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Abstract 
This paper presents our work in developing an application specific 
multiprocessor system for SAT, utilizing the most recent results 
such as the development of highly efficient sequential SAT 
algorithms, the emergence of commercial configurable processor 
cores and the rapid progress in IC manufacturing techniques. 
Based on an analysis of the basic SAT search algorithm, we 
propose a new parallel SAT algorithm that utilizes fine grain 
parallelism. This is then used to design a multiprocessor 
architecture in which each processing node consists of a processor 
and a communication assist node that deals with message 
processing. Each processor is an application specific processor 
built from a commercial configurable processor core. All the 
system configurations are determined based on the characteristics 
of SAT algorithms, and are supported by simulation results. While 
this hardware accelerator system does not change the inherent 
intractability of the SAT problems, it achieves a 30-60x speedup 
over and above the fastest known SAT solver -- Chaff. We believe 
that this system can be used to expand the practical applicability 
of SAT in all its application areas.  
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1. Introduction 
SAT serves as the canonical NP-complete problem, and thus has 
received significant attention in the theoretical computer science 
community. It is also a practical problem encountered in several 
application domains, especially in Electronic Design Automation 
(EDA) and Artificial Intelligence. In the EDA domain, SAT is 
embedded in many areas of design synthesis and validation [1,2,3] 
- some of these being test pattern generation, combinatorial and 
sequential logic verification, logic synthesis, functional timing 
analysis, and routing. Any acceleration in solutions to this 
problem will have direct benefit for many applications in these 
areas. 
 
Since the basic Davis-Putnam search algorithm [4] was proposed 
forty years ago, significant effort [5,6,7,8] has been spent in 

determining efficient heuristics that accelerate solutions for 
problem instances encountered in practice. Recently, we have 
seen the development of Chaff [8], a highly efficient algorithm 
that demonstrates 10-100x speedup compared to all previous 
software solutions. This has enhanced the scope of problem 
instances for which we can now find solutions in reasonable 
compute time using SAT software packages running on general-
purpose processors.  
 
Recently the development of high-density programmable logic 
has led to the development of a class of SAT accelerators by 
several research groups [9,10]. These accelerators exploit the fact 
that programmable logic enables a hardware accelerator to be 
synthesized specific to each instance of the SAT problem. These 
works have been able to demonstrate several orders of magnitude 
speedup for many problem instances. However, the hardwiring of 
the algorithms greatly compromises the ability to support complex 
control and dynamic data structures. Thus, these solutions cannot 
utilize the advanced features in the algorithms, which have been 
shown to bring orders of magnitude in speedup. In fact, these 
accelerators cannot tackle the really difficult problem instances 
that they were expected to deal with. Besides, the circuit 
compilation cost has in many cases become the dominant 
component of the solution time. It is exactly these limitations that 
we hope to overcome by using a programmable solution, but by 
using specially matched architectures rather than general-purpose 
processing. Such processors are referred to Application Specific 
Processors (ASPs) and are seeing increasing use in various 
application domains. Recently, some commercial offerings [11] of 
configurable processor cores have cut the development cost for 
ASPs significantly.  
 
Developing parallel solutions [12,13] to deal with computationally 
intensive problems like SAT is not a new idea. However, all the 
current parallel SAT algorithms target general -purpose 
multiprocessor architectures and their associated operating system 
support, which have a very high communication overhead. 
Consequently, they are all based on the partitioning of the search 
space and utilize the coarse parallelism among searches in 
different subspaces, to avoid the high communication cost. Until 
now, the speedup and scalability of these algorithms have not 
been very encouraging, because they are likely to cause 
significant load-imbalance due to unpredictable workloads in the 
separate sub-spaces. 
 
The multiprocessor system presented in this paper is built with 
specialized processing nodes and communication network. Each 
processing node consists of an ASP built from a commercial 
configurable processor core and a communication assist hardware 
unit for message passing. Through this system, we hope to 
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achieve significant speedup over current general purpose 
processing.  
 
The rest of this paper is organized as follows. The SAT algorithms 
are introduced in next section. Section 3 presents the system 
prototype. The simulation environment is described in Section 4. 
Details of the performance evaluation of the system are presented 
in Section 5. 
 
2. SAT Algorithms 
Given a Boolean formula that is typically expressed in 
conjunctive normal form (CNF), the goal of SAT is to either find 
an assignment to the variables so that the formula evaluates to 1, 
or determine that no such assignment exists. 
 
Although there are several different types of SAT algorithms, 
backtrack based complete search algorithms are the most popular. 
The high-level data flow shown in Figure 1 is applicable to all the 
algorithms falling into this category. They begin with an empty 
assignment. decide() selects a branching variable and assigns a 0 
or 1 value to it. Then, deduct() performs BCP (Boolean 
Constraint Propagation) to determine the direct and transitive 
implications of this assignment. If no conflict is detected during 
deduct(), decide() is called again to pick the next assignment, and 
the procedure repeats. Otherwise, diagnose() is performed to 
determine the reason of the conflict, find the backtrack point, and 
generate the conflict clause. Then, backtrack() will remove the 
impact of all the implications becoming invalid and pick a new 
decision. In addition, db_compact() is another subroutine that has 
become very important while dealing with big problem instances 
encountered in practical applications. It performs clause deletion, 
clause database compaction and clause database updates/cleanup 
after the compaction, to maintain reasonable cache performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Backtrack based SAT algorithm 

 
In addition to the sequential algorithms introduced above, 
researchers have proposed various parallel SAT algorithms 
[12,13], trying to utilize the computation power of multiprocessor 
systems. In these algorithms the search space is partitioned by a 
control processor into small disjoint subspaces, each of which is 
assigned to a processor. As shown in  
Figure 2, the processors search the assigned subspace using a 
sequential SAT algorithm. All the processor will return SAT if 
any of them finds a solution, otherwise UNSAT if there is no 
unexplored search space left. Since the search space is inherently 
unbalanced, all these algorithms use some type of dynamic load 
balancing techniques to achieve decent performance. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Current, typical parallel SAT algorithms 

 
3. System Prototype 
There are always two tightly correlated elements involved in the 
application specific system design: the application and the 
underlying system architecture. The performance of the system is 
determined by how well these two elements match each other. 
Developing an efficient parallel system opens up a broad set of 
design considerations. Obviously, it is impractical to try all the 
possible combinations. Therefore, we start with an initial parallel 
algorithm and system architecture determined via application 
analysis. Then, the design process is an iterative refining 
procedure for both these two elements, supported by the 
simulation results.  
 
3.1 Algorithm Characteristics 
Among the most popular complete search algorithms, we have 
GRASP[5], SATO[6], Satz[7] and most recently Chaff[8]. These 
algorithms share the same high-level control flow and primitive 
operations, thus targeting these features is likely to be beneficial 
to future algorithms that may be developed. 
 
We have done an extensive application analysis based on these 
algorithms by running them on a general-purpose single 
processor. The conclusion is that SAT problems are control, 
computation and data intensive. More specifically, they have the 
following features: 
1. More than 99% of the execution time is spent on four major 

subroutines: decide(), deduct(), backtrack() and 
db_compact(). 

2. There is a large amount of coarse and fine grain parallelism in 
the application. 

3. SAT algorithms are all extremely memory bandwidth intensive, 
which suggests a distributed memory MIMD multiprocessor 
architecture.  
 

3.2 A New Parallel Algorithm 
Based on the algorithm characteristics, we propose a new parallel 
algorithm – MP_SAT. In terms of control flow, MP_SAT is 
similar to a sequential algorithm, with the computational intensive 
part being distributed. Unlike the existing parallel SAT 
algorithms, MP_SAT focuses on utilizing the fine grain 
parallelism in the clause and variable operations. In fact, utilizing 
fine grain parallelism is the basic idea behind most hardware 
accelerators. However, it usually implies higher communication 
cost for programmable solutions, and thus has been limited to 
software packages containing regular data accesses and 
operations, like those found in most signal and image processing 

SAT_SOLVER() { 
     while (true) { 
         if (decide() == FALSE)  
           return;   //problem is satisifiable 
         if (deduct() == CONFLICT) { 
           if (diagnose() == FALSE)  
             return;  //problem is unsatisfiable    
           else  
             backtrack(); 
         } 
    } 

Parallel_SAT_Solver () 
{ 
    while (there are unexplored spaces) { //control processor 
        for (i=1, …, N-1) { //N-1 search processors  
            if ( Sequential_SAT_Solver () == SAT )  
       return SAT; 
        } 
    } 
    return UNSAT; 
} 
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applications. In our design, we will show how to match the system 
architecture with the algorithm, so that we can exploit the 
potential for higher performance improvement and better 
processor load balancing associated with fine grain parallelism, 
and avoid the costly communication at the same time. In this 
section, we introduce the tasking partitioning and communication 
scheme in MP_SAT. 
 
3.2.1 Task Partitioning 
MP_SAT uses a hybrid task partitioning method that combines 
data based and function based decomposition. Each of the 
computationally expensive functions in all SAT algorithms 
repeatedly performs the same operations on a large set of data and 
there is no strong correlation among the data. This implies a 
natural data partition: each processor has a subset of the clauses 
and variables. And the functions running on each processor works 
on its own data subset in parallel, as shown in Figure 3. Through 
the data partitioning, not only multiple operations can be 
performed in parallel, in many cases, the cost of each individual 
operation is also reduced. These processors are called PPs 
(Processing Processors). 

 
 
 
 
 
 
 

Figure 3 Data partition based parallelization 
 
Other than the PPs, a Master Processor (MP) is needed to monitor 
the search state, coordinate the operations of all processors and 
perform global functions like diagnose().  

 
3.2.2 Communication and Synchronization Scheme 
In a distributed memory MIMD system, processors exchange data 
via explicit message passing. Careful design of the 
communication scheme in both the algorithm and the hardware 
system is needed to minimize the communication cost.  
 
In MP_SAT, the timely detection of new messages is not critical. 
For example, while a PP is doing deduct(), it need not know that 
new implications are coming in immediately since it can only start 
to process the new implications after it finishes the current one. In 
addition, as will be introduced in Section 3.3, the message buffers 
provided by the system can prevent the busy status of the message 
receiver stalling the sender. Thus, polling provides an efficient 
synchronization method with low overhead in our system, in 
contrast to interrupt. Each processor checks for new messages 
whenever it completes processing the current message. By doing 
this, we avoid wasting machine cycles caused by over polling and 
prevent the message buffers from being over loaded with unread 
messages at the same time.  
 
There is one special message that is time sensitive: conflict. 
Although it does not affect the results of the program if the 
conflict message uses the same transmission scheme as other 
messages, it may affect the performance and complicate the 
control. Basically, all operations that a PP performs from the time 
MP detects a conflict until the time the PP starts to process the 
conflict messages are useless operations that will cause extra 

amount of work during backtrack(). Thus, a direct broadcast 
channel is used specifically for a conflict message. Global 
synchronization is also performed through the broadcast channel. 
 
3.3 Hardware architecture 
3.3.1 High level architecture 
MP_SAT has two features: intensive communication based on 
message passing and message driven operations. Transmitting 
messages at high speed and with least interference with the 
computation are important considerations in the system design. 
We achieve these goals by using separate hardware units for 
communication, which greatly increases the parallelism between 
computation and communication. Therefore, each processing node 
in the system consists of a processor and a communication node. 
The processors have been designed to be straightforward message 
generator/consumer, with the corresponding communication 
nodes performing the message routing and buffering. Figure 4 
shows the architecture with these processing nodes connected via 
a two-dimensional mesh. 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 System architecture using embedded DRAM 
 
The global broadcast wire is pipelined to avoid the delay and 
crosstalk problems associated with deep sub-micron designs. As 
shown in Figure 4, there is one pipelined broadcast line in each 
row and each column. A processor sends out the conflict message 
by setting the global wire to high. The signal is transferred via the 
vertical wire to each row, then via the horizontal wire to each 
processor. The maximum delay of this wire is 2n cycles, where n 
is the dimension of the network. 
 
During our simulation, we have found that the parallel execution 
of communication and computation can bring more than 50% in 
overall performance, which shows that using separate hardware 
for communication is very efficient for communication intensive 
applications.  

 
3.3.2 Processors 
The processors in our system are application specific processors 
built from a commercial configurable processor core. These 
processors are customized to match the data access patterns and 
atomic operations in SAT algorithms. For details about the 
processor design, please see [14]. Here, we just give a short 
overview of them. To accommodate the memory bandwidth 
requirement, the datapath of the processor is chosen to be 128 
bits. 11 new instructions are added to the basic configurable 
processor core, which fit in three categories: bit operation, parallel 
operations utilizing 128bits datapath and compound instructions 
for frequently appearing instruction sequences. The new 
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instructions bring about a 2-4X speedup, at a cost of 2400 gates. 
The final processor has 53.9k gates, and runs at 300MHz. These 
processors also have direct input/output ports, which allow them 
to talk to other components directly, without going through the 
ALU or the standard bus interface. 
 
3.3.3 Communication Node 
Each communication node consists of two parts: 
• Communication channels. Each of the channels is a FIFO 

buffer dedicated to a pair of communicating processors, storing 
the messages between these two processors. The number of 
channels needed in each communication node is affected by the 
network topology. Based on simulation results, the size of each 
channel is determined to be 20 messages. 

• Control logic that performs the message routing and channel 
empty/full detection, which can be modeled as a Finite State 
Machine. These finite state machines are very small and have 
been synthesized from a Verilog description to a circuit with 
approximately 100 gates. 

 
Figure 5 shows the architecture of a communication node in a 
two-dimensional mesh topology.  
 
 
 
 
 
 
 
 

 
Figure 5 Communication node in a two-dimensional mesh 

 
3.3.4 Communication Protocol 
The communication protocol mainly includes the network 
topology and routing scheme. We chose a two-dimensional mesh 
topology due to the following reasons: 
• Mesh topology gives a balanced bandwidth across all the 

processors. We have found that 90% of the messages in 
MP_SAT are broadcast messages. Thus, topologies like tree 
usually cause some “hot spots” that will become the 
communication bottleneck.  

• Mesh has very good scalability and achieves good trade-off 
between the diameter and number of connections.  

• Planar topologies like two-dimensional mesh make designing 
single chip multiprocessor system simpler, since all processors 
are connected with uniformly short connections. 

 
In our system, the combination of message buffering and the 
parallel execution of computation and communication greatly 
reduce the possibility of network congestion. In addition, since all 
the operations in MP_SAT are message driven, transmitting 
messages fast is crucial in exploiting the parallelism. Therefore, 
we use deterministic routing. The communication nodes 
determine the route of a message based on the self-contained 
address information in its header.  
 
To avoid the deadlock caused by loops in the network topology, a 
processor stalls whenever there are less than two spaces left in any 
of the buffers in its communication node. In this way, each 

communication node can guarantee that there is always empty 
space in all its local buffers. Thus, the messages can keep moving. 
Even if all the buffers are very close to full, as long as no new 
messages are dispatched to the network, the messages can be 
consumed and finally removed.  
 
4. Simulation Environment  
Our simulation environment consists of two simulators that run at 
different abstraction levels, accuracy and speed.  
 
MP_SIM is a cycle-accurate multiprocessor simulator built based 
on a commercial cycle-accurate Instruction Set Simulator (ISS). It 
is designed to be highly flexible, so that can be used to model 
various communication schemes. It is also very easy to configure 
by making the network configuration and routing scheme 
transparent to user applications.  
 
To overcome the speed limitation of cycle accurate simulation, we 
have implemented a C++ simulator that simulates the 
multiprocessor system behavior at a high level of abstraction. This 
simulator is event (message) driven. The cycle count is generated 
by calculating latencies for each individual operation (cache 
simulation, network communication, etc.). These latencies are 
calculated using the same architecture parameters. The purpose of 
this simulator is to get the overall cycle count, rather than to 
simulate the real cycle accurate behavior of the parallel algorithm. 
Since this simulator runs at a much higher level, it achieves 
approximately 50-80x speedup compared with the cycle accurate 
simulation, which allows us to simulate bigger problems running 
on more processors. First, we run the simulator on the examples 
we have run using MP_SIM, and compare the two sets of results. 
We find that the cycle counts obtained from the high level 
simulators are within [-12%, 5%] of the results from MP_SIM, 
which indicates that the results of the new simulator are 
reasonably close to the exact results.  
 
5. Design Evaluation 
5.1 Parallel Speedup 
The speedup is the most basic metric to determine the validity of a 
parallel system design. Figure 6 shows the speedup of the parallel 
system while using different numbers of processors, compared 
with the basic Xtensa processor. The performance is measured 
using the number of clock cycles needed to solve the problems. 
The cycle counts of the parallel system are obtained using 
MP_SIM. The sequential results are obtained by running Chaff, a 
highly efficient sequential program on the single processor Xtensa 
ISS. Since they run at the same clock frequency, the speedup is 
calculated by dividing the cycle count of the parallel system by 
the sequential results. Generally speaking, the bigger the problem 
size, the higher speedup. This is understandable since larger 
problems usually have higher level of parallelism, and thus higher 
processor utilization rate. 
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Figure 6 Speedup vs. number of processors 

 
5.2 Scalability/efficiency Analysis 
Figure 7 shows the efficiency of the parallel system, which is 
calculated by dividing speedup by the number of processors. 
Generally speaking, although speedup may increase, efficiency 
always decreases as the number of processors increases, due to the 
higher communication cost and the limited parallelism. This 
decrease is reflected very well in Figure 7. The figure also shows 
that the efficiency is generally higher for bigger problems.  
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Figure 7 Efficiency vs. number of processors 
 
For any parallel system, there must be a certain point where the 
efficiency has dropped so much that increasing processors may 
lead to lower speed. This is called the limitation of the scalability. 
This limitation is very important, since it also points out the 
performance limitation of the parallel system. We first perform a 
theoretical analysis of this limitation by examining how many 
operations can actually be performed in parallel. The parallelism 
of our system comes from three sources.  
• Inserting variables to a sorted list in parallel in backtrack(). 
• Compacting the clause database in parallel in db_compact().  
• Parallel execution of BCP in deduct(). 
 
For almost all the problems we have experimented with, the 
number of variables to be processed per backtracking is less than 
or close to 100. Therefore, if we use more than 100 processors, 
there must be some processors remaining idle during backtrack(). 
Of course, the more processors we use, the smaller each sub-list, 
thus, the faster each insert operates. We expect that the parallelism 
limitation of backtrack() happens when the communication cost 
of collecting candidates from the PPs starts to outweigh the 
advantage of smaller list.  
 

db_compact() has almost perfect parallelism as long as all the 
processors have approximately the same amount of clauses or 
literals. In addition, due to the data distribution, the data size on 
each processor in the multiprocessor system reduces to 
approximately 1/(number of processors) of the data size on a 
single processor. Thus, the need for database compact is greatly 
reduced. Actually, for all the problems we have run, none of them 
needs to call db_compact() when the number of processors is 
bigger than 16 in the parallel system. Therefore, for this function, 
more processor always means better performance. 
 
The efficiency of parallel BCP is determined by the number of 
implications and clauses to evaluate upon one decision. In fact, 
even for the hardest problems we have seen so far, the number of 
clauses evaluated at each decision level is less than or close to 
2000. We expect to see the parallelism in clause evaluation much 
smaller than this number since the generation of implications is a 
chained process. Actually, the average number of clauses to be 
evaluated per implication is only 5-10. Thus, the parallelism in 
BCP comes mostly from the parallel evaluation of more than one 
implication. This again confirms that the fast transmission of 
messages is very important for our algorithm. Since the parallel 
execution of BCP is the most important source of the performance 
improvement, it is also the main source of the limited parallelism.  
 
The above analysis clearly demonstrates the limitation of the 
parallelism in MP_SAT. Figure 8 and Figure 9 show the speedup 
and efficiency of some big problems [15] running on the 
multiprocessor system, obtained using the high level simulator. 
These results show that our system can achieve approximately 
80%-90% in efficiency for large size problems.  
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Figure 8 Efficiency vs. number of processors for big problems 
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Figure 9 Efficiency vs. number of processors for big problems 
 
From the above analysis and simulation, we can see that the 
limited degree of parallelism implies that this system is not 
scalable to very large number of processors. Although the 
optimum number of processors varies for different problem sizes, 
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even for the biggest problem in our set, a system with more than 
81 processors will have significantly lower efficiency than a 
system with a smaller number of processors. Actually, during our 
simulation, we find that when the number of processors increases 
from 81 to 100, the system sees little performance improvement 
for most of the problems, if any. And we see slow down for most 
of the problem instances when the number of processors changes 
from 100 to 121. This is actually consistent with our theoretical 
analysis of the degree of parallelism available. We also see speed 
anomaly in some cases, caused by the difference between the 
search path of sequential and parallel algorithm. In many MIMD 
systems, the limitation of scalability is the ratio between 
communication and computation. However, in our system, the 
communication cost has been lowered significantly because of the 
usage of a separate communication node, the scalability is mainly 
limited by the amount of parallelism available.  
 
5.3 Parallelism profile 
The parallelism profile can be measured based on the utilization 
of each processor. The processor utilization is defined as: 

utilization = busy_time/(busy_time+idle_time) 
where, busy_time represents the time spent by the processor doing 
computation or communication, and idle time represents the time 
during which the processor was not doing anything. This includes 
the machine cycles while a processor is waiting for messages or is 
stalling because of the network congestion. Figure 10 shows the 
utilization of each processor in a 16-processor system. In general, 
we observe very high utilization of all the processors. Although it 
is not exact for each individual case, the utilization is generally 
higher for bigger problems. Besides, the load balancing between 
processors is very good, only varies by less than 2%.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Parallelism profile of a 16-processor system 
 
6. Conclusions 
This paper has presented the design of an application specific 
multiprocessor system for SAT problems, which includes an 
application specific processor built from a commercial 
configurable processor core and a separate hardware 
communication unit on each processing node. The network 
topology and communication protocol are both determined based 
on the application characteristics. The system achieves a 30-60X 
over Chaff, the fastest known single processor SAT solver. We 
also show that very high efficiency can be achieved in a 
multiprocessor system, even for communication and control 
intensive algorithms. In the work introduced here, we utilize the 
most recent advances in several areas: high performance SAT 

solvers, commercial configurable processor cores and progress in 
the IC manufacturing techniques, to accelerate the SAT problems. 
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