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ABSTRACT
The ever increasing gap between processor and memory speeds
has motivated the design of embedded systems with deeper cache
hierarchies. To avoid excessive miss rates, instead of using big-
ger cache memories and more complex cache controllers, program
transformations have been proposed to reduce the amount of capac-
ity and conflict misses. This is achieved however by complicating
the memory index arithmetic code which results in performance
degradation when executing the code on programmable processors
with limited address capabilities. However, when these are com-
plemented by high-level address code transformations, the over-
head introduced can be largely eliminated at compile time. In this
paper, the clear benefits of the combined approach is illustrated on
two real-life applications of industrial relevance, using popular pro-
grammable processor architectures and showing important gains in
energy (a factor 2 less) with a relatively small penalty in execution
time (8-25%) instead of factors overhead without the address opti-
misation stage. The results of this paper leads to a systematic Pareto
optimal trade-off (supported by tools) between memory power and
CPU cycles which has up to now not been feasible for the targeted
systems.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory structures—Cache memories; D.3.4
[Software]: Programming languages—Optimisation

Keywords
Address generation, direct mapped cache, embedded systems, mul-
timedia applications

1. INTRODUCTION
Multi-media systems such as medical image processing and video

compression algorithms, typically use a very large amount of data
storage and transfers. This is especially a problem for low-power
embedded system realisations because the memories and bus trans-
fers are responsible for most of system energy waste (between 50
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and 80%). Therefore, optimising the global memory accesses of
an application in a so-called Data Transfer and Storage Exploration
(DTSE) [1] stages is a crucial task for achieving low power reali-
sations. These optimisations have both platform independent and
platform specific phases. The first phase has a positive influence
on both energy and performance (irrespective of the architecture)
since it removes redundant data transfer and storage and it improves
the locality of production/consumption of the data. However, this
phase need to be complemented by a platform specific one to ex-
ploit the opportunities created. This is especially true for highly
constrained architectures like those found in programmable plat-
forms due to resource limitations.

In multimedia, the vast majority of programmable processor use
cache controllers to manage their on-chip memories. These con-
trollers decide at run-time when and how the data is copied from
the higher memory hierarchy layers to the cache architecture [2].
In this way the designer does not have to worry about managing
the memory hierarchy, especially for the dynamic part of the appli-
cation. However, this can become a run-time bottleneck especially
due the cache misses when the required data is no longer present
in the on-chip memory. These misses translates into an excess of
system bus load and energy because of the traffic of data between
main memory and the cache (hierarchies). This results into cycles
wasted when the processor is stalled waiting for the data to arrive
and in energy spent in reloading the cache. Moreover, it limits the
performance of shared-memory multiprocessor based implementa-
tions.

All this unnecessary overhead can be avoided at the program
level. However, it requires knowledge of the underlying platform
architecture. This knowledge can be exploited using platform-aware
transformations. Optimisations oriented to minimise the miss rate
in the data cache (D-cache) are those exploiting the limited life-
time of the data during program execution (namely inplace optimi-
sations which can reduce capacity misses [3, 4]) and those exploit-
ing the memory data organisation freedom (to remove the conflict
misses, e.g. [5, 6]). This reduction in miss rate leads to important
savings in energy (see Section 3). However, they typically require
to re-write the index expressions of the affected data arrays, thus
resulting in a much more complex addressing functionality. This
potentially large overhead in addressing can lead to factors over-
head in execution time on programmable processors. In this way it
can limit a more efficient cache utilisation.

After cache oriented code transformations, the new addressing
code is dominated by index expressions of piece-wise linear nature
and it becomes a bottleneck for the auto-increment nature of most
commercial Address Calculation Unit (ACU) architectures. There-
fore, it should be removed before going to the more pointer level
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Figure 1: D-cache miss-rate evolution for the MPEG4 Motion Estimation driver for different cache sizes and controller types, in-
cluding off-chip/on-chip power breakdown and total power evolution for different cache sizes (for a direct mapped cache controller).

specific address optimisation techniques like those found in con-
ventional [7] or state-of-the-art compilers [8]. Moreover, conven-
tional automated address optimisation approaches [9, 10, 11, 12,
13] do not allow this for address code containing modulo/division
operations.

To remove this large bottleneck we have developed efficient ad-
dress optimisation techniques. These are based on the use of pro-
gram transformations which are largely independent of the targeted
instruction-set architecture [14, 15], but which need also to be com-
plemented by more architecture specific ones [16]. Using these
techniques, the addressing code is globally optimised, resulting in
factors overall improvement in execution cycles when compared to
their original data-organised versions.

The clear benefits of the combined approach to aggressively im-
prove cache utilisation by source code transformations which in-
troduce complex addressing which is then reduced again by a high-
level address optimisation stage, has to our knowledge not been
studied in the literature. We will provide a systematic approach to
achieve that in this paper. It leads to Pareto optimal speed power
trade-off curves. That approach is illustrated on two real-life ap-
plication drivers of industrial relevance, using three popular pro-
grammable processor architectures, showing important gains in cy-
cle count and energy consumption.

2. EXPERIMENTAL SETUP
Due to flexibility requirements of the implementation an instruction-

set processor architecture is preferred over a fully custom one. The
architectures which we target in this paper, consist of multi-media
(extended) processors (such as TriMedia’s TM1000, Intel’s Pentium-
III MMX) but also more general RISC architectures such as Hewlett-
Packard’s PA800 architecture.

For realistic embedded implementation we assume their “core”
versions which have a relatively small local (L1) on-chip cache
memory to reduce the energy per L1 cache access (which is our fo-
cus here). These processors are connected to a (distributed) shared
off-chip memory (hierarchy). Therefore, meeting real-time con-
straints in such architectures, requires an optimal mapping of the
application onto the target platform.

For our experimental setup we have used the SimpleScalar sim-
ulator tool set [20] for simulating cache performance for varying
cache sizes. The cache is simulated using the faster and function-
ally correct sim-cache simulator for measuring cache performance.
Existing processors have been used to measure the performance
values. The code versions have been compiled and run on the dif-

ferent platforms using the native compilers and enabling their most
aggressive speed oriented optimisation features.

Our exploration approach is illustrated on two real-life applica-
tion drivers: a Cavity Detector algorithm and MPEG4 Full Search
Motion Estimation kernel for CIF video frames. The Cavity Detec-
tor is an image processing application used mainly in the medical
field for detecting tumour cavities in computer tomography pictures
(as large as 1280�1000 pixels) [17].

When these algorithms are mapped onto an embedded system,
the system bus load and power requirements are quite high. At our
laboratory, much effort has been already spent on optimising both
drivers at the source-level code, mainly by applying the platform
independent transformation stage of the DTSE methodology [18,
19]. In this paper we will focus only on the data cache related
speed-power trade-offs during the platform specific mapping stage.

3. MEMORY DATA-LAYOUT OPTIMISA-
TION FOR D-CACHES

A cache miss happens whenever a block of data requested by the
CPU is not found in the cache. Therefore, the fist time a block has
be copied into the cache can also be considered as a miss (namely
a compulsory miss). However, only those misses related to blocks
that have been previously allocated in the cache lead to an over-
head. In this case, two possible situations exist [2]: (1) when the
cache cannot contain all the blocks needed during execution, ca-
pacity misses will occur because of blocks being discarded and
later retrieved; (2) if the block placement strategy is set associa-
tive or direct mapped, conflict misses (in addition to compulsory
and capacity) will occur because a block can be discarded and later
retrieved if too many blocks map to its set.

For the D-cache, optimisations are available which are oriented
to minimise both capacity and conflict misses. Capacity misses
can be greatly reduced by exploiting the limited life-time of the
data (inplace oriented optimisations [3]) and the conflict misses by
applying data-layout oriented transformations [6]. Using prototype
tools supporting these techniques [21], we obtain the transformed C
code. Thus, we now have the initial (reference) and the data layout
transformed codes.

After cache simulations we have observed that both drivers are
dominated by misses in the D-cache (the miss rate for I-cache is
about three orders of magnitude smaller than for D-cache). There-
fore, we have focused on optimising the D-cache miss rate by ap-
plying main memory data-layout oriented program code transfor-
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Figure 2: Data-cache miss-rate evolution for the Cavity Detector driver for different cache sizes and controller types, including
off-chip/on-chip power breakdown and total power evolution for different cache sizes (for a direct mapped cache controller).

mations. Simulations have been performed using different cache
controller types: a 4-way associative cache for the non optimised
version and a direct mapped for both optimised and non-optimised
versions. Also, different capacity sizes (with the number of cache
lines ranging from 256 till 2024) have been evaluated. Figure 1
and 2 shows the miss rate after simulations for both drivers and
controller types.

For the non-optimised code, the miss rate obtained using a direct
mapped controller is rather large when we compare it to the one
obtained when using 4-way associative controller. However, when
using the cache optimised code, the miss rate behaves equally well
for both controller types. This is clearly an important result because
it enables the use of the simpler direct mapped cache controllers
for embedded applications, instead of the more costly, and power
hungry, set-associative controller types.

4. HIGH-LEVEL OPTIMISATION OF THE
INDEX/ADDRESS COMPUTATION

Cache oriented transformations require the introduction of com-
plex modulo and integer division operations in the index expres-
sions. This is because, transformations exploiting the limited life-
time of the data requires complex modulo operations in the address
code to express in time the folded nature of the relation between
the original and the transformed address spaces in main memory.

On the other hand, data-layout oriented transformations require
to create gaps of unused memory locations within array of data
allocated in main memory, as well as to allocate in memory differ-
ent arrays in an interleaved manner. Therefore, these data-layout
oriented transformations also require modifications in the original
addressing code by introducing complex modulo and integer divi-
sion operations. Figure 3 illustrates the effect of such transforma-
tions on a piece of code representative of the Cavity Detector driver.
The combined outcome is that even nested modulo expressions are
present.

As a result, for both application drivers described in Section 3, a
large overhead in addressing is created. For both drivers, this over-
head is mostly due to the more complex index expressions (mainly
of piece-wise linear nature) introduced during the inplace [3] and
data-layout [6] DTSE oriented optimisation steps. Indeed, a con-
siderable number of costly modulo operations are executed and
traditional compilers completely fail to efficiently eliminate them.
Hence, the execution time increases considerably: a factor between
2-20 depending on the application and the target processor archi-

tecture (see Section 5).

for(x=1; x<N-2; x++) {
  for(y=1; y<M-2; y++) {
    for(k=-1; k<1; k++) {
      ....
      A[x][y] += B[x+k][y]*C[abs(k)];
      ....
    }
    A[x][y] /= tot; }}
                          (a)

for(y=0;y<M+2;y++) {
  for(x=0;x<n+2;x++) {
    ....
    if(x>=0 && x<N && y>0 && y<M-1)
      D[x%3] = B[(y*N+x%3)%160+(y*N+x%3)/160*256+ 96];
    ....
    if(x-1>=1 && x-1<=N-2 && y>=1 && y<=M-2)
      for(k=-1;k<=1;k++) 
        acc+=D[(x-1+k)%3]*C[abs(k)];
    acc/=tot; }}
                           (b)

Figure 3: Illustration of data cache oriented transformations
in the Cavity Detector driver: (a) initial code; (b) transformed
code.

Our novel design script allows to remove this overhead at the
source-level code by reducing the complexity and the amount of
address operations [16]. This high-level optimisation stage consists
on two main stages.

The first one exploits algebraic and modulo properties to reduce
the number operation instances. This stage does a re-factorisation
of addressing expressions [22] (containing also modulo/division
operations) that compilers are not capable to perform (see Fig 5b).
This factorisation typically exposes more opportunities for com-
mon sub-expression elimination than those originally present in the
initial code. When complementing this with aggressive code hoist-
ing techniques across both loops and conditionals, the number of
executed operations is minimised.

At that point, the second stage can focus on reducing the execu-
tion cost of the (remaining) modulo/division operations by trans-
forming these onto a efficient combination of linear induction vari-
ables and conditional code (see Fig 5c) [16].

High-level address transformations also have a positive effect on
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Figure 4: Power and performance trade-offs for the Motion Estimation kernel for different processors and memory data-layouts.
Lines at the right represent trade-offs before the address optimisation phase and at the left after it.

memory accesses and in L1-misses both for I-caches and D-caches.
For the D-cache, we have observed for both drivers (see Section 2)
that the amount of data memory accesses as well the number of data
misses decreases slightly ('<10%). However, this improvement
in data memory power is very limited when compared by the one
achieved using the memory data-layout oriented transformations
(see Section 5). For the I-cache, a larger reduction in instruction
memory fetches (>40%) is obtained (due to the more efficient ad-
dressing code) while the reduction in instruction fetch misses stays
also limited ('<10%). Still, in both drivers the miss-rate for the
I-cache is about three orders of magnitude smaller than for the D-
cache and so the off-chip memory related power.

for(y=0;y<10;y++){                 for(y=0;y<10;y++){
   for(x=0;x<100;x++){               v_y = (y%3)*3;
      if(x>1) A[(y%3)*3                for(x=0;x<100;x++){
                      +(x-2)%3]=...          v_yx = (x-2)%3 + v_y;
      if(x>4) ...=A[(y%3)*3               if(x>1) A[v_yx] = ...
                      + (x-5)%3]               if(x>4) ... = A[v_yx];
}}                                                 }} 

             (a)  Initial                        (b) Index expression
                                                               optimisation

                          for(y=0;y<10;y++){
                             if(p_y>=9) p_y-=9;
                             for(x=0;x<100;x++){
                                if(p_x>=3) p_x-=3;
                                v_yx = p_x + p_y;
                                if(x>1) A[v_yx] =...
                                if(x>4) ...= A[v_yx];
                                p_x++;}
                             p_y+=3;}
 
                                (c) Modulo operation
                                          sustitution 

Figure 5: Illustration of processor independent address trans-
formations for the Cavity Detector driver: (a) initial code; (b)
after algebraic and modulo oriented transformations; (c) after
modulo substitution transformations.

5. TRADE-OFF BETWEEN PERFOR-
MANCE, POWER AND MAIN-MEMORY
SIZE

We now discuss how the above technique can be applied to achieve
important system level trade-off’s. For both drivers we have started
with an initial algorithm which has been optimised from a DTSE
perspective.

In the first step, we obtain miss rates for different cache sizes
when using a cost efficient direct mapped cache. This is shown in
Figure 1 for the Motion Estimation and in Figure 2 for the Cavity
Detector. Once we have obtained the miss rates for different cache
sizes, we compute the total (off-chip plus on-chip) required power
for each driver. We observe that for both drivers a cache size with
256 bytes consumes the least total power. For smaller cache sizes,
the total consumed power would be dominated by the accesses (due
to misses) to the off-chip memory. For larger sizes the accesses to
the on-chip memory dominates the total power though.

In a next step, we choose the power optimal cache size of 256
bytes to decide on a trade-off between main-memory size (the over-
head in memory space in the data layout optimisation process as
compared to the initial algorithm) and the reduction in miss rate
as shown in Tables 1 and 2. Thus depending on the design con-
straints, the designer can now either choose a lower power solu-
tion with some overhead in main-memory size and vice-versa. For
the Cavity Detector algorithm we have decided to choose two ver-
sions representative of extreme points in the search space and ob-
serve the trade-offs: one with a 2% main-memory size overhead
(labelled ”Light”) and one with a factor of 2 overhead (labelled
”Aggressive”). For the Motion Estimation kernel the points se-
lected are responsible for a 30% overhead in main-memory size
(labelled ”Light”) and a much larger factor 3 overhead (labelled
”Aggressive”).

In the final stage, we perform address optimisations (also sup-
ported by prototype tools [16]) to remove the overhead in address-
ing operations introduced in the data layout optimisation process.
Figures 4 and 6 show that we are able to largely remove this over-
head in addressing. This is visible by comparing the projected val-
ues on the horizontal axis of the curve before the high-level address
optimisation phase (right-hand side) and after it (left-hand side).

For both drivers, using their ”Light” data-layout version, we are
able to reduce memory related power by almost a factor 2. For
the Motion Estimation, this is achieved by trading-off a 30% in
main-memory size with a 14-40% in execution time (depending on
the target processor), instead of the 80-280% CPU cycle overhead
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Figure 6: Power and performance trade-offs for the Cavity Detector algorithm for different processors and memory data-layouts.
Lines at the right represent trade-offs before the address optimisation phase and at the left after it.

without the address post-processing stage (see Figure 4). For the
Cavity Detector algorithm, main-memory size overhead is limited
to just a 2% and the overhead in execution time is less 13% (ir-
respective of the target processor) instead of the factor 10-20 over-
head in executed cycles when not using the address post-processing
stage (see Figure 6). We assume that the data related memory
power does not significantly change with the address code trans-
formations stage but mainly with the memory data-layout stage as
motivated in Section 4.

Table 1: main-memory size/power/speed trade-offs for the Mo-
tion Estimation.

Data-layout Memory-size Avrg.Power Avrg.Speed
trade-off Overhead Gain Degradation

Light 30 % 45 % 14-40 %
Aggressive 3X 60 % 18-60 %

Table 2: main-memory size/power/speed trade-offs for the Cav-
ity Detector.

Data-layout Memory-size Avrg.Power Avrg.Speed
trade-off Overhead Gain Degradation

Light 2 % 45 % 8-13 %
Aggressive 2X 65 % 24-87 %

Note that the approach we have used in this work is mostly
power centric namely, we first optimise for power (by selection
the optimal cache size) then for main-memory size (by deciding
the amount of data-layout) and lastly for performance (by optimis-
ing the addressing code). But the above technique can be used
for a performance centric approach too. In this case, the designer
should first choose the optimal cache size for data miss rate (e.g.
by selecting the cache size from which the decrease in number of
misses starts to saturate) and then select the amount of data-layout
corresponding to the required trade-off between main-memory size
and memory power. Following this approach, cache sizes of 512
bytes for the Motion Estimation and 1024 bytes for Cavity Detector
would lead to better system performance (less data misses) at the
expenses of higher data memory power (see total memory power
evolution in Figures 1 and 2). Still, Pareto curves like those shown
in Figure 4 and 6 can be used in both scenarios.

6. CONCLUSIONS
In this paper we have shown how to efficiently combine memory

data-layout and address program transformations in a systematic
way to trade-off speed and power when mapping data-intensive
applications into architectures containing cache memories. The
clear benefits of the combined approach have been illustrated by
two real-life applications of industrial relevance, using popular pro-
grammable processor architectures. Important gains in energy (up
to a factor 2 less) with very limited impact on execution time (<25%)
are reported instead of the factors overhead in execution time with-
out the address post-processing stage. Alternatively, execution time
gains be achieved at the system level with a less aggressive power
gain while trading-off main-memory size with total memory power.
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