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ABSTRACT 
Commercially available behavioral synthesis tools do not 
adequately support FPGA vendor-specific external memory 
interfaces making it extremely difficult to exploit pipelined 
memory access modes as well as application specific memory 
operations scheduling critical for high-performance solutions. 
This lack of support substantially increases the complexity and the 
burden on designers in the mapping of applications to FPGA-
based computing engines. In this paper we address the problem of 
external memory interfacing and aggressive scheduling of memory 
operations by proposing a decoupled architecture with two 
components - one component captures the specific target 
architecture timing while the other component uses application 
specific memory access pattern information. Our results support 
the claim that it is possible to exploit application specific 
information and integrate that knowledge into custom schedulers 
that mix pipelined and non-pipelined access modes aimed at 
reducing the overhead associated with external memory accesses. 
The results also reveal that the additional design complexity of the 
scheduler, and its impact in the overall design is minimal. 

Keywords: FPGA-based configurable computing; Scheduling 
of Memory Accesses; Hardware Interfaces and Customizable 
Memory Controllers. 

1. INTRODUCTION 
Commercially available synthesis tools for FPGAs have 

mostly ignored system level issues when dealing with external 
memories. While some tools now incorporate internal RAM 
modules and the mapping of array variables to them, they have 
avoided all external memory interfacing issues. Even for internal 
memories, the current tools require specific syntax and synthesis 
expertise precluding the interfacing with third party vendors for 

which timing information is either unavailable or cannot fit into 
the timing model of the tool. In addition most, if not all, 
behavioral synthesis tools do not support pipelined modes further 
restricting an important source of performance improvement. As a 
result designers must engage in laborious and error-prone 
matching and synthesis of interface signals. 
 

Configurable architectures offer a unique opportunity to 
address the memory access and interfacing issues via 
customization. Improvements can be achieved by creating 
specialized hardware components for generating addresses and 
packing and unpacking data items. Compiler analysis can provide 
application knowledge as to the memory access patterns for 
pipelining of data references corresponding to array references 
across multiple iterations of loops. Furthermore the compiler can 
derive information about the relative rate among various array 
references and embed that knowledge into the scheduling of 
memory operations. 

 
In this paper we focus on the design, implementation and 

validation of external memory interfacing modules that are 
generated by a compiler and behavioral synthesis tool that 
translate high-level computations directly to FPGA hardware. For 
maximum generality, we have separated the memory interface into 
two components. The first component is target-dependent and 
captures the specific target architecture timing requirements for 
accessing memory. The second component is architecture-
independent and provides a set of channels and memory access 
modes abstractions for the application to store and retrieve data 
from memory. In particular the designs we have implemented 
allow compiler-generated designs to exploit pipelined access 
modes and mix both pipelined and non-pipelined memory 
accesses modes.  

 
We used the interfaces described in this paper to develop 

application specific scheduling strategies for a set of four digital 
image-processing applications. The experimental results reveal 
that while the designs do not exploit all of the available external 
memory bandwidth, they achieve respectable performance at a 
reasonable implementation and generality cost. 
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This paper makes the following contributions: 
 
• Describes an abstract memory channel architecture with 

the concepts of channels, FIFOs and schedulers for 
managing memory accesses. This architecture decouples 
the target-dependent from the application-specific 
implementation knowledge thereby decreasing the 
complexity of interfacing with commercially available 
target architectures. 

 
• Describes a suite of simple memory access schedulers for 

both pipelined and non-pipelined access modes for 
statically schedule streamed data access patterns. The 
schedulers are parameterizable and interface with 
behavioral code for the core datapath to generate 
complete designs. 

 
• Describes an optimization in the definition of the 

memory controller scheduler that exploits application 
specific knowledge. This optimization reduces the 
number of controller cycles improving the overall 
design’s performance. 

 
• Presents experimental results of the application of 

distinct scheduling strategies for a small set of kernel 
applications on a commercial FPGA-based computing 
engine. For these kernels pipelined access mode 
improves the performance up to twofold while the 
controller FSM optimization further improves up to 10%. 

 
The results presented in this paper support the claim that it is 

possible to exploit application specific information and integrate 
that knowledge in a custom scheduler for reducing the overhead 
associated with external memory accesses. The results also reveal 
that the additional design complexity of the scheduler, and its 
impact in the overall design is minimal.  

 
While generality and performance are often conflicting goals, 

the complexity reduction, faster and more robust mapping of 
applications to FPGA-based hardware, are non-negligible factors 
in fast-prototyping settings. We believe that the simple abstract 
memory architecture with the interfaces presented in this paper are 
fundamental concepts that allow the easy integration of high-level 
analysis and program transformations in the mapping of 
applications to configurable computing architectures. 

 
The rest of this paper is organized as follows. In the next 

section we describe the proposed external memory interface and 
its underlying abstractions. Next we describe the opportunities for 
application specific memory channel scheduling strategies. In 
section 3 we describe the basic analysis our compiler uses to 
generate the memory interfaces by analysis of the application 
programs. Section 4 presents a set of experimental results. We 
survey related work in section 5 and conclude in section 6. 

 

2. EXTERNAL MEMORY INTERFACING 
The proposed external memory interface is defined around a 

target-dependent interface and a target-independent interface. The 
target-dependent interface takes into account the specific timing 
requirements of the target hardware architecture and for practical 

reasons is tightly coupled to the vendor-supplied memory 
interface. This interface includes strict requirements that every 
memory access must meet such as the relative timing of memory 
operations; clock cycle counts for each type of access; and 
binding of pins in the design. The target-independent interface 
allows the core datapath that implements the computation in 
hardware to interface with input/output FIFO queues using a 
simple, timing-independent protocol. 

2.1 Streamed Execution Model 
To support the operation of streamed applications we have 

defined several memory access abstractions to exploit application-
specific knowledge and advanced memory access modes, 
respectively, an address generation unit (AGU), a memory 
access scheduler (MAS) and FIFO queues  (see Figure 1). 

The core of the computation is carried out by a datapath with 
input and output ports. These ports are physically bound to FIFO 
queues to retrieve and store data from memory. As computation 
progresses the datapath issues requests for data from the FIFO 
queues associated with its ports. These requests are then translated 
into low-level signals via the target-dependent interface. A simple 
handshaking protocol allows the design control to be informed 
about when the data has been deposited into the FIFO queue. 

2.2 Memory Architecture Abstractions 
Associated with each FIFO queue there is the notion of a 

channel and a data stream. A data stream defines a sequence of 
addresses and is identified by the tuple (base_address, offset, 
stride). A channel binds a port, the corresponding FIFO queue in 
time, by the contents of specific hardware resources in the address 
generation unit (AGU). The AGU consists of a register table with 
one entry per data stream supported. Each entry has a set of 
programmable fields to keep physical address data, an arithmetic 
unit to update and generate physical addresses, and a FSM to 
generate control signals. The details of the implementation are 
described in [4]. 
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Figure 1. Memory Architecture and Interfacing. 

 
We have defined and implemented both interfaces and 

hardware abstractions to support the data stream execution model 
of this approach for designs with a single computation task and 
with both single and multiple external memories. 
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2.3 Application Specific Scheduling 
In the simpler case where the memory accesses can be 

determined statically, the compiler can schedule the order in 
which the accesses should occur. The scheduler, implemented in 
hardware via a FSM, should avoid deadlocking due to internal 
state transition conditions of multiple outstanding memory 
operations that can be dependent on each other. The memory 
access scheduler is defined by three hardware processes. A 
process checks which of the channels needing service by checking 
if the corresponding FIFO is empty (or full); a process to issue 
memory requests and a process to synchronize the transactions of 
the other two processes.  

 
A simple scheduling calls for the handling of each memory 

channel corresponding to the datapath input/output ports in a 
round-robin fashion. For each computation, typically an iteration 
of a loop, the scheduler checks whether or not a given channel 
needs to access memory by inspecting the FIFO queue associated 
with it. To be able to handle conditional memory accesses we 
convert all conditional accesses to non-conditional accesses by 
speculatively fetching all of the potentially required. This 
approach, while wasteful of memory bandwidth allows for a much 
simpler memory controller. An alternative would be to implement 
a memory controller with the possibility of aborting memory 
accesses. This approach however would require timing the signals 
that dictate which memory references to abort, in the core 
datapath with the memory controller at the appropriate time. In 
the presence of pipelined execution modes this design would 
clearly become more sophisticated most likely leading to a 
reduced overall design performance. 
 

Despite its apparent simplicity, this strategy interacts with 
other techniques common in synthesis such as loop pipelining. 
Using pipelining, loop prologues and loop epilogues do not 
exhibit all of the memory operations of the regular, steady state 
bodies of the loop. Typically the prologue generates no write 
operations and the epilogue requires no additional input data. The 
information about the scheduling of prologues and epilogues must 
be encoded in the scheduler’s FSM, therefore increasing its 
complexity. In addition, round-robin works well if all of the 
channels have the same rate, that is, they produce/consume the 
same number of data items per cycle of the computation. If 
different channels have distinct rates, the scheduler must check for 
every computation, whether or not a memory operation is 
required. Again, because the FSM uses a larger number of 
predicates to determine its appropriate action, the implementation 
complexity increases. 
 

A way to eliminate the overhead associated with the 
checking of which channels need to access memory is to embed 
information about several channels whose data access exhibit the 
same pattern. For example, if at every iteration of the computation 
there are three channels that need to access memory, testing for a 
single channel, is equivalent to test for any of them. Using this 
approach the number of FSM states, and therefore, cycles 
dedicated to hardware checks is substantially reduced. We call 
this approach a round-robin group scheduling strategy. Clearly, 
this group strategy can only be applied when the compiler can 
determine the exact relationship between memory accesses of the 
channels. 

3. COMPILER ANALYSIS AND SUPPORT 
We have integrated the synthesis of pipelined memory access 

controllers described in the previous sections in the DEFACTO 
compilation and synthesis system [3]. The current implementation 
analyzes source C programs in the intermediate SUIF 
representation format [10] and identifies opportunities for simple 
data reuse using tapped-delay lines.  The analysis focuses on loop 
nests with array references using affine index functions (e.g., 
pixel[2*i + j +1]). While the analysis, as described in detail in [4] 
is capable of handling indexed for loops with compile-time 
unknown bounds, the current code generation phase must rely on 
known bounds to perform loop unrolling of inner that are to be 
mapped to hardware. 

 
Given a set of array references in a loop nest that exhibit 

temporal reuse the compiler analyzes the reference index 
functions and the loop bounds to determine the base address, 
offset of the array being accessed as well as the stride of 
consecutive accesses. Figure 2 below illustrates the extraction of a 
single data stream corresponding to the accesses and data reuse of 
the array references in a loop. 

 
for(i=1; i <= N; i++){  // Compiler extracts 
  tmp = 2*a[i] + a[i+1] + 2*a[i+2]; // stream 0 = (a, 1, 1) in 
  if(tmp < threshold){ 
      e[2i-2] = 0;   // stream 1 = (e,0,2) out 
  } else { 
      e[2i-2] = 1; 
  } 
} 
 

Figure 2. Temporal Data Reuse and Stream Extraction. 
 
Using the information about data streams the compiler uses 

library functions to define a data stream and programs an entry in 
the address generation unit (AGU) that will generate the sequence 
of addresses that correspond to the consecutive array accesses. 
The compiler also determines, using a very simple algorithm, the 
placement of the data in the FPGA’s external memories, so that it 
can generate the base addresses for each of the data streams. In 
addition the compiler generates source C code, via a predefined 
set of library functions, that map the data to and from the host 
processor on the target FPGA’s external memories. 

 
As part of the DEFACTO code generation phase the 

compiler emits structural VHDL code that implements all of the 
functionality of the memory interface and corresponding 
abstractions using predefined VHDL parameterizable templates. 
This structural code is then “linked” automatically with the 
behavioral code that describes the code of the datapath 
computation by via a naming scheme for the individual datapath 
ports and corresponding streams. 
 

4. EXPERIMENTAL RESULTS 
We now present experimental results for the application of 

distinct memory access channel scheduling strategies as described 
in Section 2. We first describe the methodology used in these 
experiments and then present the results obtained for three image 
processing kernel computations running on a real FPGA-based 
computing board. 
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4.1 Methodology 

We have mapped three (3) computation kernels from C to 
VHDL using the DEFACTO design system [3]. The DEFACTO 
mapping process generates behavioral VHDL specifications for 
computations in the body of loop nests it finds to be profitable to 
execute on an FPGA-based computing engine – the Annapolis 
WildStarTM [13] FPGA-based board. 

 
Next, we have manually modified the memory channel 

interface for the target architecture to allow the implementation of 
two distinct flavors of the round-robin memory access scheduling 
strategy, namely naïve (N), pipelined(P), group (G) and 
pipelined with grouping(P+G) scheduling. We then compare the 
performance of the designs using the different strategies. This 
performance comparison was carried out in a functional simulator, 
ModelSim™[7], where we are able to extract more precise clock 
cycle counts. We also confirmed the performance improvements 
via real executions on the WildStarTM board. 

 
The WildStarTM board has three Xilinx® [15] Virtex 

1000BG560 parts each of which is connected to two SRAM 
memory modules with 4Mbytes capacity. We have used 
Synplicity® Synplify® 5.1.5 and Xilinx® M1 place & route tool 
to generate the bitmap file for the Virtex parts. To exacerbate the 
problems of memory access scheduling, we mapped all of the 
applications data onto a single memory module. This approach 
allowed us to determine the severity of the memory scheduling 
issue. Techniques such as stripping data arrays onto different 
memory banks (see for example [5]) are orthogonal to the 
scheduling approach presented in this paper. 

 
4.2 Applications 
Sobel Edge Detection (SOBEL) 

This application implements a simple eight point 
computations based on a 3-by-3 window of a 128-by-128 image 
of pixels. Each iteration of the inner most loop of the code’s main 
loop nest consumes 8 data items from the input array variable and 
produces 1 item of the output array variable. The number of 
operations can be reduced significantly to 3 read and 1 write 
stream operations exploiting data reuse using tapped-delay lines 
across iterations of the main computation loop. 

 
Automatic Target Recognition (ATR) 

This application computes a binary image correlation using a 
binary mask array variable and a scalar accumulation variable. 
Because the compiler has aggressively exploited loop unrolling it 
generates a design with vast amount of parallelism and data reuse. 
Due to the unrolling, however, the number of data memory 
accesses per iteration of the inner loop is substantial. To study the 
impact of the number of memory accesses and hardware support 
for a varying number of channels we have implemented two 
variants of this application. One variant called ATR-4 uses 4 input 
channels and corresponds to using a fixed mask variable for the 
correlation computation. The other variant, called ATR-8 uses 8 
input channels, 4 channels for the input image variable and 
another 4 for the binary mask.  

 
 

 
Multiply-Accumulate-Zero (MAZ) 

This computation computes the sums of the product of every 
pair of adjacent array values if the first value of the pair is smaller 
then the current running sum. For every addition, the computation 
zeros out the first element of the pair in the array. Because the 
accumulation and multiplication (16 bits output) is conditional 
and data dependent on the running sum of the computation, we 
call this computation multiply-accumulate-zero (MAZ). From the 
standpoint of the memory controller this computation exhibits a 
more irregular memory access pattern as some of the write 
operations are dependent not on an input values but rather on the 
value of an internal computation. 

 

4.3 Results 
We begin this discussion by first characterizing the execution 

of each of the applications using the default round-robin naive 
memory access scheduling strategy. Figure 3 below presents a 
breakdown of the execution time for the steady state of the main 
computation loop in each of these applications for a single 
memory bank implementation. 
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Figure 3. Execution Time Breakdown for Tested Applications. 

 
As expected, and given that in these experiments memory 

accesses are blocking, the bulk of the execution time (60% to 
80%) is spent stalling on memory accesses. Approximately 8% to 
9% is spent checking the status of the input/output FIFO queues. 

 
Table 1 shows the performance results for all applications for 

the different scheduling strategies. These results exclude the 
initial data loading and final data retrieval from the board. We 
report the overall design size in terms of FPGA slices; the 
maximum allowed clock rate for the design; the simulated 
execution time using a 25 MHz clock and the speedup measured 
as the ratio of the execution time of each version with respect to 
the computation using the naïve scheduling strategy. 

 
Table 1 reveals that all designs are small (12.5% maximum 

FPGA occupancy) and therefore exhibit good performance 
characteristics in terms of maximum attainable clock rates. Table 
1 also reveals the performance advantages of pipeline with an 
average speedup of 1.9 over the four tested kernels. Group 
scheduling by itself yields modest performance improvement with 
an average speedup of 1.1. When combined with pipelined, group 
scheduling boosts the average speedup to 2.05. This improvement 
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is most noticeable for ATR-8 where the number of channels with 
the same input/output behavior is the largest. 

 
Table 1. Synthesis and Timing Results. 

 
Applications 

Slices 
( out of 
12,288) 

Max. 
Freq. 

(MHz) 

Simulation 
Time 

(nsecs) 

 
Speedup 

 

N 1,144 30.1 1,312,020 1.00 
P 1,061 31.5 738,540 1.78 
G 1,160 31.7 1,312,140 1.00 

SOBEL 

P+G 1,068 31.6 697,660 1.88 
N 1,968 25.9 120,040 1.00 
P 1,980 25.6 66,600 1.82 
G 1,974 33.9 102,280 1.17 

ATR-4 
 

P+G 1,984 26.9 59,600 2.00 
N 2,771 25.9 188,440 1.00 
P   2,707  25.9 71,840 2.62  
G 2,718 30.8 163,440 1.15 

ATR-8 

P+G 2,730 25.9 69,480 2.71 
N 1,027 30.4 85,760 1.00 
P  1,191 36.2 62,360 1.38 
G 1,226 31.5 78,680 1.09 

MAZ 

P+G 1,003 29.6 55,520 1.55 
 

Table 2 shows the synthesis metrics for the synthesis of 
the channel controllers for each design. Overall the more 
sophisticated group-scheduling controller has clock rates in the 
100MHz range and therefore appears not to impact the critical 
path of the whole design. By itself, the implementation of the 
group-scheduling controller requires no more than 21 additional 
slices than the simpler naïve controller does for a total a maximum 
of 75 slices barely 5% of the designs. 

 
Table 2  Synthesis Metrics for Channel Controller (N: Naïve, 

P: Pipelined, G: Group P+G: Pipelined with Grouping). 

Applications CLBs Gates Clock Rate 
(MHz) 

N 29 381 140.1 
P 25 333 130.3 
G 35 431 87.5 SOBEL 

P+G 35 448 134,7 
N 35 458 127.3 
P 42 568 125.0 
G 40 531 105.2 

ATR-4 
 

P+G 46 635 120.7 
N 54 679 106.2 
P 74 937 82.2 
G 57 758 77.9 

ATR-8 
 

P+G 75 1,010 69.4 
N 30 383 120.5 
P 34 450 112.8 
G 36 450 115.6 

 
MAZ 

P+G 45 559 116.4 
 

4.4 Discussion 
The experimental results, not surprisingly, reveal that 

pipelining techniques substantially improve the overall design 
performance. The implementation of group-scheduling techniques 
marginally increases the performance for the whole design with 
negligible impact in terms of area and very little influence on the 
maximum clock rate. 

  
While we are able to eliminate almost all the memory 

overhead by pipelining and aggressive group scheduling there are 
several techniques that have been explored in other contexts and 
could be explore for the context of FPGA-based designs, namely: 

 
• Reducing the sharing of physical bus channels will reduce 

the memory latency. 
• Assigning multiple memory modules to disjoint input 

array for concurrent accesses. 
• Aggressive pre-fetching and overlapping memory accesses 

with computations. 
 
In this work we have focused exclusively on application level 

techniques that impact the design of the memory controller, rather 
than on architecture related approaches for reducing memory 
latency. We focused on the scheduling of memory accesses within 
a single computational task where memory accesses are statically 
scheduled. The scheduling in the context of multiple tasks may 
require a more flexible run-time scheduling strategy to minimize 
memory access contention. In the future we plan to address the 
implementation of dynamic, run-time scheduling implementation 
techniques where a schedule is setup only at run-time rather than 
statically for both single and multiple tasks. 

 
Given the trade-off between generality and performance we 

have estimated the performance gap between the currently 
automated applications in this empirical study and what a designer 
could achieve exploiting the overlapping of computation in the 
core datapath with the communication with external memory. In 
Table 3 we compare the performance of the generated designs 
against an optimal solution where the memory accesses are 
perfectly scheduled and are fully overlapped with the computation 
in a zero latency scenario. 

 
Table 3. Performance Expectation for Hand Designs (P+G+O: 

Pipelined with Grouping and Overlapping, OPT: Optimal 
Scheduling Design). 

 
Applications 

 
Speedup 
 

 
Applications 

 
Speedup 

N 1.00 N 1.00 
P+G 1.88 P+G 2.71 

P+G+O 3.60 P+G+O 4.41 

SOBEL 

OPT 7.99 

ATR-8 

OPT 7.00 
N 1.00 N 1.00 

P+G 2.00 P+G 1.55 
P+G+O 3.56 P+G+O 2.91 

ATR-4 
 

OPT 7.50 

MAZ 

OPT 6.48 
 

While Table 3 reveals there is still a substantial performance 
gap between the automatically generated codes and the possibly 
infeasible optimal version, the effort and time investment for a 
hand design is still substantial, in particular for a novice 
programmer. While our designs take a few seconds to generate 
and about 30 minutes to synthesize and download onto the board, 
a hand design can take days if not weeks to design and verify its 
correctness. 
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5. RELATED WORK 
Other researchers have addressed the issues memory 

operations scheduling in the context of application specific 
implementations. 

 
Weinhardt and Luk developed memory access optimizations 

for pipeline vectorization in RAM interface [12] using a scheme 
to reduce consecutive memory accesses of array data using shift 
registers but accessing only on-chip RAM modules.  Gokhale and 
Stone [5] proposed an automatic array allocation compile-time 
algorithm for multi-level memory subsystem. They attempt to 
allocate array variables to memories based on the memory latency, 
data access frequency and execution schedule. Schmit [11] 
developed a mapping scheme for mapping datapaths with memory 
operations directly to hardware. His approach uses a centralized 
memory controller scheme where the scheduling of the operations 
is done in conjunction with the execution of the datapath 
computation. Panda et. al. [8,9] refined this approach by defining 
a time-constrained based specification of the a centralized 
scheduler for handling external memory operations. Catthoor, 
Balasa et. al. developed and evaluated memory optimizations for 
embedded systems for a particular application set [1,2,6]. This 
research focuses on optimizations to minimize memory area and 
power consumption. Catthoor also proposed a data packing 
scheme to reduce memory bandwidth requirements for dynamic 
data structure. Wuytack et al. suggested minimizing memory 
bandwidth requirements [14] by mapping highly accessed array 
variables to fast hierarchy storage. 
 

The research described in this paper differs from these efforts 
in several aspects.  The common approach to memory scheduling 
operations has been to develop, based on a specification for the 
dependences of the operations, a centralized memory scheduler 
that fetches the data from an external memory into the datapath. 
Our approach provides an architecture independent view of the 
datapath and a memory controller that is decoupled from the 
datapath execution controller. This scheme has several advantages 
over the centralized control schemes proposed by previous 
researchers. First, in designs where pipelined memory accesses are 
desirable, the implementation complexity of a centralized scheme 
substantially increases. The scheduler needs to generate a 
controller that obeys the timing constrains for all the memory 
accesses in the pipeline. Second, our approach makes it easier to 
incorporate several tasks into the same design allowing them to 
share physical memory ports. A centralized memory controller 
scheme would require the description of a joint behavior for all 
the tasks a proposition that is hardly extensible and scalable. 
 

6. CONCLUSION 
The performance of FPGA-based computing platforms 

depends critically on the performance of external memory 
interface. In this paper we have described an approach to 
decouple the concerns of memory interfacing and static 
scheduling of possible memory accesses for applications with 
streamed data. We described the application of simple scheduling 
strategies to three kernel computations. The experimental results 
reveal that we are able to significantly increase the performance 
(speedup of two) of the overall design by using pipelined memory 
accesses. We further improve the performance by eliminating 

almost all of the latency due internal memory controller 
optimization resulting in a further 10% performance increase. The 
experiments reveal that the added complexity of the resulting 
designs is minimal.  
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