
Synthesis of Pipelined Memory Access Controllers
for Streamed Data Applications on FPGA-based

Computing Engines

Joonseok Park and Pedro C. Diniz
University of Southern California / Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, California 90292

{joonseok, pedro}@isi.edu

ABSTRACT
Commercially available behavioral synthesis tools do not
adequately support FPGA vendor-specific external memory
interfaces making it extremely difficult to exploit pipelined
memory access modes as well as application specific memory
operations scheduling critical for high-performance solutions.
This lack of support substantially increases the complexity and the
burden on designers in the mapping of applications to FPGA-
based computing engines. In this paper we address the problem of
external memory interfacing and aggressive scheduling of memory
operations by proposing a decoupled architecture with two
components - one component captures the specific target
architecture timing while the other component uses application
specific memory access pattern information. Our results support
the claim that it is possible to exploit application specific
information and integrate that knowledge into custom schedulers
that mix pipelined and non-pipelined access modes aimed at
reducing the overhead associated with external memory accesses.
The results also reveal that the additional design complexity of the
scheduler, and its impact in the overall design is minimal.

Keywords: FPGA-based configurable computing; Scheduling
of Memory Accesses; Hardware Interfaces and Customizable
Memory Controllers.

1. INTRODUCTION
Commercially available synthesis tools for FPGAs have

mostly ignored system level issues when dealing with external
memories. While some tools now incorporate internal RAM
modules and the mapping of array variables to them, they have
avoided all external memory interfacing issues. Even for internal
memories, the current tools require specific syntax and synthesis
expertise precluding the interfacing with third party vendors for

which timing information is either unavailable or cannot fit into
the timing model of the tool. In addition most, if not all,
behavioral synthesis tools do not support pipelined modes further
restricting an important source of performance improvement. As a
result designers must engage in laborious and error-prone
matching and synthesis of interface signals.

Configurable architectures offer a unique opportunity to
address the memory access and interfacing issues via
customization. Improvements can be achieved by creating
specialized hardware components for generating addresses and
packing and unpacking data items. Compiler analysis can provide
application knowledge as to the memory access patterns for
pipelining of data references corresponding to array references
across multiple iterations of loops. Furthermore the compiler can
derive information about the relative rate among various array
references and embed that knowledge into the scheduling of
memory operations.

In this paper we focus on the design, implementation and

validation of external memory interfacing modules that are
generated by a compiler and behavioral synthesis tool that
translate high-level computations directly to FPGA hardware. For
maximum generality, we have separated the memory interface into
two components. The first component is target-dependent and
captures the specific target architecture timing requirements for
accessing memory. The second component is architecture-
independent and provides a set of channels and memory access
modes abstractions for the application to store and retrieve data
from memory. In particular the designs we have implemented
allow compiler-generated designs to exploit pipelined access
modes and mix both pipelined and non-pipelined memory
accesses modes.

We used the interfaces described in this paper to develop

application specific scheduling strategies for a set of four digital
image-processing applications. The experimental results reveal
that while the designs do not exploit all of the available external
memory bandwidth, they achieve respectable performance at a
reasonable implementation and generality cost.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS’01, October 1-3, 2001, Montréal, Québec, Canada,
Copyright, 2001 ACM 1-58113-418-5/01/00010…$5.00

221

This paper makes the following contributions:

• Describes an abstract memory channel architecture with

the concepts of channels, FIFOs and schedulers for
managing memory accesses. This architecture decouples
the target-dependent from the application-specific
implementation knowledge thereby decreasing the
complexity of interfacing with commercially available
target architectures.

• Describes a suite of simple memory access schedulers for

both pipelined and non-pipelined access modes for
statically schedule streamed data access patterns. The
schedulers are parameterizable and interface with
behavioral code for the core datapath to generate
complete designs.

• Describes an optimization in the definition of the

memory controller scheduler that exploits application
specific knowledge. This optimization reduces the
number of controller cycles improving the overall
design’s performance.

• Presents experimental results of the application of

distinct scheduling strategies for a small set of kernel
applications on a commercial FPGA-based computing
engine. For these kernels pipelined access mode
improves the performance up to twofold while the
controller FSM optimization further improves up to 10%.

The results presented in this paper support the claim that it is

possible to exploit application specific information and integrate
that knowledge in a custom scheduler for reducing the overhead
associated with external memory accesses. The results also reveal
that the additional design complexity of the scheduler, and its
impact in the overall design is minimal.

While generality and performance are often conflicting goals,

the complexity reduction, faster and more robust mapping of
applications to FPGA-based hardware, are non-negligible factors
in fast-prototyping settings. We believe that the simple abstract
memory architecture with the interfaces presented in this paper are
fundamental concepts that allow the easy integration of high-level
analysis and program transformations in the mapping of
applications to configurable computing architectures.

The rest of this paper is organized as follows. In the next

section we describe the proposed external memory interface and
its underlying abstractions. Next we describe the opportunities for
application specific memory channel scheduling strategies. In
section 3 we describe the basic analysis our compiler uses to
generate the memory interfaces by analysis of the application
programs. Section 4 presents a set of experimental results. We
survey related work in section 5 and conclude in section 6.

2. EXTERNAL MEMORY INTERFACING
The proposed external memory interface is defined around a

target-dependent interface and a target-independent interface. The
target-dependent interface takes into account the specific timing
requirements of the target hardware architecture and for practical

reasons is tightly coupled to the vendor-supplied memory
interface. This interface includes strict requirements that every
memory access must meet such as the relative timing of memory
operations; clock cycle counts for each type of access; and
binding of pins in the design. The target-independent interface
allows the core datapath that implements the computation in
hardware to interface with input/output FIFO queues using a
simple, timing-independent protocol.

2.1 Streamed Execution Model
To support the operation of streamed applications we have

defined several memory access abstractions to exploit application-
specific knowledge and advanced memory access modes,
respectively, an address generation unit (AGU), a memory
access scheduler (MAS) and FIFO queues (see Figure 1).

The core of the computation is carried out by a datapath with
input and output ports. These ports are physically bound to FIFO
queues to retrieve and store data from memory. As computation
progresses the datapath issues requests for data from the FIFO
queues associated with its ports. These requests are then translated
into low-level signals via the target-dependent interface. A simple
handshaking protocol allows the design control to be informed
about when the data has been deposited into the FIFO queue.

2.2 Memory Architecture Abstractions
Associated with each FIFO queue there is the notion of a

channel and a data stream. A data stream defines a sequence of
addresses and is identified by the tuple (base_address, offset,
stride). A channel binds a port, the corresponding FIFO queue in
time, by the contents of specific hardware resources in the address
generation unit (AGU). The AGU consists of a register table with
one entry per data stream supported. Each entry has a set of
programmable fields to keep physical address data, an arithmetic
unit to update and generate physical addresses, and a FSM to
generate control signals. The details of the implementation are
described in [4].

Data Bus

Conversion FIFOs

…

… Address Address
Generation

Unit

Select

Memory
Control
Signals

Memory
Subsystem

Datapath

Datapath I/O

Datapath I/O

Data Bus

Conversion FIFOs

Memory
Access
Scheduler

…

… Address Address
Generation

Unit

Select

Memory
Control
Signals

Multiple
Entries

Memory
Subsystem

Datapath

Datapath I/O

Datapath I/O

Target Specific
Interface

Application Specific
Interface

Figure 1. Memory Architecture and Interfacing.

We have defined and implemented both interfaces and

hardware abstractions to support the data stream execution model
of this approach for designs with a single computation task and
with both single and multiple external memories.

222

2.3 Application Specific Scheduling
In the simpler case where the memory accesses can be

determined statically, the compiler can schedule the order in
which the accesses should occur. The scheduler, implemented in
hardware via a FSM, should avoid deadlocking due to internal
state transition conditions of multiple outstanding memory
operations that can be dependent on each other. The memory
access scheduler is defined by three hardware processes. A
process checks which of the channels needing service by checking
if the corresponding FIFO is empty (or full); a process to issue
memory requests and a process to synchronize the transactions of
the other two processes.

A simple scheduling calls for the handling of each memory

channel corresponding to the datapath input/output ports in a
round-robin fashion. For each computation, typically an iteration
of a loop, the scheduler checks whether or not a given channel
needs to access memory by inspecting the FIFO queue associated
with it. To be able to handle conditional memory accesses we
convert all conditional accesses to non-conditional accesses by
speculatively fetching all of the potentially required. This
approach, while wasteful of memory bandwidth allows for a much
simpler memory controller. An alternative would be to implement
a memory controller with the possibility of aborting memory
accesses. This approach however would require timing the signals
that dictate which memory references to abort, in the core
datapath with the memory controller at the appropriate time. In
the presence of pipelined execution modes this design would
clearly become more sophisticated most likely leading to a
reduced overall design performance.

Despite its apparent simplicity, this strategy interacts with
other techniques common in synthesis such as loop pipelining.
Using pipelining, loop prologues and loop epilogues do not
exhibit all of the memory operations of the regular, steady state
bodies of the loop. Typically the prologue generates no write
operations and the epilogue requires no additional input data. The
information about the scheduling of prologues and epilogues must
be encoded in the scheduler’s FSM, therefore increasing its
complexity. In addition, round-robin works well if all of the
channels have the same rate, that is, they produce/consume the
same number of data items per cycle of the computation. If
different channels have distinct rates, the scheduler must check for
every computation, whether or not a memory operation is
required. Again, because the FSM uses a larger number of
predicates to determine its appropriate action, the implementation
complexity increases.

A way to eliminate the overhead associated with the
checking of which channels need to access memory is to embed
information about several channels whose data access exhibit the
same pattern. For example, if at every iteration of the computation
there are three channels that need to access memory, testing for a
single channel, is equivalent to test for any of them. Using this
approach the number of FSM states, and therefore, cycles
dedicated to hardware checks is substantially reduced. We call
this approach a round-robin group scheduling strategy. Clearly,
this group strategy can only be applied when the compiler can
determine the exact relationship between memory accesses of the
channels.

3. COMPILER ANALYSIS AND SUPPORT
We have integrated the synthesis of pipelined memory access

controllers described in the previous sections in the DEFACTO
compilation and synthesis system [3]. The current implementation
analyzes source C programs in the intermediate SUIF
representation format [10] and identifies opportunities for simple
data reuse using tapped-delay lines. The analysis focuses on loop
nests with array references using affine index functions (e.g.,
pixel[2*i + j +1]). While the analysis, as described in detail in [4]
is capable of handling indexed for loops with compile-time
unknown bounds, the current code generation phase must rely on
known bounds to perform loop unrolling of inner that are to be
mapped to hardware.

Given a set of array references in a loop nest that exhibit

temporal reuse the compiler analyzes the reference index
functions and the loop bounds to determine the base address,
offset of the array being accessed as well as the stride of
consecutive accesses. Figure 2 below illustrates the extraction of a
single data stream corresponding to the accesses and data reuse of
the array references in a loop.

for(i=1; i <= N; i++){ // Compiler extracts
 tmp = 2*a[i] + a[i+1] + 2*a[i+2]; // stream 0 = (a, 1, 1) in
 if(tmp < threshold){
 e[2i-2] = 0; // stream 1 = (e,0,2) out
 } else {
 e[2i-2] = 1;
 }
}

Figure 2. Temporal Data Reuse and Stream Extraction.

Using the information about data streams the compiler uses

library functions to define a data stream and programs an entry in
the address generation unit (AGU) that will generate the sequence
of addresses that correspond to the consecutive array accesses.
The compiler also determines, using a very simple algorithm, the
placement of the data in the FPGA’s external memories, so that it
can generate the base addresses for each of the data streams. In
addition the compiler generates source C code, via a predefined
set of library functions, that map the data to and from the host
processor on the target FPGA’s external memories.

As part of the DEFACTO code generation phase the

compiler emits structural VHDL code that implements all of the
functionality of the memory interface and corresponding
abstractions using predefined VHDL parameterizable templates.
This structural code is then “linked” automatically with the
behavioral code that describes the code of the datapath
computation by via a naming scheme for the individual datapath
ports and corresponding streams.

4. EXPERIMENTAL RESULTS
We now present experimental results for the application of

distinct memory access channel scheduling strategies as described
in Section 2. We first describe the methodology used in these
experiments and then present the results obtained for three image
processing kernel computations running on a real FPGA-based
computing board.

223

4.1 Methodology

We have mapped three (3) computation kernels from C to
VHDL using the DEFACTO design system [3]. The DEFACTO
mapping process generates behavioral VHDL specifications for
computations in the body of loop nests it finds to be profitable to
execute on an FPGA-based computing engine – the Annapolis
WildStarTM [13] FPGA-based board.

Next, we have manually modified the memory channel

interface for the target architecture to allow the implementation of
two distinct flavors of the round-robin memory access scheduling
strategy, namely naïve (N), pipelined(P), group (G) and
pipelined with grouping(P+G) scheduling. We then compare the
performance of the designs using the different strategies. This
performance comparison was carried out in a functional simulator,
ModelSim™[7], where we are able to extract more precise clock
cycle counts. We also confirmed the performance improvements
via real executions on the WildStarTM board.

The WildStarTM board has three Xilinx® [15] Virtex

1000BG560 parts each of which is connected to two SRAM
memory modules with 4Mbytes capacity. We have used
Synplicity® Synplify® 5.1.5 and Xilinx® M1 place & route tool
to generate the bitmap file for the Virtex parts. To exacerbate the
problems of memory access scheduling, we mapped all of the
applications data onto a single memory module. This approach
allowed us to determine the severity of the memory scheduling
issue. Techniques such as stripping data arrays onto different
memory banks (see for example [5]) are orthogonal to the
scheduling approach presented in this paper.

4.2 Applications
Sobel Edge Detection (SOBEL)

This application implements a simple eight point
computations based on a 3-by-3 window of a 128-by-128 image
of pixels. Each iteration of the inner most loop of the code’s main
loop nest consumes 8 data items from the input array variable and
produces 1 item of the output array variable. The number of
operations can be reduced significantly to 3 read and 1 write
stream operations exploiting data reuse using tapped-delay lines
across iterations of the main computation loop.

Automatic Target Recognition (ATR)

This application computes a binary image correlation using a
binary mask array variable and a scalar accumulation variable.
Because the compiler has aggressively exploited loop unrolling it
generates a design with vast amount of parallelism and data reuse.
Due to the unrolling, however, the number of data memory
accesses per iteration of the inner loop is substantial. To study the
impact of the number of memory accesses and hardware support
for a varying number of channels we have implemented two
variants of this application. One variant called ATR-4 uses 4 input
channels and corresponds to using a fixed mask variable for the
correlation computation. The other variant, called ATR-8 uses 8
input channels, 4 channels for the input image variable and
another 4 for the binary mask.

Multiply-Accumulate-Zero (MAZ)

This computation computes the sums of the product of every
pair of adjacent array values if the first value of the pair is smaller
then the current running sum. For every addition, the computation
zeros out the first element of the pair in the array. Because the
accumulation and multiplication (16 bits output) is conditional
and data dependent on the running sum of the computation, we
call this computation multiply-accumulate-zero (MAZ). From the
standpoint of the memory controller this computation exhibits a
more irregular memory access pattern as some of the write
operations are dependent not on an input values but rather on the
value of an internal computation.

4.3 Results
We begin this discussion by first characterizing the execution

of each of the applications using the default round-robin naive
memory access scheduling strategy. Figure 3 below presents a
breakdown of the execution time for the steady state of the main
computation loop in each of these applications for a single
memory bank implementation.

0% 20% 40% 60% 80% 100%

MAZ

ATR-8

ATR-4

SOBEL
A

pp
lic

at
io

ns

Percentage

Computation
Time

Memory Access
Latency

Scheduling
Oveherad

Figure 3. Execution Time Breakdown for Tested Applications.

As expected, and given that in these experiments memory

accesses are blocking, the bulk of the execution time (60% to
80%) is spent stalling on memory accesses. Approximately 8% to
9% is spent checking the status of the input/output FIFO queues.

Table 1 shows the performance results for all applications for

the different scheduling strategies. These results exclude the
initial data loading and final data retrieval from the board. We
report the overall design size in terms of FPGA slices; the
maximum allowed clock rate for the design; the simulated
execution time using a 25 MHz clock and the speedup measured
as the ratio of the execution time of each version with respect to
the computation using the naïve scheduling strategy.

Table 1 reveals that all designs are small (12.5% maximum

FPGA occupancy) and therefore exhibit good performance
characteristics in terms of maximum attainable clock rates. Table
1 also reveals the performance advantages of pipeline with an
average speedup of 1.9 over the four tested kernels. Group
scheduling by itself yields modest performance improvement with
an average speedup of 1.1. When combined with pipelined, group
scheduling boosts the average speedup to 2.05. This improvement

224

is most noticeable for ATR-8 where the number of channels with
the same input/output behavior is the largest.

Table 1. Synthesis and Timing Results.

Applications

Slices
(out of
12,288)

Max.
Freq.

(MHz)

Simulation
Time

(nsecs)

Speedup

N 1,144 30.1 1,312,020 1.00
P 1,061 31.5 738,540 1.78
G 1,160 31.7 1,312,140 1.00

SOBEL

P+G 1,068 31.6 697,660 1.88
N 1,968 25.9 120,040 1.00
P 1,980 25.6 66,600 1.82
G 1,974 33.9 102,280 1.17

ATR-4

P+G 1,984 26.9 59,600 2.00
N 2,771 25.9 188,440 1.00
P 2,707 25.9 71,840 2.62
G 2,718 30.8 163,440 1.15

ATR-8

P+G 2,730 25.9 69,480 2.71
N 1,027 30.4 85,760 1.00
P 1,191 36.2 62,360 1.38
G 1,226 31.5 78,680 1.09

MAZ

P+G 1,003 29.6 55,520 1.55

Table 2 shows the synthesis metrics for the synthesis of
the channel controllers for each design. Overall the more
sophisticated group-scheduling controller has clock rates in the
100MHz range and therefore appears not to impact the critical
path of the whole design. By itself, the implementation of the
group-scheduling controller requires no more than 21 additional
slices than the simpler naïve controller does for a total a maximum
of 75 slices barely 5% of the designs.

Table 2 Synthesis Metrics for Channel Controller (N: Naïve,

P: Pipelined, G: Group P+G: Pipelined with Grouping).

Applications CLBs Gates Clock Rate
(MHz)

N 29 381 140.1
P 25 333 130.3
G 35 431 87.5 SOBEL

P+G 35 448 134,7
N 35 458 127.3
P 42 568 125.0
G 40 531 105.2

ATR-4

P+G 46 635 120.7
N 54 679 106.2
P 74 937 82.2
G 57 758 77.9

ATR-8

P+G 75 1,010 69.4
N 30 383 120.5
P 34 450 112.8
G 36 450 115.6

MAZ

P+G 45 559 116.4

4.4 Discussion
The experimental results, not surprisingly, reveal that

pipelining techniques substantially improve the overall design
performance. The implementation of group-scheduling techniques
marginally increases the performance for the whole design with
negligible impact in terms of area and very little influence on the
maximum clock rate.

While we are able to eliminate almost all the memory

overhead by pipelining and aggressive group scheduling there are
several techniques that have been explored in other contexts and
could be explore for the context of FPGA-based designs, namely:

• Reducing the sharing of physical bus channels will reduce

the memory latency.
• Assigning multiple memory modules to disjoint input

array for concurrent accesses.
• Aggressive pre-fetching and overlapping memory accesses

with computations.

In this work we have focused exclusively on application level

techniques that impact the design of the memory controller, rather
than on architecture related approaches for reducing memory
latency. We focused on the scheduling of memory accesses within
a single computational task where memory accesses are statically
scheduled. The scheduling in the context of multiple tasks may
require a more flexible run-time scheduling strategy to minimize
memory access contention. In the future we plan to address the
implementation of dynamic, run-time scheduling implementation
techniques where a schedule is setup only at run-time rather than
statically for both single and multiple tasks.

Given the trade-off between generality and performance we

have estimated the performance gap between the currently
automated applications in this empirical study and what a designer
could achieve exploiting the overlapping of computation in the
core datapath with the communication with external memory. In
Table 3 we compare the performance of the generated designs
against an optimal solution where the memory accesses are
perfectly scheduled and are fully overlapped with the computation
in a zero latency scenario.

Table 3. Performance Expectation for Hand Designs (P+G+O:

Pipelined with Grouping and Overlapping, OPT: Optimal
Scheduling Design).

Applications

Speedup

Applications

Speedup

N 1.00 N 1.00
P+G 1.88 P+G 2.71

P+G+O 3.60 P+G+O 4.41

SOBEL

OPT 7.99

ATR-8

OPT 7.00
N 1.00 N 1.00

P+G 2.00 P+G 1.55
P+G+O 3.56 P+G+O 2.91

ATR-4

OPT 7.50

MAZ

OPT 6.48

While Table 3 reveals there is still a substantial performance
gap between the automatically generated codes and the possibly
infeasible optimal version, the effort and time investment for a
hand design is still substantial, in particular for a novice
programmer. While our designs take a few seconds to generate
and about 30 minutes to synthesize and download onto the board,
a hand design can take days if not weeks to design and verify its
correctness.

225

5. RELATED WORK
Other researchers have addressed the issues memory

operations scheduling in the context of application specific
implementations.

Weinhardt and Luk developed memory access optimizations

for pipeline vectorization in RAM interface [12] using a scheme
to reduce consecutive memory accesses of array data using shift
registers but accessing only on-chip RAM modules. Gokhale and
Stone [5] proposed an automatic array allocation compile-time
algorithm for multi-level memory subsystem. They attempt to
allocate array variables to memories based on the memory latency,
data access frequency and execution schedule. Schmit [11]
developed a mapping scheme for mapping datapaths with memory
operations directly to hardware. His approach uses a centralized
memory controller scheme where the scheduling of the operations
is done in conjunction with the execution of the datapath
computation. Panda et. al. [8,9] refined this approach by defining
a time-constrained based specification of the a centralized
scheduler for handling external memory operations. Catthoor,
Balasa et. al. developed and evaluated memory optimizations for
embedded systems for a particular application set [1,2,6]. This
research focuses on optimizations to minimize memory area and
power consumption. Catthoor also proposed a data packing
scheme to reduce memory bandwidth requirements for dynamic
data structure. Wuytack et al. suggested minimizing memory
bandwidth requirements [14] by mapping highly accessed array
variables to fast hierarchy storage.

The research described in this paper differs from these efforts
in several aspects. The common approach to memory scheduling
operations has been to develop, based on a specification for the
dependences of the operations, a centralized memory scheduler
that fetches the data from an external memory into the datapath.
Our approach provides an architecture independent view of the
datapath and a memory controller that is decoupled from the
datapath execution controller. This scheme has several advantages
over the centralized control schemes proposed by previous
researchers. First, in designs where pipelined memory accesses are
desirable, the implementation complexity of a centralized scheme
substantially increases. The scheduler needs to generate a
controller that obeys the timing constrains for all the memory
accesses in the pipeline. Second, our approach makes it easier to
incorporate several tasks into the same design allowing them to
share physical memory ports. A centralized memory controller
scheme would require the description of a joint behavior for all
the tasks a proposition that is hardly extensible and scalable.

6. CONCLUSION
The performance of FPGA-based computing platforms

depends critically on the performance of external memory
interface. In this paper we have described an approach to
decouple the concerns of memory interfacing and static
scheduling of possible memory accesses for applications with
streamed data. We described the application of simple scheduling
strategies to three kernel computations. The experimental results
reveal that we are able to significantly increase the performance
(speedup of two) of the overall design by using pipelined memory
accesses. We further improve the performance by eliminating

almost all of the latency due internal memory controller
optimization resulting in a further 10% performance increase. The
experiments reveal that the added complexity of the resulting
designs is minimal.

7. REFERENCES
[1] F. Balasa, F. Catthoor, and H. De Man “"Dataflow-driven Memory

Allocation for Multi-dimensional Signal Processing Systems",
Proceedings of the IEEE International Conference on Computer
Aided Design, Santa Jose, Calif., Nov. 1994, pp. 31-34.

[2] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H.
DeMan "Global communication and memory optimizing
transformations for low power signal processing systems", IEEE
workshop on VLSI signal processing, La Jolla, Calif., Oct. 1994.

[3] P. Diniz, M. Hall, J. Park, B. So and H. Ziegler, “Bridging the gap
between Compilation and Behavioral Synthesis in the DEFACTO
System”, To appear in the Proc. of the workshop on Languages and
Compilers for Parallel Computing, (LCPC’2001).

[4] P. Diniz and J. Park, "Automatic Synthesis of Data Storage and
Control Structures for FPGA-based Computing Machines", In Proc.
of the IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM'00), IEEE Computer Society Press, Los Alamitos, Calif.,
Oct. 2000, pp. 91-100.

[5] M. Gokhale and J. Stone “Automatic Allocation of Arrays to
Memories in FPGA Processors With Multiple Memory Banks” Proc.
of IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM’99), IEEE Computer Society Press, Los Alamitos, Calif.
Oct. 1999, pp. 63-69.

[6] M. Miranda, F.Catthoor, M. Janssen and H. DeMan, “High-level
address optimization and synthesis techniques for data-transfer-
intensive applications”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 6(4), Dec. 1998, pp. 677 –686.

[7] MonetTM User’s and Reference Manual Software Release R42,
Mentor Graphics Inc., 1999.

[8] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C.
Kulkarni, A. Vandercappelle and P. Kjeldsberg. “Data and memory
optimization techniques for embedded systems”, ACM Transactions
on Design Automation of Electronic System, 6(2), Apr. 2001.

[9] P. Panda, N. Dutt and A. Nicolau, “Exploiting off-chip memory
access modes in high-level synthesis” Proceedings of the 1997
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD’97), 1997, pp. 333 – 340.

[10] “The Stanford SUIF Compilation System”, version 1.1.2 Public
domain software and documentation available at
http://suif.stanford.edu.

[11] H. Schmit and D. Thomas, "Synthesis of Applications-Specific
Memory Designs," IEEE Transactions on VLSI Systems, 5(1), Mar.
1997, pp. 101-111.

[12] M. Weinhardt and W. Luk “Memory Access Optimization and RAM
interface for Pipeline Vectorization”, In Proc. of Symp. on Field
Programmable Logic (FPL’99), Springer-Verlag, 1999, pp. 61-70.

[13] WildStarTM Reference Manual revision 4.0, Annapolis
MicroSystems Inc., 1999.

[14] S.Wuytack, F.Catthoor, G.De Jong, and H.De Man. “Minimizing the
required memory bandwidth in VLSI system realizations”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 7(4),
Dec. 1999, pp. 433 –441.

[15] Xilinx, Inc. Virtex™ 2.5V Filed Programmable Gate Arrays Product
Specification. DS003(v2.4), 2000.

226

	Main
	ISSS01
	Front Matter
	Table of Contents
	Session Index
	Author Index

