorithms,
backtrack based complete search algorithms are the most popular.
The high-level data flow shown in Figure 1 is applicable to all the
algorithms falling into this category. They begin with an empty
assignment. decide() selects a branching variable and assigns a 0
or 1 value to it. Then, deduct() performs BCP (Boolean
Constraint Propagation) to determine the direct and transitive
implications of this assignment. If no conflict is detected during
deduct(), decide() is called again to pick the next assignment, and
the procedure repeats. Otherwise, diagnose() is performed to
determine the reason of the conflict, find the backtrack point, and
generate the conflict clause. Then, backtrack() will remove the
impact of all the implications becoming invalid and pick a new
decision. In addition, db_compact() is another subroutine that has
become very important while dealing with big problem instances
encountered in practical applications. It performs clause deletion,
clause database compaction and clause database updates/cleanup
after the compaction, to maintain reasonable cache performance.

Figure 1 Backtrack based SAT algorithm

In addition to the sequential algorithms introduced above,
researchers have proposed various parallel SAT algorithms
[12,13], trying to utilize the computation power of multiprocessor
systems. In these algorithms the search space is partitioned by a
control processor into small disjoint subspaces, each of which is
assigned to a processor. As shown in
Figure 2, the processors search the assigned subspace using a
sequential SAT algorithm. All the processor will return SAT if
any of them finds a solution, otherwise UNSAT if there is no
unexplored search space left. Since the search space is inherently
unbalanced, all these algorithms use some type of dynamic load
balancing techniques to achieve decent performance.

Figure 2 Current, typical parallel SAT algorithms

3. System Prototype
There are always two tightly correlated elements involved in the
application specific system design: the application and the
underlying system architecture. The performance of the system is
determined by how well these two elements match each other.
Developing an efficient parallel system opens up a broad set of
design considerations. Obviously, it is impractical to try all the
possible combinations. Therefore, we start with an initial parallel
algorithm and system architecture determined via application
analysis. Then, the design process is an iterative refining
procedure for both these two elements, supported by the
simulation results.

3.1 Algorithm Characteristics
Among the most popular complete search algorithms, we have
GRASP[5], SATO[6], Satz[7] and most recently Chaff[8]. These
algorithms share the same high-level control flow and primitive
operations, thus targeting these features is likely to be beneficial
to future algorithms that may be developed.

We have done an extensive application analysis based on these
algorithms by running them on a general-purpose single
processor. The conclusion is that SAT problems are control,
computation and data intensive. More specifically, they have the
following features:
1. More than 99% of the execution time is spent on four major

subroutines: decide(), deduct(), backtrack() and
db_compact().

2. There is a large amount of coarse and fine grain parallelism in
the application.

3. SAT algorithms are all extremely memory bandwidth intensive,
which suggests a distributed memory MIMD multiprocessor
architecture.

3.2 A New Parallel Algorithm
Based on the algorithm characteristics, we propose a new parallel
algorithm – MP_SAT. In terms of control flow, MP_SAT is
similar to a sequential algorithm, with the computational intensive
part being distributed. Unlike the existing parallel SAT
algorithms, MP_SAT focuses on utilizing the fine grain
parallelism in the clause and variable operations. In fact, utilizing
fine grain parallelism is the basic idea behind most hardware
accelerators. However, it usually implies higher communication
cost for programmable solutions, and thus has been limited to
software packages containing regular data accesses and
operations, like those found in most signal and image processing

SAT_SOLVER() {
 while (true) {
 if (decide() == FALSE)
 return; //problem is satisifiable
 if (deduct() == CONFLICT) {
 if (diagnose() == FALSE)
 return; //problem is unsatisfiable
 else
 backtrack();
 }
 }

Parallel_SAT_Solver ()
{
 while (there are unexplored spaces) { //control processor
 for (i=1, …, N-1) { //N-1 search processors
 if (Sequential_SAT_Solver () == SAT)
 return SAT;
 }
 }
 return UNSAT;
}

245

applications. In our design, we will show how to match the system
architecture with the algorithm, so that we can exploit the
potential for higher performance improvement and better
processor load balancing associated with fine grain parallelism,
and avoid the costly communication at the same time. In this
section, we introduce the tasking partitioning and communication
scheme in MP_SAT.

3.2.1 Task Partitioning
MP_SAT uses a hybrid task partitioning method that combines
data based and function based decomposition. Each of the
computationally expensive functions in all SAT algorithms
repeatedly performs the same operations on a large set of data and
there is no strong correlation among the data. This implies a
natural data partition: each processor has a subset of the clauses
and variables. And the functions running on each processor works
on its own data subset in parallel, as shown in Figure 3. Through
the data partitioning, not only multiple operations can be
performed in parallel, in many cases, the cost of each individual
operation is also reduced. These processors are called PPs
(Processing Processors).

Figure 3 Data partition based parallelization

Other than the PPs, a Master Processor (MP) is needed to monitor
the search state, coordinate the operations of all processors and
perform global functions like diagnose().

3.2.2 Communication and Synchronization Scheme
In a distributed memory MIMD system, processors exchange data
via explicit message passing. Careful design of the
communication scheme in both the algorithm and the hardware
system is needed to minimize the communication cost.

In MP_SAT, the timely detection of new messages is not critical.
For example, while a PP is doing deduct(), it need not know that
new implications are coming in immediately since it can only start
to process the new implications after it finishes the current one. In
addition, as will be introduced in Section 3.3, the message buffers
provided by the system can prevent the busy status of the message
receiver stalling the sender. Thus, polling provides an efficient
synchronization method with low overhead in our system, in
contrast to interrupt. Each processor checks for new messages
whenever it completes processing the current message. By doing
this, we avoid wasting machine cycles caused by over polling and
prevent the message buffers from being over loaded with unread
messages at the same time.

There is one special message that is time sensitive: conflict.
Although it does not affect the results of the program if the
conflict message uses the same transmission scheme as other
messages, it may affect the performance and complicate the
control. Basically, all operations that a PP performs from the time
MP detects a conflict until the time the PP starts to process the
conflict messages are useless operations that will cause extra

amount of work during backtrack(). Thus, a direct broadcast
channel is used specifically for a conflict message. Global
synchronization is also performed through the broadcast channel.

3.3 Hardware architecture
3.3.1 High level architecture
MP_SAT has two features: intensive communication based on
message passing and message driven operations. Transmitting
messages at high speed and with least interference with the
computation are important considerations in the system design.
We achieve these goals by using separate hardware units for
communication, which greatly increases the parallelism between
computation and communication. Therefore, each processing node
in the system consists of a processor and a communication node.
The processors have been designed to be straightforward message
generator/consumer, with the corresponding communication
nodes performing the message routing and buffering. Figure 4
shows the architecture with these processing nodes connected via
a two-dimensional mesh.

Figure 4 System architecture using embedded DRAM

The global broadcast wire is pipelined to avoid the delay and
crosstalk problems associated with deep sub-micron designs. As
shown in Figure 4, there is one pipelined broadcast line in each
row and each column. A processor sends out the conflict message
by setting the global wire to high. The signal is transferred via the
vertical wire to each row, then via the horizontal wire to each
processor. The maximum delay of this wire is 2n cycles, where n
is the dimension of the network.

During our simulation, we have found that the parallel execution
of communication and computation can bring more than 50% in
overall performance, which shows that using separate hardware
for communication is very efficient for communication intensive
applications.

3.3.2 Processors
The processors in our system are application specific processors
built from a commercial configurable processor core. These
processors are customized to match the data access patterns and
atomic operations in SAT algorithms. For details about the
processor design, please see [14]. Here, we just give a short
overview of them. To accommodate the memory bandwidth
requirement, the datapath of the processor is chosen to be 128
bits. 11 new instructions are added to the basic configurable
processor core, which fit in three categories: bit operation, parallel
operations utilizing 128bits datapath and compound instructions
for frequently appearing instruction sequences. The new

PP1 PP2 PPn

Clause_set1,
var_list1

Clause_set2,
var_list2

Clause_setn,
var_listn

com

CPU

DRAM

Icache Dcache

ASP
MP

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

246

instructions bring about a 2-4X speedup, at a cost of 2400 gates.
The final processor has 53.9k gates, and runs at 300MHz. These
processors also have direct input/output ports, which allow them
to talk to other components directly, without going through the
ALU or the standard bus interface.

3.3.3 Communication Node
Each communication node consists of two parts:
• Communication channels. Each of the channels is a FIFO

buffer dedicated to a pair of communicating processors, storing
the messages between these two processors. The number of
channels needed in each communication node is affected by the
network topology. Based on simulation results, the size of each
channel is determined to be 20 messages.

• Control logic that performs the message routing and channel
empty/full detection, which can be modeled as a Finite State
Machine. These finite state machines are very small and have
been synthesized from a Verilog description to a circuit with
approximately 100 gates.

Figure 5 shows the architecture of a communication node in a
two-dimensional mesh topology.

Figure 5 Communication node in a two-dimensional mesh

3.3.4 Communication Protocol
The communication protocol mainly includes the network
topology and routing scheme. We chose a two-dimensional mesh
topology due to the following reasons:
• Mesh topology gives a balanced bandwidth across all the

processors. We have found that 90% of the messages in
MP_SAT are broadcast messages. Thus, topologies like tree
usually cause some “hot spots” that will become the
communication bottleneck.

• Mesh has very good scalability and achieves good trade-off
between the diameter and number of connections.

• Planar topologies like two-dimensional mesh make designing
single chip multiprocessor system simpler, since all processors
are connected with uniformly short connections.

In our system, the combination of message buffering and the
parallel execution of computation and communication greatly
reduce the possibility of network congestion. In addition, since all
the operations in MP_SAT are message driven, transmitting
messages fast is crucial in exploiting the parallelism. Therefore,
we use deterministic routing. The communication nodes
determine the route of a message based on the self-contained
address information in its header.

To avoid the deadlock caused by loops in the network topology, a
processor stalls whenever there are less than two spaces left in any
of the buffers in its communication node. In this way, each

communication node can guarantee that there is always empty
space in all its local buffers. Thus, the messages can keep moving.
Even if all the buffers are very close to full, as long as no new
messages are dispatched to the network, the messages can be
consumed and finally removed.

4. Simulation Environment
Our simulation environment consists of two simulators that run at
different abstraction levels, accuracy and speed.

MP_SIM is a cycle-accurate multiprocessor simulator built based
on a commercial cycle-accurate Instruction Set Simulator (ISS). It
is designed to be highly flexible, so that can be used to model
various communication schemes. It is also very easy to configure
by making the network configuration and routing scheme
transparent to user applications.

To overcome the speed limitation of cycle accurate simulation, we
have implemented a C++ simulator that simulates the
multiprocessor system behavior at a high level of abstraction. This
simulator is event (message) driven. The cycle count is generated
by calculating latencies for each individual operation (cache
simulation, network communication, etc.). These latencies are
calculated using the same architecture parameters. The purpose of
this simulator is to get the overall cycle count, rather than to
simulate the real cycle accurate behavior of the parallel algorithm.
Since this simulator runs at a much higher level, it achieves
approximately 50-80x speedup compared with the cycle accurate
simulation, which allows us to simulate bigger problems running
on more processors. First, we run the simulator on the examples
we have run using MP_SIM, and compare the two sets of results.
We find that the cycle counts obtained from the high level
simulators are within [-12%, 5%] of the results from MP_SIM,
which indicates that the results of the new simulator are
reasonably close to the exact results.

5. Design Evaluation
5.1 Parallel Speedup
The speedup is the most basic metric to determine the validity of a
parallel system design. Figure 6 shows the speedup of the parallel
system while using different numbers of processors, compared
with the basic Xtensa processor. The performance is measured
using the number of clock cycles needed to solve the problems.
The cycle counts of the parallel system are obtained using
MP_SIM. The sequential results are obtained by running Chaff, a
highly efficient sequential program on the single processor Xtensa
ISS. Since they run at the same clock frequency, the speedup is
calculated by dividing the cycle count of the parallel system by
the sequential results. Generally speaking, the bigger the problem
size, the higher speedup. This is understandable since larger
problems usually have higher level of parallelism, and thus higher
processor utilization rate.

C0 (P->out0)
C1(P->out1)
C2 (P->P)

Control
logic

Processor P, owner of this communication node

from
processor
in0

to processor
out0
to processor
out1

from processor in1

247

0
5
10
15
20
25
30

jnh
1

ssa
75

52
-16

0

aim
-20

0-6
_0

bf0
43

2-0
07

1d
lx_

c_
mc_

f
ii1

6b
1

dlx
2_

bu
g5

9

pa
r16

-1-
c
ha

no
i4

Problems

Sp
ee

du
p

9 procs
16 procs
36 procs

Figure 6 Speedup vs. number of processors

5.2 Scalability/efficiency Analysis
Figure 7 shows the efficiency of the parallel system, which is
calculated by dividing speedup by the number of processors.
Generally speaking, although speedup may increase, efficiency
always decreases as the number of processors increases, due to the
higher communication cost and the limited parallelism. This
decrease is reflected very well in Figure 7. The figure also shows
that the efficiency is generally higher for bigger problems.

0
0.2
0.4
0.6
0.8

1

jnh
1

ssa
75

52
-16

0

aim
-20

0-6
_0

bf0
43

2-0
07

1d
lx_

c_
mc_

f
ii1

6b
1

dlx
2_

bu
g5

9

pa
r16

-1-
c

ha
no

i4

Problems

Ef
fic

ie
nc

y 9 procs
16 procs
36 procs

Figure 7 Efficiency vs. number of processors

For any parallel system, there must be a certain point where the
efficiency has dropped so much that increasing processors may
lead to lower speed. This is called the limitation of the scalability.
This limitation is very important, since it also points out the
performance limitation of the parallel system. We first perform a
theoretical analysis of this limitation by examining how many
operations can actually be performed in parallel. The parallelism
of our system comes from three sources.
• Inserting variables to a sorted list in parallel in backtrack().
• Compacting the clause database in parallel in db_compact().
• Parallel execution of BCP in deduct().

For almost all the problems we have experimented with, the
number of variables to be processed per backtracking is less than
or close to 100. Therefore, if we use more than 100 processors,
there must be some processors remaining idle during backtrack().
Of course, the more processors we use, the smaller each sub-list,
thus, the faster each insert operates. We expect that the parallelism
limitation of backtrack() happens when the communication cost
of collecting candidates from the PPs starts to outweigh the
advantage of smaller list.

db_compact() has almost perfect parallelism as long as all the
processors have approximately the same amount of clauses or
literals. In addition, due to the data distribution, the data size on
each processor in the multiprocessor system reduces to
approximately 1/(number of processors) of the data size on a
single processor. Thus, the need for database compact is greatly
reduced. Actually, for all the problems we have run, none of them
needs to call db_compact() when the number of processors is
bigger than 16 in the parallel system. Therefore, for this function,
more processor always means better performance.

The efficiency of parallel BCP is determined by the number of
implications and clauses to evaluate upon one decision. In fact,
even for the hardest problems we have seen so far, the number of
clauses evaluated at each decision level is less than or close to
2000. We expect to see the parallelism in clause evaluation much
smaller than this number since the generation of implications is a
chained process. Actually, the average number of clauses to be
evaluated per implication is only 5-10. Thus, the parallelism in
BCP comes mostly from the parallel evaluation of more than one
implication. This again confirms that the fast transmission of
messages is very important for our algorithm. Since the parallel
execution of BCP is the most important source of the performance
improvement, it is also the main source of the limited parallelism.

The above analysis clearly demonstrates the limitation of the
parallelism in MP_SAT. Figure 8 and Figure 9 show the speedup
and efficiency of some big problems [15] running on the
multiprocessor system, obtained using the high level simulator.
These results show that our system can achieve approximately
80%-90% in efficiency for large size problems.

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

ha
no

i4

2d
lx_

cc_
bp

_f

9v
liw

_b
ug

00
1

9v
liw

_b
ug

10
0

5p
ipe

9v
liw

_b
p_

mc

Problems

Sp
ee

du
p

16 procs
36 procs
64 procs
81 procs
100 procs
121 procs

Figure 8 Efficiency vs. number of processors for big problems

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

9
pr

oc
s

16
 p

ro
cs

36
 p

ro
cs

49
 p

ro
cs

64
 p

ro
cs

81
 p

ro
cs

10
0

pr
oc

s

12
1

pr
oc

s

Problems

Ef
fic

ie
nc

y

hanoi4
2dlx_cc_f
9vliw_bug001
9vliw_bug100
5pipe
9vliw_bp_mc

Figure 9 Efficiency vs. number of processors for big problems

From the above analysis and simulation, we can see that the
limited degree of parallelism implies that this system is not
scalable to very large number of processors. Although the
optimum number of processors varies for different problem sizes,

248

even for the biggest problem in our set, a system with more than
81 processors will have significantly lower efficiency than a
system with a smaller number of processors. Actually, during our
simulation, we find that when the number of processors increases
from 81 to 100, the system sees little performance improvement
for most of the problems, if any. And we see slow down for most
of the problem instances when the number of processors changes
from 100 to 121. This is actually consistent with our theoretical
analysis of the degree of parallelism available. We also see speed
anomaly in some cases, caused by the difference between the
search path of sequential and parallel algorithm. In many MIMD
systems, the limitation of scalability is the ratio between
communication and computation. However, in our system, the
communication cost has been lowered significantly because of the
usage of a separate communication node, the scalability is mainly
limited by the amount of parallelism available.

5.3 Parallelism profile
The parallelism profile can be measured based on the utilization
of each processor. The processor utilization is defined as:

utilization = busy_time/(busy_time+idle_time)
where, busy_time represents the time spent by the processor doing
computation or communication, and idle time represents the time
during which the processor was not doing anything. This includes
the machine cycles while a processor is waiting for messages or is
stalling because of the network congestion. Figure 10 shows the
utilization of each processor in a 16-processor system. In general,
we observe very high utilization of all the processors. Although it
is not exact for each individual case, the utilization is generally
higher for bigger problems. Besides, the load balancing between
processors is very good, only varies by less than 2%.

Figure 10 Parallelism profile of a 16-processor system

6. Conclusions
This paper has presented the design of an application specific
multiprocessor system for SAT problems, which includes an
application specific processor built from a commercial
configurable processor core and a separate hardware
communication unit on each processing node. The network
topology and communication protocol are both determined based
on the application characteristics. The system achieves a 30-60X
over Chaff, the fastest known single processor SAT solver. We
also show that very high efficiency can be achieved in a
multiprocessor system, even for communication and control
intensive algorithms. In the work introduced here, we utilize the
most recent advances in several areas: high performance SAT

solvers, commercial configurable processor cores and progress in
the IC manufacturing techniques, to accelerate the SAT problems.

7. References

1 P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli.

Combinational Test Generation Using Satisfiability. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 1167-1176, September 1996.

2 W. Kunz and D. Sotoffel. Reasoning in Boolean Networks.
Kluwer Academic Publishers, 1997.

3 S. Devadas. Optimal Layout via Boolean Satisfiability. In
Proceedings of IEEE International Conference on Computer-
Aided Design, 1989.

4 M. Davis and H. Putnam. A computing Procedure for
Quantification Theory. In Journal of the ACM, pages 201-215,
1960.

5 J. Silva and K. Sakallah. GRASP-A New Search Algorithm for
Satisfiability. In IEEE ACM International Conference on CAD-
96, page 220-227, November 1996.

6 H. Zhang. SATO: An efficient propositional prover. In
Proceedings of the International Conference on Automated
Deduction, pages 272-275, July 1997.

7 C min Li. Equivalency Reasoning to solve a class of hard SAT
problems. Available from

http://www.cs.washington.edu/homes/kautz/challenge/cli.ps.

8 M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang and S. Malik.
Engineering a (Super?) Efficient SAT solver. In Proceedings of
Design Automation Conference, 2001.

9 M. Abramovici and D. Saab. Satisfiability on Reconfigurable
Hardware. In Seventh International Workshop on Field
Programmable Logic and Applications, September 1997.

10 P. Zhong, M. Martonosi, S. Malik and P. Ashar, Solving
Boolean Satisfiabiligy with Dynamic Hardware Configuration.
In Proceedings International Workshop on Field
Programmable Logic and Applications, FPL'98, August 1998.

11 Xtensa configurable processor. http://www.tensilica.com

12 Benjamin W. Wah, Guo-Jie Li and Chee Fen Yu.
Multiprocessing of combinational search problems. In IEEE
computer. Pages 93-108, June 1985.

13 C. Powley, C. Ferguson and R. Korf. Parallel heuristic search:
Two approaches. In Vipin Kumar, P.S. Gopalakrishnan, and
L.N.Kanal, editors, Parallel Algorithms for Machine
Intelligence and Vision. Springer-Verlag, New York, NY 1990.

14 Y. Zhao, S. Malik, M. Moskewicz and C.Madigan. Matching
Architecture to Application via Configurable Processors: A
Case Study with Boolean Satisfiability. In Proceedings of
International Conference on Computer Design, 2001.

15 Velev, M., FVP-UNSAT.1.0, FVP-UNSAT.2.0, VLIW-
SAT.1.0, SSS-SAT.1.0, Superscalar Suite 1.0/1.0a, Available
from: http://www.ece.cmu.edu/~mvelev.

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

PP1
PP4

PP7
PP10

PP13 MP

Processors

Pr
oc

es
so

r u
til

iz
at

io
n

jnh1

ssa7552-160

aim-200-6_0

bf0432-007

1dlx_c_mc_f

ii16b1

dlx2_bug59

par16-1-c

hanoi4

249

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

